
Model-Based Availability Evaluation of Multi-Cloud Applications

BY

GIOVANNI PAOLO GIBILISCO
M.S., Politecnico di Milano, Milan, Italy, 2012
B.S., Politecnico di Milano, Milan, Italy, 2010

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

Ugo Buy, Chair and Advisor
Mark Grechanik
Pier Luca Lanzi, Politecnico di Milano

To my Family. . .

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Thesis objectives . 3
1.2 Structure of the thesis . 3

2 BACKGROUND . 5
2.1 Cloud Computing . 5
2.2 Non-Functional Requirements 8
2.3 The Discrete Time Markov Chain with Reward 9
2.4 Availability in the cloud . 10
2.5 Cloud Portability . 11
2.6 Scaling . 13
2.7 Infrastructure-as-a-Service (IaaS) 14
2.7.1 Amazon EC2 . 14
2.7.2 Rackspace Cloud . 18
2.7.3 Terremark Cloud Computing . 18
2.8 Platform-as-a-Service (Paas) . 19
2.8.1 Google App Engine . 19
2.8.2 Microsoft’s Windows Azure Platform 20
2.9 Software-as-a-Service (SaaS) . 21
2.9.1 Google applications . 21
2.9.2 Rackspace . 21
2.9.3 Microsoft . 21

3 EXISTING TOOLS AND METHODOLOGIES 22
3.1 Palladio-Bench . 22
3.1.1 Palladio Component Model . 23
3.1.2 PCM transformations . 29
3.2 The Descartes Meta-Model . 32
3.3 Model solving tools . 32
3.3.1 Simulation tools . 33
3.3.2 Analytic Solvers . 35
3.4 Performance evaluation of component-based software systems 38

4 MODEL EXTENSIONS . 40
4.1 Overview of the solution . 40
4.2 The Model . 40

iii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5 TOOL . 47
5.1 Simulation . 47
5.1.1 Workload . 47
5.1.2 Infrastructural parameters . 49
5.1.3 Simulation parameters . 49
5.1.4 Simulation Engine . 50
5.2 Palladio Extension . 52

6 EXPERIMENTAL ANALYSIS . 61
6.1 A Web System Use Case . 61
6.1.1 Scenario 1 . 64
6.1.2 Scenario 2 . 69
6.1.3 Scenario 3 . 73
6.2 A Multi-Region Use Case . 76
6.3 Results analysis . 79

7 CONCLUSIONS . 84

CITED LITERATURE . 85

VITA . 88

iv

LIST OF TABLES

TABLE PAGE
I AVAILABILITIES OF CLOUD PROVIDERS FROM [1] 11
II AMAZON EC2 INSTANCES TYPES 16
III CHARACTERISTICS OF PRESENTED TOOLS 34
IV ANALYSIS PERFORMED BY LQNS E LQNSIM 35
V RESULT OF A SENSITIVITY RUN 55
VI PARAMETERS OF SCENARIO 1 63
VII SCALING POLICIES . 63
VIII PERFORMANCE PARAMETERS OF USE CASE 2 77
IX SCALING POLICIES OF USE CASE 2 78

v

LIST OF FIGURES

FIGURE PAGE
1 Palladio Component Model - Roles . 23
2 PCM - Repository diagram . 25
3 PCM-System diagram . 26
4 PCM-Resource diagram . 27
5 PCM-Allocation diagram . 27
6 PCM-Usage diagram . 28
7 PCM - Failure types . 30
8 Branch conversion . 31
9 Loop conversion . 31
10 Descartes meta-model sub components [2] 33
11 Overview of the solution . 41
12 Type of nodes . 42
13 Instance of the model . 45
14 Bimodal distribution of requests . 48
15 Example Repository . 53
16 SEFF diagrams . 54
17 Sensitivity file example . 55
18 Complete Sensitivity File . 56
19 First step of the transformation . 57
20 Second and third steps of the transformation 58
21 Fourth and fifth steps of the transformation 59
22 Final result of the transformation . 60
23 Palladio model of the first usecase . 62
24 DTMC model representation of the Multi-Cloud application. 63
25 Cloud provider availability in Scenario 1 65
26 Overall availability of the application of Scenario 1 66
27 Active VMs on Scenario 1 . 67
28 CPU usage of Cloud 1 and Cloud 2 in Scenario 1 68
29 Changes in the Maximum Service Rate of VMs in Scenario 2 70
30 CPU utilizations of Scenario 2 . 71
31 Number of VMs of Scenario 2 . 72
32 Overall availability of the system in Scenario 2 72
33 Bimodal distribution of incoming requests of Scenario 3 74
34 CPU utilization of autoscaling groups of Cloud 1 and 2 of Scenario 3 75
35 Number of VMs for Scenario 3 . 75
36 Overall availability of the system of Scenario 3 76
37 Application deployment of Use Case 2 77
38 DTMC represneting the deployment of the application in Use Case 2 77

vi

LIST OF FIGURES (Continued)

FIGURE PAGE

39 Number of VMs of use case 2 . 80
40 Arrival rate of use case 2 . 80
41 System availability of use case 2 . 81
42 Average CPU load of use case 2 . 81
43 Cloud provider availability of use case 2 82
44 Maximum VMs service rate of use case 2 82

vii

LIST OF ABBREVIATIONS

AMI Amazon Machine Image

API Application program interface

AWS Amazon Web Services

DTMC Discrete Time Markov Chain

EC2 Elastic Cloud Computing

IaaS Infrastructure as a Service

IDE Integrated Development Enviroment

LQN Layered Queuing Network

MTTF Mean Time To Failure

MTTR Mean Time To Repair

PaaS Platform as a Service

PCM Palladio Component Model

QoS Quality of Service

SaaS Software as a Service

SLA Service Level Agreement

UIC University of Illinois at Chicago

viii

LIST OF ABBREVIATIONS (Continued)

VM Virtual Machine

ix

SUMMARY

The emergence of Cloud computing architectures in last years has changed the way appli-

cations are delivered to users. The growing number of Cloud providers and companies that

rely on this infrastructure is a sensible indicator of its popularity. Cloud Computing offers a

cost effective solution to the problem of resource provisioning by giving developers access to a

virtually infinite pool of resources in a matter of minutes. Usually Cloud resources are priced

in a pay per use basis so Cloud users can maintain under control the costs of deploying their

applications by utilizing only resources they need. The scaling capability of Cloud providers

allows companies to change the size of their virtual IT infrastructure according to their needs.

One of the major problems faced by companies when deciding to move to a Cloud environ-

ment is the loss of control on the management of the IT infrastructure. Companies are worried

of outages that can not be directly kept under control. In order to cope with this problem

Cloud providers offer service level agreements with their users by explicitly quoting the avail-

ability that they guarantee to provide. Many Cloud providers offer a service level agreement

availability value of 99.95%. Real data shows that the availability that Cloud users experience

from their providers is much lower and in the order of 95%. Such a low value of availability can

not be accepted by developers of critical applications that usually require a much higher value

of availability.

In order to fulfill the availability requirement developers could replicate their application on

multiple Clouds. This thesis targets applications whose components are redundantly deployed

x

SUMMARY (Continued)

on multiple Clouds at the same time. These applications are called Multi-Cloud applications.

The aim of this thesis is to help developers to evaluate the availability impact of their design

choices early during the development process.

We present here an extension to the Palladio-Bench modeling framework for the descrip-

tion of availability requirements of Multi-Cloud applications. Developers can annotate in the

extended Palladio Component Model some characteristics of Cloud environments on which the

application will be deployed. The annotated Palladio component model is then automatically

translated into a Discrete Time Markov Chain that has been extended in order to model some

peculiarities of the Cloud environment. This model is used to analyze the availability character-

istics of applications and their ability to fulfill the stated requirements. Such analysis is achieved

through a simulation tool implemented in Matlab capable of analyzing the model against user

defined environment changes in order to retrieve availability measures for the entire system.

Characteristics that define the simulated scenario includes application workload, components

availability, costs and service rates.

Two different applications have been modeled and simulated using our approach in order to

show how their availability varies with respect to different scenarios, like the sudden failure of

a Cloud provider or a gradual degradation of its service. Experiments show that our model is

capable of describing the most important aspects of the Cloud infrastructure and the simulation

tool is capable of reproducing different failure scenarios.

xi

SUMMARY (Continued)

This work has been developed in the context of the MODAClouds European project 1

1www.modaclouds.eu

xii

CHAPTER 1

INTRODUCTION

Cloud computing is both an emerging technology and an industrial reality. It offers appli-

cation developers a completely new paradigm for building web based application and provide

them to final users. Many companies already offer different kind of services and many more

uses those services, sometimes even ignoring the fact that they are hosted on a cloud platform.

Some very popular examples of these services are Dropbox 1, Gmail 2 and Office 365 3

This revolution in the way applications are provided to end-users has changed the way

applications are built. Developers now need to use different tools and techniques in order to

let their apps exploit the full potential of this environment. Companies have accepted this new

technology and are starting to using it in order to provide higher quality services and save

money.

The main advantage of cloud computing is its ability to change the size of the infrastructure

that hosts an application according to user needs in matter of minutes [3]. Providers of the

application are charged only for the resources that they use on a hourly base and have access to

a potentially infinite pool of resources. One of factor that limits the diffusion of cloud technology

1www.dropbox.com

2mail.google.com

3office.microsoft.com

1

2

is the fact that at the moment no Cloud provider offer mechanisms or tools to guarantee the

Quality of Service of deployed applications.

Another factor that makes cloud application development challenging is the choice of which

cloud provider to use. Most of cloud provider offers proprietary APIs and different type of

services. This heterogeneity makes hard moving from a cloud provider to another. If the

development of the application has been done with a focus to a particular cloud provider moving

the application to a new one might involve re-writing some application code, migrating large

databases and manual re-deployment of the application. In some cases also a significant change

in the architecture of the application is needed. These operations are usually very expensive.

The focus of this thesis is in the identification of proper modeling mechanisms that allow

developers to asses availability properties of complex multi-Cloud applications. Availability is a

non functional property of an application, it measures the portion of time in which the system

responds correctly to user requests. Applications that require a high level of availability are

called (business) critical applications. Usually when such an application fails for an extended

period of time the provider of the application suffers a great loss. Companies running such

critical applications are reticent to move to an infrastructure that is not completely under their

control even if they could benefit of a much hiher degree of replication.

Cloud providers offer a service level agreement (SLA) that states the expected availability

of the infrastructure the provide, if the deployed application respect some criteria. Usually the

3

provided availability of of 99.95% of up-time in a given year. Amazon EC2 SLA1 states that:

“AWS (Amazon Web Services) will use commercially reasonable efforts to make Amazon EC2

available with an Annual Uptime Percentage of at least 99.95% during the Service Year”. If

the availability requirement of the SLA is not met usually the provider of the cloud service

grant some free usage quotas to damaged users. Again on Amazon the user “will be eligible to

receive a Service Credit”, which means, to run its application for free for a period of time that

depends on the size of the occurred failure.

Windows Azure SLA2 offers 99.95% availability of internet connectivity and 99.9% of uptime

of users virtual machines evaluated on a monthly basis.

A study conducted by Bitcurrent [1] shows that real availability values of cloud providers are

much lower. For example the average availability of Amazon European region for the period of

time of the study was 96.32%, Windows Azure service offers an even lower availability value of

95.39%.

Since critical applications needs a very high level of availability moving them to a cloud

environment is a very risky choice. In order to increase the availability of a system usually

critical components are replicated. We may use the same strategy by replicating the whole

critical application on multiple cloud providers. This strategy works because failures between

cloud providers are independent.

1http://aws.amazon.com/ec2-sla/

2http://www.microsoft.com/en-us/download/details.aspx?id=24434

4

This thesis has been developed in the context of MODAClouds1, a European community

project that aims to ease this choice of committing to a single cloud provider by uniforming

the way developers access Cloud resources allowing applications and companies to freely move

from one Cloud to another or even use mixed solutions.

1.1 Thesis objectives

The objective of this thesis is to contribute to the development of quality of service analysis

of component based applications in the context of Multi-Cloud architectures, with a special

focus on availability requirements.

To reach this goal, a model capable of describing availability requirements of Multi-Cloud

applications has been developed. We have extended the already existing integrated modeling

environment Palladio Bench to model Multi-Cloud applications using our novel paradigm. Fi-

nally, we implemented a tool to create simulated environments and test applications behaviors

on different scenarios. We present here two different use cases that show different aspects of

Cloud infrastructures that can be modeled and simulated: a web system scenario with two

single-region Clouds, and a multi-region scenario.

1.2 Structure of the thesis

This thesis starts by introducing some background concepts in Chapter 2. In particular

the Chapter introduces the concept of non functional requirements and of availability. It also

introduces the Discrete Time Markov Chain is introduced a model useful to analyze availability

1http://www.modaClouds.eu

5

of component based software systems. It then proceeds by analyzing the most important

characteristics of the Cloud computing environment.

Chapter 3 introduce some tools that can be used in order to evaluate some performance

metrics of software systems and a tool called Palladio Bench that offers an integrated devel-

opment environment to design model based application and asses their performance with a

static analysis or a simulation based approach. None of these tools offers specific support to

applications deployed in a Cloud environment.

Chapter 4 Shows the extension proposed in this thesis for the DTMC model. In particular

how these model has been specified and extended to incorporate some Cloud specific concept.

Chapter 5 shows the two tools that have been implemented during this thesis. The first one

is an extension to the Palladio Bench IDE that enables application developers to automatically

generate models described in Chapter 4. The second tool is a simulation engine capable of

simulating the designed application under user define working conditions.

Chapter 6 shows the results of two applications modeled by means of the extended Palladio

Bench and evaluated by the simulation engine.

Chapter 7 make some considerations on the obtained results, highlights some possible future

works and concludes this thesis.

CHAPTER 2

BACKGROUND

In this chapter we will provide some definitions and the minimum background knowledge

required to better understand our work and to build a common lexicon, since for some terms

there might not be well-established meanings.

Section 2.1 presents the cloud computing environment by showing some of its complexity

and introducing some of the main features that makes it so attractive. Section 2.2 introduces

the subject of non functional requirements. Section 2.3 introduces the popular model of DTMC

and extends it with rewards in order to model a cost function. Sections 2.4 and 2.5 shows

some of the main problems that affects the cloud computing environment. Section 2.6 explains

the important autoscaling feature of cloud provider that, along with low costs, makes cloud

computing one of the most attractive environment to run application. Sections 2.7, 2.8 and 2.9

respectively give an overview on Infrastructure, Platform and Software as a service. These are

the three main fashions in which cloud computing has been described in literature.

2.1 Cloud Computing

Cloud computing is a technology born by the idea of companies with a strong IT infras-

tructure of renting some of their computing capacity when it was not needed by the company

itself. Some big companies like Amazon which core business is based on the internet have to

carefully build an infrastructure capable of coping with the changing number of users of their

6

7

system. Amazon noted that its online store was overwhelmed of users in the period before the

Christmas holidays. In order to cope with this huge amount of users Amazon decided to build

huge data-centers. This very expensive infrastructure was fully used during very short period of

time and underutilized for most of the time. In order to reduce costs Amazon developed EC2,

a mechanism that allows the elastic acquisition of resources. Amazon then decided to make it

public and rent some of the computing capacity that was not used.

The main advantages of using a cloud infrastructure from a developer’s point of view is very

low, or in many cases null, start-up costs. In order to build and test an application on some

of the major cloud providers (e.g. Amazon, Azure and Google app engine) users are granted a

free usage quota. Another advantage is the fact that the size of the infrastructure hosting the

application can be increased and decreased in matter of minutes. This allow application devel-

opers to overcome the problem of rapidly chaining workloads while avoiding over-provisioning

at the same time.

Since cloud computing is a relatively new technology no strong standardization has been

done. In this section we will show some of the major cloud providers highlighting similarities

and differences among them. We will see that there is a hughe number of different cloud services.

Some of them are almost identical but uses different APIs some other offer similar functionality

but in very unique ways. The aim of this section is to make the user aware of the difficulties in

writing portable cloud applications. The section ends with a brief overview of some of research

work in progress to ease this migration process.

8

Authors of [1,4] claims that Cloud computing may refer to application and services delivered

over the Internet as well as hardware and software that provide those services in the data

centers. Many different kinds of Cloud services has appeared over the last few years such as

Software, Platform, Infrastructure, Storage, Data, API and much more. Understanding the

difference among this services and choosing the best combination of them is already a hard

choice, but this is not the only hard task. This services can be offered in many different ways

such as private, public or hybric Clouds.

Private Clouds are data-centers hosted by the same company that uses them, they are not

available for public use and the exploitation of cloud technology is done in order to ease the

maintenance of the IT infrastructure. Public Clouds are available to the public on a pay-as-

you-go basis. The physical data-centers in which the computation takes place is managed by

the cloud provider while application developers rent some of the computational power. Hybrid

Clouds is a mixture of the two previous solutions. In this case part of the IT infrastructure is

hosted by the provider of the application, usually the most critical part or a part that process

sensitive data, while another part of the infrastructure is built using public cloud technologies.

One of the most common categorization of cloud computing technologies is this one:

• Infrastructure-as-a-Service (IaaS): The provider allow users to rent some of the hard-

ware it maintains. The way users access to this hardware resources is through virtual

machines (VMs), users are allowed to choose froma pool of virtual machines or to upload

custom VMs. The cloud provider is then only responsible for hardware maintenance and

management of the virtualization middleware. Managing the operating system, applying

9

updates, configuring the application stack is responsibility of the cloud user. The usual

pricing model for this kind of service is based on the size of the hardware resources ac-

quired and the time of usage. Examples of this kind of services are: Amazon EC2 [5],

Rackspace Cloud [6] and Terremark’s cloud [7].

• Platform-as-a-Service (PaaS): It is usually built on top of a IaaS solution, it offers

users a higher level of abstraction since some parts of the software management, like

OS management, is done by the cloud provider. Cloud users only need to provide their

application code to the system and the choice of appropriate hardware resources and their

management is delegate to the cloud provider. This allow developers to put more effort in

building better application rather than maintaining them. One of the main limitation of

this kind of services is the fact that they only support a limited number of programming

languages. Examples of this service are: Salesforce’s Force.com cloud [8] and Google’s App

Engine [9].

• Software-as-a-Service (SaaS): is the most abstract level of service. Providers of this

kind of service offer users complete applications, that are built on top of PaaS or IaaS

solutions, and allow users to interact with them usually using a browser interface or

programmatically through APIs. Usually limited functionalities are offered for free and

monthly fees are charged to users that needs more advanced functionalities. Examples

of this services are: Google applications [10], Netsuite [11], Freshbooks [12] and Hotmail [13]

Dropbox.

10

Deciding which level of control is needed and therefore which Cloud service to use is a

very important factor in the development of the application. IaaS models give a very high

control on the resources used to host the application but the complexity of configuring and

managing these resources could be very high. Some applications with particular behavior like

very CPU-intensive tasks or highly parallelism could benefit from particular hardware resources

that can only be accessed using this kind of technology, Amazon for instance offers machines

with dedicated GPU to perform parallel computation. A drawback of IaaS is the fact that the

application administrator has to manage the scalabilty of hardware resources. It has to identify

changes in the workload and react accordingly. In a PaaS environment both VMs and scalability

are managed by the provider. Usually PaaS providers have a set of VMs in a steady state than

can be put in production in a matter of seconds. Users are not charged for this VMs until they

get to use them, the effect of this mechanism from the cloud user perspective is an environment

that reacts quicker to changes at a lower price. A possible drawback of this kind of services is

the fact that usually a VM hosts code of many different applications so multitenancy problems

could occur. To avoid this situation most of cloud providers implement artificial upper bounds

called “governors” [1].

Another issue for cloud users is usually storage. In order to move a legacy application to the

cloud or to build a new one usually a big amount of data has to be moved to a database hosted by

the cloud provider. Each provider offer different kind of services, for example Google’s Bigtable

is very fast in retrieving data [1] but is slow in writing operations, Amazon Simple Storage

Service (Amazon S3) [14] offers the possibility to choose in which data-center the database will

11

be store in order to improve locality of data and reduce overall latency. Such a geographical

control is desirable also for some critical application for which the locality of data is subject to

governmental laws.

2.2 Non-Functional Requirements

In this thesis we are taking care of those requirements that define how a system should

be, not what the system should do in terms of functionality. Our interest is in the quality of

service of an application. These kind of requirements are called non-functional and have not

to be neglected since in some scenarios, especially for critical applications, a system should not

just work sometimes, or eventually give the result, but there are strong quality constraints that

have to be satisfied. A detailed description of these quality measures can be found in [15]. In [16]

they are defined as:

• Usability, which is highly related to the user experience and the ease in using the appli-

cation.

• Reliability, which can be defined as the probability that a functional unit will perform

its required function for a specified interval of time under stated conditions. The most

common reliability parameter is the mean time to failure (MTTF).

• Maintainability, that is the ease with which a product can be maintained. Its basic

measure is the mean time to repair (MTTR).

• Availability is also a very important non-functional requirement, especially when dealing

with critical applications, since it measures the probability that a system is in a functioning

12

condition at a given time. It can be measured as uptime
uptime+downtime , or else, identically, as

MTTF
MTTF+MTTR .

2.3 The Discrete Time Markov Chain with Reward

Discrete Time Markov Chains (DTMC) are a useful formalism to describe systems from the

reliability viewpoint. Authors of [17] describe DTMC as graphs. Nodes are used to represent

states in which the system could be, edges are used to represent the possible transitions between

different states. Each edge exiting a node is characterized by a number between 0 and 1 that

represents the probability of going through that transition given that the system is in the state

it starts from.

A state represent a possible configuration of a system or a possible point of its executions,

a transition specify the possible evolution of the system from a state to other states. The

DTMC contains also a particular state called initial state and a set of final states. Final states

are usually, although it is not mandatory, represented by absorbing states without exiting

transitions, or with just one self loop transition with probability 1. When a system enters a

final state its execution is terminated.

Formally, a DTMC is a tuple (S, s0,P, L) where:

• S is a finite set of states

• s0 is the initial state

• P : S × S → [0, 1] is a stochastic matrix (i.e. ∀si ∈ S
∑

sj∈S P(si, sj) = 1)

13

• L : s→ 2AP is a labeling function that marks every state si with the Atomic Propositions

(AP) that are true in si.

In order to make the DTMC more expressive states and transitions can be marked with

rewards. Rewards are numbers that can be used to model costs or benefits. Whenever the

system enters in a state s the reward attached to that state is added to the total reward

amount.

This models have been extensively used to deal with component based systems. Cloud based

systems can be seen as a part of component based system in which a component represent a

computational unit that can be hosted in-house or on a cloud provider. Transitions can then

be used to model the flow of a user request between the different component of a system. In

order to model failures of the critical components we need to add a particular final state called

failure state. All requests that flow through a broken component will reach this state and can

be counted. The probability attached to the transition that goes from a state to a failure state

can be set measuring the success rate of that single component. In this contexts rewards can

be used to measure the cost of using a service.

Availability is expressed in DTMC as a reach ability property. It is a formula constraining

the probability of reaching a final state, in this case the success state. Given that SR is an

14

absorbing state, the vector x̄ whose entries xi correspond to the probabilities of reaching sR

from state si is computed as solution of the linear equation system in variables {xi|si ∈ S}:

xi =



1 if si = sR

0 if si 6= sR is absorbing∑
sj∈S P(si, sj) · xj otherwise

(2.1)

thus the item x0 corresponds to the probability of reaching state sR from the initial state. If

we consider sR as the success state then the formula give us the availability of the system.

2.4 Availability in the cloud

Moving to the Cloud means to rely on the infrastructure of the provider. Developers of

critical applications usually require very high level of availability and usually do not want to

loose the control over their infrastructure in order to reduce costs. As seen in Section2.1 most

of cloud providers offer 99.95% of availability in their SLAs. Real data shows that the actual

value of availability of these providers is much lower. Table I shows the values of availability of

major cloud providers as in [1].

Some of the problems that affect the cloud providers are due to the size and complexity

of their infrastructures. Usually cloud providers manage multiple data-centers worldwide in

different geographical regions, copies of users data are stored for backup and synchronized

automatically from the infrastructure. Complex virtualization mechanisms are put in place

in order to allow multiple users to share common resources. A failure in the management of

15

TABLE I: AVAILABILITIES OF CLOUD PROVIDERS FROM [1]

GoGrid 96.33%
Google App Engine 93.05%
Joyent 94.87%
Rackspace CloudServer 96.33%
Windows Azure 95.39%
EC2 APAC 95.61%
EC2 EU 96.32%
EC2 US-East 96.42%
EC2 US-West 95.80%

these systems does not only affect the cloud provider but all the companies that provide their

applications using its infrastructure. Some big failure of could providers are reported here:

• Amazon S3 Availability Event happened on july 20th, 2008. It lasted 8 hours and affected

US and EU data centers.1

• Gmail suffered of a major outage on february 24th, 2009. For near two and a half hours

many users could nor reach their mailing accounts.1

1http://status.aws.amazon.com/s3-20080720.html

1http://googleblog.blogspot.it/2009/02/current-gmail-outage.html

16

• Amazon suffer of an outage of the Relational Database service on april 21th, 2011. It

affected many popular sites like Foursquare, HootSuite, Quora and Reddit that suffered

of bad availability and increased responsetime. 2

• Hotmail suffered of an outage on December 31th, 2010. Lasting more than three days it

left empty in-boxes to many users. 3

The size and complexity of cloud providers infrastructures makes it hard to fix such problems

in a short time, even if the failure is found very quickly. In order to compensate the loss of

service usually cloud provider grant some free usage quotas to users that have been affected by

the failure.

2.5 Cloud Portability

As stated in [18] one of the main challenges for the long term success of cloud computing

paradigm is to avoid the vendor lock-in that is currently happening among cloud providers.In

order to do that we need to abstract the programmatic differences among providers, develop a

way to move applications from local servers to cloud servers or to run in an hybrid context, unify

communication between providers both at application level and data storage level and create a

common management system capable of abstracting cloud providers architectural differences.

This is a very difficult challenge, mainly because it requires a standardization effort of systems

2http://www.crn.com/news/cloud/229402004/amazon-ec2-goes-dark-in-morning-cloud-outage.htm

3http://www.crn.com/news/cloud/228901610/microsoft-windows-live-hotmail-back-after-e-mails-
inboxes-disappear.htm

17

that are already in place, as explained in [19]. This thesis aims at analyzing the behavior of an

application, developed on a such a unified environment, that exploits multiple cloud providers.

For this reason portability and interoperability features are taken as prerequisite for out work.

In particular this features can be divided into three levels:

• Programming level: Applications can be moved from one cloud provider to another with-

out the need of re-writing code or reconfiguring the application manually. Since we are

dealing with runtime adaptation of the application this is a basic prerequisite. This is not

an easy task because it does not only involve the adoption of a common programming

language, java is currently supported by almost all cloud providers, but also the develop-

ment of standardized libraries and interfaces to access data, the definition of a common

ontology of cloud resources and APIs to use them.

• Monitoring level: Monitoring of QoS properties of different components of an application

is crucial, so standardized metrics and monitoring tools across different cloud providers

are necessary. This involves the ability to retrieve metrics both on the utilization of

cloud resources (e.g. CPU of VMs) and of quality of service provided by those resources

(e.g. availability). Another characteristic of cloud provider that should be standardized is

the pricing model, since different cloud providers charge users based on different metrics

(network usage, I/O accesses, CPU hours) it’s very hard to keep track of all of these

aspects of the application and predict exactly the cost of deploying on a provider with

respect to another.

18

At the programming level there are many attempts to create a set of open APIs that aim to

hide the differences between cloud provider specific APIs and give access to features like blob

storage or queues that are common to many providers, but none of them has been capable of

providing sufficient functionality and at the same time exploit each cloud provider peculiarities.

Examples of this APIs are jClouds (Java), libcloud (Python), Cloud::Infrastructure (Perl),

Simple Cloud (PHP) and Dasein Cloud (Java).

2.6 Scaling

The major characteristic of Cloud computing is its ability to change the size of the infras-

tructure according to user needs. This ability is usually called scaling. If a company that

provides a service decides to host its own physical servers it usually acquires a pool of resources

that is able to process a fixed amount of requests. In modern computing systems the incoming

workload may change very quickly. Having an infrastructure whose size is fixed causes two

type of problems. When the workload reaches a point in which the system is overloaded with

requests some of them are rejected. This problem is called under provisioning and causes a

loss in the availability of the system. In order to solve this problem it is necessary to acquire

new hardware resources, configure and add the to the pool of working machines. This process

is usually very long and expensive. It is very rare that after a burst of requests the workload

stabilizes at the highest value, usually it returns to the previous level. If a company decides to

purchase equipment in advance in order to be able to cope with bursts of requests it will incur

in an opposite problem called over provisioning. From the point of view of availability over

provisioning is not a problem because the system has always enough computational capacity

19

to serve all user requests. From the economical point of view over provisioning is a very seri-

ous issue. The capacity offered by cloud computing of modifying the size of the infrastructure

according the incoming workload in matter of few minutes can effectively solve these problems.

Cloud provider offer different level of services at different prices. As an example in the

context of IaaS, the one that let users control scaling mechanisms freely, users can choose

between two kind of scaling policies:

• Vertical scaling consist in changing the performance of a single cloud resource (e.g. a

VM). This process can be done without service disruption in some cases(e.g. adding a

new HDD to a virtual machine), but requires the restart of the cloud resource in many

other cases (e.g. adding a new virtual core or using a more powerful core). item Horizontal

scaling consists in changing the number of replicas of a cloud resource. In the context

of VMs when a scale out request is performed new virtual machines are booted up and

added to the pool of running VMs.

It is not always easy to choose between vertical or horizontal scaling. Horizontal scaling is

usually done when the system receives a very high number of requests, new VMs can take some

of the incoming workload in order to reduce the load on the overall system. If the system is

in a steady state in which machines are not saturated and the queues are not very populated

then horizontal scaling will probably not affect the response time of the application. Vertical

scaling on the other hand is capable of reducing the time needed to generate a response to a

user request since it directly affect the processing time of each request when the system is under

a light load.

20

The process of reducing the size of the infrastructure is called scale down or scale in. It is

usually done in order to reduce costs when the system is in an under utilization state. While

an action of scale out can not decrease the quality of the service, an action of scale in could

reduce the size of the infrastructure to a point that it causes a loss of availability.

To distribute the incoming workload among this elastic pool of resourced cloud provider

offer a load balancing service. This is a critical part of the system and its management is

usually delegated entirely to the cloud provider. Cloud providers use very highly specialized

hardware in order to perform load balancing effectively. Some providers also allow users to

customize load balancing rules. A representative example of a load balancing service is shown

in section 2.7.1.

Another service needed to effectively use the scaling capability of the cloud environment is

monitoring. In order to identify when a scaling action is needed application administrators have

to monitor the load of the cloud resources that are processing user requests. Monitoring can

be done at many different levels. Application level monitoring can be done using instrumented

code, system level monitoring is sometime offered from cloud provider in order to retrieve the

usage level of virtual hardware components (e.g. the utilization of a virtual core). The most

common metrics provided by all cloud providers are the network traffic and the CPU utilization.

Some other metrics are very specific to the type of cloud resource that is used (e.g. number of

queries on a cloud database).

2.7 Infrastructure-as-a-Service (IaaS)

This section presents some of the most popular cloud providers and the services they offer.

21

2.7.1 Amazon EC2

The IaaS platform offered by Amazon is one of the most mature and hosts many popular

services like Dropbox or Reddit1. Users access cloud resource using virtual machines. Amazon

offers a web based tool to manage the provisioning and configuration of virtual machines. APIs

are also available to build custom management tools. Amazon allows users to:

• launch virtual machines from a predefined set (including major Linux distributions and

Windows Server) or custom images by uploading an Amazon Machine Image (AMI);

• configure security and network access to virtual machines;

• choose instances type for every virtual machine, as listed in TableII;

• choose the location of virtual machines between seven different regions, manage IP end-

point and block storage attached;

• automatically mange load balancing between active machines

• build custom scaling rules

• integrate storage with the Amazon S3 service

Users are charged for the amount of resources they require on a hourly base. Pricing is

applied to computing instances, data transfer and storage. Beside using pre-configured system

images users are allowed to build custom images with all the software needed to run their

applications. These images can then be uploaded in the Amazon cloud system building Amazon

1http://aws.amazon.com/solutions/case-studies/

22

Machine Images (AMI). Some pre-configured AMIs are made available by Amazon with many

popular software already installed. Some of the most popular software available are:

• IBM DB2

• Oracle Database 11g

• MySQL Enterprise

• Microsoft SQL Server Standard 2005

• Apache HTTP

• IIS/Asp.Net

Beside the software configuration Amazon offers also multiple virtual hardware configura-

tion for VMs. They differ in number and speed of cores, amount of RAM and storage. A

particular kind of virtual machines with attached GPU is available to perform efficient parallel

computation. Table II shows different instance types.

TABLE II: AMAZON EC2 INSTANCES TYPES

Type Subtype Memory

GB

Compute

Power ECU

Storage

GB

Micro Micro 0.613 up tp 2 ECU EBS only

Standard

Small 1.7 [1,1] 160

Medium 3.75 [2,1] 410

Large 7.5 [4,2] 850

23

Extra Large 15 [8,4] 1690

Second Generation
Extra Large 15 [13,4] EBS only

DoubleExtra

Large

30 [26,8] EBS only

High-Memory

Extra Large 17.1 [6.5,2] 420

Double Extra

Large

34.2 [13,4] 850

Quadruple Ex-

tra Large

68.4 [26,8] 1690

High-CPU
Medium 1.7 [5,2] 350

Extra Large 7 [20,4] 1690

Cluster-CPU
Quadruple XL 23 [33.5,2] 1690

Eight XL 60.5 [88,4] 3370

Cluster-GPU Quadruple XL 22 [33.5,2] + 2

NVIDIA Tesla

M2050 GPU

1690

High I/O Quadruple XL 60.5 [35,16] 1024 SSD

Different pricing policies can be chosen by users depending on their needs. The pricing

options offered by Amazon are:

24

• On-Demand: Users are charged only of the resources they use on a hourly base without

lont term commitment or any advanced payment;

• Reserved: Users make an advanced payment in order to get a discount on the hourly

price of instances. Usually the commitment of the advanced payment grants discounts for

one or three years;

• Spot: Users can make a bid to acquire computing instances and, if the bid exceeds

the price set by Amazon they acquire the resources. If the price exceeds the user bid

resources are deallocated. This pricing policy allows users to pay less for extra resources

but does not ensure the continuity of service. On the other hand when Amazon needs

more resources it can raise the price of this VMs in order to exceed some of the users bids

and free up resources.

Amazon also allows users to build an hybrid cloud using a Virtual Private Network (VPN).

In order to do so Amazon offers a set of isolated virtual machines that run on hardware dedicate

to a particular user, this service is called Virtual Private Cloud. Existing IT infrastructure can

be connected directly to the Virtual Private Cloud. The VPN connection is priced as well on

an hourly basis.

Amazon also offer a IaaS level storage service called Simple Storage Service (S3). It can be

used as remote storage or attached to VMs. Objects stored in S3 are redundantly copied in

different facilities in the region selected by the user. Copies are kept synchronized automatically

by the management system that uses operation like PUT and COPY to write synchronously

25

on all the available copies of user data. Periodic checks on the integrity of data is performed

via checksum. amazon offers two types of storage services:

• Standard Storage: Ensures high replication of user data and provides 11-nines dura-

bility and 4-nines availability of users objects over a year. This critical storage has been

designed so that even the concurrent failure of two facilities does not cause a loss of data.

A versioning service is also available.

• Reduced Redundancy Storage (RRS): Is a less redundant service that provides 4-

nines durability and 4-nines availability. It can support the loss of a single facility without

losing user data.

In order to add or remove resources to their infrastructure users can create autoscaling

groups. These groups are composed of homogeneous VMs that are used to process user requests.

Load balancing of incoming traffic is done automatically by the Elastic Load Balancing service

that splits equally the traffic among all the available VMs. A monitoring service periodically

checks the health of VMs in an autoscaling group and when a VM does not respond to the

monitoring request it is marked ad broken and removed from the autoscaling group. The

monitoring service constantly pings broken VMs in order to add them back to the autoscaling

group as soon as the problem is solved. The monitoring service operates at an operating system

level so it is not able to recognize application errors that may cause the VM to fail in replying

to user requests.

26

2.7.2 Rackspace Cloud

A service similar to Amazon Ec2 offered by Rackspace is called Cloud Servers. As in Ec2

Rackspace offers a web based tool manage VMs. The main difference with EC2 is thet fact that

Rackspace offers the support of a specialized team that can help users to deploy and manage

their instances.

Another key difference is the fact that Rackspace machine images are persistent. If a

machine is rebooted all files are kept as they were before like in a normal computing system

while in an Amazon image when a machine is terminated all changes are lost and the new

machine is launched from the scratch image that was created by the user or selected among the

preconfigured AMIs. Rackspace also offers a persistent public IP address for each VM while

Amazon uses dynamic private IP addresses under a NAT. Other differences between the two

providers can be found in [20]

Rackspace offers also different solutions storage:

• Cloud Files is an object storage solution that uses the Akamai CDN [21] to distribute

contents over the web and uses triple replication.

• Cloud Database is built to offer a High-performance MySQL database.

• Block Storage is a low level storage solution that can be attached to VMs, it offers SSD

or SATA disks.

• Backup offers file level backup for servers in the Cloud.

27

2.7.3 Terremark Cloud Computing

Terremark is another IaaS provider that offer services similar to those presented in previous

sections. In particular Terremark offers two IaaS:

• vCloud is an easy to use cloud service designed for fast development of cloud solutions.

• Enterprise Cloud is a more complex service designed to host enterprise-wide applications

with fine tuned control on scaling, performance and security.

Both these tools are accessible via a web interface and through APIs. Terremark uses

VMWare virtualization technology to manage their datacenters, as Rackspace it offer persistent

VMs. A particular feature of this cloud provider is its ability to change the characteristics of

user’s VMs, like number of cores or amount of RAM without rebooting the machine.

Terremark does not offer a separate storage service, it provides VMs with one or more HDDs

with variable sizes. Proprietary servers can be placed in Terremark’s colocation service in order

to form an hybrid cloud. It is also possible to connect existing enterprise IT infrastructure to

its Cloud.

2.8 Platform-as-a-Service (Paas)

This section presents some PaaS environments.

2.8.1 Google App Engine

Google App Engine is the PaaS offered by Google. It allow users to write applications and

run them on the hosted infrastructure without the need of managing server provisioning and

configuration.

28

Google App Engine supports three programming languages: Java, Python and Go. The

runtime environment of App Engine allows developers to use standard Java technologies like

JVM and servlets or any language with a JVM-based interpreter like JavaScript or Ruby.

Both Java and Python runtime environment are built in order to minimize interference among

different applications that run on the same system.

As in IaaS payment is manage with a pay-as-you-go policy. There is no advance or recurring

cost and users are billed for storage and bandwidth they use monthly. The paying system also

allows the set up of a maximum monthly budget in order to avoid unexpected highly usage.

The service also offers a free tier of 500MB of storage and an amount of processing power that

can serve near 5 million page views per month.

Google’s PaaS APIs allow access to many other products like Gmail to send automatically

e-mails, spreadsheets and Google docs. There is also a persistent storage service, atomatic

management of scaling and load balancing, queue for task and a scheduled event manager.

A virtualization environment called Sandbox ensure that applications run in a safe way by

allowing them only limited access to the underlying operating system. This allows App En-

gine to manage efficiently the scaling of applications moving them between shared and reserved

servers. The sand box also isolate application in a way that they are independent on the under-

lying hardware and operating system so that they can be moved to faster machines when it is

needed. It does enforce some quality parameters to the application, as an example it allows only

application that can respond to user requests in at most 30 seconds. Also the communication

29

capabilities are limited only to http/https ports. Internal communication between processes is

manage using a task queue.

A peculiar characteristic of Google App Engine is its distributed data storage service. It is

built in order to follow the growth of Web Servers and accommodate the increasing amount of

data generated. Data objects are represented by entities that are described by a type attribute

and a set of properties. The transaction engine can retrieve entities of a type filtered and sorted

by properties. Data objects are schemaless and their structure is enforced by the code. Goggle

App Engine supports Java JDP/JPA and Python datastore interfaces in order to enforce as

much structure as needed withing the application. One of they key point of this storage system

is that it provides consistency and a optimistic concurrency control. Actions that modify data

can be grouped in a single transaction that is automatically repeated by the system if other

processes are trying to update the same value.

2.8.2 Microsoft’s Windows Azure Platform

Microsoft provides a PaaS called Windows Azure Platform. It is composed by different

Cloud technologies that provide different services:

• Windows Azure is the main component that provides a windows based environment to

run applications and store data;

• SQL Azure is a database service that can be used by cloud applications;

• Windows Azure platform AppFabric can be use to connect different components of

the application.

30

Windows Azure allows developers to build their application in any language of the .NET

Framework or in many other languages like Java or PHP. The data storage service is always

accessed using RESTful APIs. It allows to store binary large objects (blobs), store and retrieve

messages in queues in order to allow communications between application components and

access the SQL database. Application developers can manage the services they use through a

web based tool or via APIs.

2.9 Software-as-a-Service (SaaS)

This section introduces some of the most famous SaaS.

2.9.1 Google applications

Google applications is a well known SaaS provided by Google. The most known application

in Gmail, a browser based mailing system. It also offers a complete suite of web based software

for business most of which have a free counterpart. Among the software offer we can find:

• Google Calendar a calendar application that allows to synchronize calendars between

devices, share calendars and manage notification of events.

• Docs offers a complete suite of office automation software. It is composed by a word

processor, spreadsheets and a tool to build presentations.

• Sites is a web hosting service that allow easy creation of websites.

Google services can be accessed without charge for personal use, paid versions offer more

advanced functionality. The Google applications Marketplace allows users to publish their google

based web application that are hosted on Google App Engine.

31

2.9.2 Rackspace

Rackspace offers a web hosting application called Rackspace Sites. It hosts Wordpress,

Joomla and Drupal servers in order to easily build and maintain websites.

2.9.3 Microsoft

Microsoft offers its Business Productivity Online Suite, a commercial suite of software that

includes Exchange services, calendar, contacts management, SharePoint, Communications and

Live Meeting. There is also a web based version of the well known Office suite called Office

365.

CHAPTER 3

EXISTING TOOLS AND METHODOLOGIES

We provide now an overview of some tools that are used to deal with the problems introduced

in previous sections. Section 3.1 presents Palladio, a tool used to model an application in details,

from a class diagram representing it’s logical structure to an allocation diagram that represents

its deployment onto physical machines. This tool can perform some transformation to the

model of the application described by the developer team in order to build different models to

evaluate non functional properties. Section 3.4 presents some other approach to the problem of

evaluating QoS properties on component based software applications with a particular focuse

on performance metrics like the response time.

3.1 Palladio-Bench

Palladio is an IDE based on Eclipse Modeling Framework developed and supported by

Karlsruhe Institute of Technology (KIT), FZI Research Center for Information Technology,

and University of Paderborn. As stated in [22] it provides different tools for each developer role

allowing them to build separate diagrams describing some characteristics of the system to be.

The tool then automatically integrates all these diagrams and generates models of the entire

system to analyze some QoS properties at design time. In this section we will shortly describe

basic procedures to model a system in Palladio-Bench and clarify its limitations in modeling a

dynamic application in the Cloud, which is the subject of this thesis.

32

33

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component

Developer>>

part of

part of

part of

pa
rt
 o

f

<<System

Architect>>

<<System

Deployer>>

<<Domain

Expert>>

PCM

Instance

M
od

el
-to

-M
od

el

Tra
ns

fo
rm

at
io
n

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to
-Model

Transformation

Model-to-Code
TransformationM

odel-to-C
ode

Transform
ation

Figure 1: Palladio Component Model - Roles

One of the key point of the Palladio suite is its ability to clearly separate development roles,

as shown in Figure 1 Palladio supports the design of the application by automating multiple

steps each one performed by a different role in the development team, these roles are:

• Component Developer

• Software Architect

• System Deployer

34

• Domain Expert

3.1.1 Palladio Component Model

Palladio Component Model, presented in [22], is the core of Palladio-Bench, it is composed

of four models that describe different aspects of the system and a usage model that describes

users’ behavior. The four system models are:

• Component Repository

• System Diagram

• Execution Environment

• Component Allocation

The Component repository diagram describes all the components of the software and their

interfaces. It is built by component developers which specify required and provided features

for their components. A component is the basic element of the application, it offers some

functionalities and it may require some other functionalities to work, a simple example of a

component could be the code of an application that replies to users’ requests. This application

may need to interact with a data base. In such case the component would require that another

component implement a common database interface.

Component repository can include composite components, which represent subsystems, and

additional information like failure state specifications, whose meaning will be explained later

on in this section. This diagram can be divided in two main layers, the upper one represents

interfaces, components and their provided/required relations, the lower one represents effects of

35

the implementation of provided interfaces by components. A diagram that specifies the behavior

of a component while executing a certain function is called a Service Effect Specification (SEFF).

A SEFF diagram consists of a chain of actions from a starting point to an ending one. To

build this diagram the component developer can choose from many kind of predefined actions,

the two most important are internal processing or call to an external service. Other actions

include control like branches or loops. Internal actions are used to represent some processing

that occurs inside the component, processing actions can be annotated with a failure type

description with an attached probability. This attribute represent the possibility that something

in the processing of the internal action goes wrong, this kind of failure refers to a software

failure, not the failure of the hardware on which the component runs. Another important

parameter that component developers can specify is the resource consumption. This parameter

models the expected required use of hardware components from the functionality implemented

by the module, it can specify the amount of resources required in terms of CPU and HDD.

These annotations are used by Palladio when generating different models for prediction of

QoS measures. For example the failure probability of an internal action is used to build a

DTMC model for availability analysis while the resource consumption is used when building

performance models. External actions are used when developing a SEFF to model calls to

external services, when adding an external call action the developer is supported by Palladio

that let users choose which external action to call within the pool of functionalities defined by

the interfaces required by the component. An example of a very simple repository diagram

with two interfaces and three components is shown in Figure 2

36

Figure 2: PCM - Repository diagram

The System Diagram is built by software architects which compose instances of the com-

ponents from the repository into an architecture of the system. The system diagram can be

specified after the repository diagram has been defined, this is due to the fact that components

in the repository diagram represents classes while components in the system diagram represent

instances of those classes.

Information about how a functionality is implemented is not useful when connecting com-

ponents, the only information needed in order to connect two components is their required and

provided interfaces. Software architects define assembly contexts for each component that will

be used in the system and connect the required and provided interfaces of components defying

the structure of the system. This diagram can also specify a provided role for the entire system

37

Figure 3: PCM-System diagram

which is the service that end users are actually going to call. An example of a system diagram

is shown in Figure 3

The execution environment is defined by system deployers with a resource environment dia-

gram which models the physical structure of the system by means of Resource Containers, with

processing power, storage resources, and links. This diagram is used to model the environment

on which the application will be deployed. An example of a resource environment is shown in

Figure 4. In this diagram system deployers can also specify MTTF and MTBF of components.

The linking between the resource environment diagram and the system diagram is specified

by the component allocation diagram that specifies which instance of each allocated component

is deployed on each physical machine. In the very simple case of Figure 5 the execution environ-

38

Figure 4: PCM-Resource diagram

ment specified in Figure 4 consists of a single resource container with a CPU and an HDD so the

components specified in Figure 3 are allocated on this machine. More complex environments

can include multiple machines networked together or machines with multiple copies of the same

resource. Merging the SEFF diagram, the system diagram, the resource environment diagram

with this diagram Palladio can derive actual resource usage in terms of CPU seconds or time

to access the HDD for each function of each component.

Palladio let the developers team specify also a usage model diagram in order to model

the behavior of the users of the system. This diagram is usually built by the domain expert.

This diagram is used to generate model for performance prediction based on Layered Queuing

39

Figure 5: PCM-Allocation diagram

Networks since we are dealing with DTMC models this diagram will not be discussed any

further.

Palladio offers some great features to develop a system so can be really useful when dealing

with complex systems but it also has some limitations when dealing with the Cloud environ-

ment. Currently Palladio let system deployers create only server like entities in the resource

environment diagram with resources like CPU, HDD and Network links. Since this simple

entity is not suited to model Cloud systems (e.g. dynamic computing resource allocation and

Cloud performance variability) which are much more complex we chose not to use it. The lack

of Cloud entities for the deployment diagram can be associated to the lack of standardization

in the Cloud environment shown in Section 2.1. Since we are dealing with availability measures

40

Figure 6: PCM-Usage diagram

our interest in processing power of machines is limited to the case of requests rejection due to

an overload of the machine. We decided for simplicity, to model this aspect in another way by

associating this information with the failure type description. Using this approach one does not

need to add resource consumption specification in SEFF diagrams but just a failure probability.

This kind of specification allowed me to separate the failure description inserted by the domain

expert which model the failure of a service due to some external reasons to the failures due

to the overloading of the machine its service run on which is managed with a queuing theory

method explained in Section 5.1.

Another limitation encountered working with Palladio is the fact that each interface con-

nector in the system diagram can be connected to a single providing component instance. This

41

has been done in order to avoid ambiguity that may arise by connecting more instances of the

same components or, more in general, of components implementing the same interface, without

explicitly deciding when to use one or the other. This feature can be implemented by specifying

in the repository diagram an interface for each copy of the component one wants to connect.

Then we can choose to have a component implementing in a similar way all these interfaces and

replicate it inside the system diagram, or to have multiple components implementing each one

a single interface and instantiate them just once. This approach moves the semantic choice of

which service to call in case of multiple similar services into the SEFF diagram, which is much

more expressive in terms of conditions on user input data. Also the system diagram is more

readable and easy to build because when an instance of a component which requires multiple

interfaces is created the number of components providing that interface is unambiguous. The

drawback of this approach is the fact that if one wants to add two components providing the

same functionalities to another component he/her have to build two identical interfaces and,

if there are many components of this kind in the system, the deriving representation becomes

large and not very easy to read.

3.1.2 PCM transformations

The Palladio Component Model (PCM) defined by the diagrams of Section 3.1 are used

by Palladio Bench as a starting point form different transformations. Depending on what the

user is interested in Palladio Bench can transform the PCM model into different models, the

most used are Layered Queuing Networks (LQN) and Regular Expressions. Both these models

are used to derive performance measures from the model, in particular the LQN model can be

42

solved analytically or with a simulation tool integrated in Palladio. Even if not integrated in

the final release there is also a transformation engine that allows to derive DTMC models from

PCMs. Since this thesis deals with availability requirements this last transformation engine is

the one that will be used for our purposes. The effect on the DTMC of using a single software

failure type or multiple failure types during system design can be seen in Figure 7. In 7(a) the

general software failure type has been used so the generated Markov model has a single failure

type with many incoming arcs, while in 7(b) two software failure types has been declared. Using

multiple failure types give more information about the failing component in the final analysis.

Other components like probabilistic branches and loops can be inserted in the SEFF diagram

these structures are then transformed in different ways into the Markov chain. In particular

probabilistic branches are translated as in Figure 8, since in Palladio it’s not possible to define

a probability for remaining in a loop but only a fixed number of iterations, the transformation

of loops involve the loop unrolling procedure, the final outcome is shown in Figure 9.

By transforming the specified model into a DTMC, Palladio is capable of calculating the

probability that the system ends in a success state and show the effect of the failure of each

service specified with a failure type on the overall failure probability. In this way system

developers can find major points of failure and focus their attention in reducing their probability

of failure. The main limitation of the analysis performed by Palladio is the fact that it is a static

analysis of the system. In order to overcome this limitation Palladio allows developers to specify

a sensitivity file in which one can define some characteristics of the system as parameters and

provide a range in which they can vary. An example of a parameter could be the probability of

43

(a) Single failure type

(b) Multiple failure types

Figure 7: PCM - Failure types

Figure 8: Branch conversion

44

Figure 9: Loop conversion

45

failure of a system or the probability of taking a branch in a SEFF diagram. This sensitivity

files are used by Palladio to run several iterations of the system evaluation by modifying one

parameter at a time in order to build a final report. This approach is quite easy to use for small

systems in which few variables can change. To model a complex system like the one in our

use case described in Chapter 6 in which many parameters change over time a more versatile

environment is necessary.

3.2 The Descartes Meta-Model

The Descartes Meta-Model (DMM) [2] is a modeling language developbed to specify QoS

aspects of IT systems. Figure 10 shows the four sub models that compose the DMM.

The Resource Landscape meta-model is capable of modeling resources inside a datacen-

ter. It allows users to model both physical and logical resources at different levels of abstraction.

Detailed resource landscape models are used at runtime to detect environmental changes and

trigger the adaptation.

The Application Architecture meta-model allow users to define component based sys-

tems. Each component can be modeled by means of its execution, calls to external services and

some other aspects that regard the execution environment. Dependencies between parameters

of the model can be described in a probabilistic way.

The Adaptation Points meta-model express the free space of the adaptation process. It

describe the boundaries in which the adaptation can be performed.

46

Figure 10: Descartes meta-model sub components [2]

The Adaptation Process meta-model describes how the adaptation is performed in terms

of Adaptation Strategies, that are high level sequences of adaptation actions, and Adaptation

Tactics and Actions that specify at a lower level how the adaptation is performed in the system

3.3 Model solving tools

Models described in this section are built to support the design of applications while allowing

developers to easily insert information regarding the performance of internal components. This

models are not suited for direct analysis of performance properties. An common approach is to

automatically derive performance models from these models then use tools specialized in the

47

TABLE III: CHARACTERISTICS OF PRESENTED TOOLS

Tool Domain Constraints

Palladio Enterprise systems not specified
Descartes Datacenters and Virtualized systems specified as triggers for adaptation

analysis of these models to derive performance metrics. This section presents two class of tools,

simulation tools and analytic tools.

3.3.1 Simulation tools

Simulation tools allows very accurate estimation of non-functional properties of the modeled

system. One of the major advantages of these tools is their ability to estimate not only the

mean values of many performance parameters, but also their probability distributions. This

kind of methods allow also to avoid some of the limitation imposed by the assumptions made by

analytic solvers, e.g. exponential distribution of service time or inter arrival times. The main

disadvantage of this kind of methods is the fact that the system has to be modeled in details

and the time needed for the simulation grows rapidly with the dimension of the system under

study and the desired accuracy.

SimuCom [23] is a simulation tool implemented in the Palladio framework. It takes as

input a PCM instance described in Section 3.1.1 and performs a model-2-code transformation

to generate a prototype of the system. Components behaviors described in the instance of

the PCM are used to derive the code for the behavior of the component mapping control

flows to their corresponding Java constructs. External calls are mapped to direct methods

48

invocation. PCM allows the specification of parameter, e.g. number of loop iterations, according

to probability mass functions. The transformation uses a random number generator in order to

derive the real value of the parameter according to the user defined distribution. The simulation

tool instantiates a class implementing a queue and a scheduling policy for all the processing

resources defined in the PCM. Currently only FIFO and processor sharing policies are available

but more complex and realistic policies are planned for future releases of the tool. In order to

simulate the impact of parameter passing between components, the framework simulates also a

stack frame. PCM allows developers to specify arbitrary distributions for resource demands of

software components and arrival rates of workloads. The simulation takes as input a workload

specified in the PCM instance and generate traffic according to it. The workload can be open

or closed. The simulation tool performs several iterations of the specified workload until the

resulting probability mass function does not change significantly. The simulation tool updates

results while the simulation is still running so that the system architects can stop it if the reached

precision is sufficient for the goal of the analysis. The main advantage of a simulation approach

to the evaluation of the availability of the system is that it can emulate many environment. On

the contrary an evaluation based on an analytic solution of a queueing network model can not

deal with G/G/1 or G/G/n queues.

LQNSIM [24] is a simulation tool for LQN models. It is distributed along with the LQNS

tool that will be presented in Section 3.3.2. The simulation tool can be used when the developer

wants to model some aspects of the system that the analytic solver tool is not capable of

handling. An example could be a system in which nodes use a completely fair scheduling

49

TABLE IV: ANALYSIS PERFORMED BY LQNS E LQNSIM

Measure Measure description

Mean Delay (Variance) for a Ren-
dezvous

It is the (variance of) queueing time for a request from
a client to a server. It does not include (the variance
of) the time the customer spends at the server.

Mean Delay for a Send-No-Reply
Request

It is the time the request spends in queue and in ser-
vice in phase one at the destination.

Mean Delay for a Join It is the maximum of the sum of the service times for
each branch of a fork. The variance of the join time is
also computed.

Service Time The service time is the total time a phase or activity
uses for processing in the model.

Throughput and Utilization per
Phase

Throughput by entry and activity, and utilization by
phase and activity. The utilization is the task uti-
lization, i.e., the reciprocal of the service time for the
task.

Utilization and Waiting per Phase
for Processor

Processor utilization and the queuing times for every
entry and activity running on the processor.

policy. The simulator is also capable of using different distributions for the service time of

requests while the analytic solver uses only an exponential distribution.

The list of features that it is capable of analyzing, along with a short description, can be

found in [25] and is reported in Table IV for convenience.

3.3.2 Analytic Solvers

Analytic solvers offer a way to solve the performance model analytically. Usually these

solvers give mean values of the parameters under analysis. The main advantage of this kind of

solvers is that they can perform the analysis of large systems quickly.

50

LQNS [24] is an analytic solver for LQN models. It is capable of deriving measures listed in

Table IV performing a mean-value queuing approximations to solve the queues.

Many tools have been implemented to analyze Petri-Net models. The IT department of

informatics of the Universität Hamburg maintains a web page1 that lists major tools for the

analysis of this kind of models. As an example, a quite popular solver for this kind of model

is the TimeNET suite [26]. It includes a graphical editor to build models, different kind of

analysis (and simulation) and it supports a wide variety of Petri Nets models like extended

deterministic and stochastic Petri nets, colored stochastic Petri nets and stochastic UML state

charts. Another interesting tool that offers a GUI to create SPN model instances is called

SPNP [27]. It automatically generates and solve Markov reward models from the provided SRN.

It can be used to analyze also non-Markovian SPN and fluid SPN. This tool also implements a

discrete-event simulation engine.

SMCSolver [28] is a solver for the most important classes of Markov Chains. It implements

algorithms for the solution of Quasi-Birth-Death processes, M/G/1 and G/M/1 queues. It

provides a set of Matlab functions and a Fortran package that includes a graphical interface for

the selection of the algorithm and the visualization of the resulting matrix.

SHARPE [29] (Symbolic Hierarchical Automated Reliability and Performance Evaluator)

is a tool that provides a specification language and a GUI for specifying different performance,

reliability and performability models. It also provides solution methods for the specified models

1http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

51

in order to analyze their behavior. The metrics analyzed by the tool depends on the kind of

model used for the specification of the application. The list of supported models is:

• Markov Chains (irreducible, acyclic and phase-type)

• Semi-Markov Chains (acyclic and irreducible)

• Reliability Block Diagrams

• Fault Trees

• Single-Chain Product-Form queuing Networks

• Multiple-Chain Product-Form queuing Networks

• Generalized Stochastic Petri Nets

• Series-Parallel Graphs

The Software Reliability Estimation and Prediction Tool (SREPT) [30] is a framework that

comprehends two main approaches to the prediction of the reliability of an application. The first

one is a black box approach that consider the whole application without looking at its internal

structure. The other approach is architecture-based. It takes as input a model representing the

structure of the application, in the form of a DTMC, CTMC, SMP or DAG, and a specification

of the failure behavior of internal components, either seen as reliability or failure rate. The tool

is capable of integrating the information given in the two models in order to build a composite

model. This new model can be solved to derive reliability measures and other performance

measures such as time to completion.

52

Platform Independent Petri net Editor 2 (PIPE 2) [31] is a tool for creating and analyzing

generalized stochastic Petri networks. It provides a graphical framework for modeling Petri

nets and supports the Petri Net Markup Language to import instances developed with other

tools. The analysis capabilities of PIPE 2 are based on its plugin structure. The modules for

structural analysis contained in the standard package are:

• Model Classification Module, used to classify the GSPN into a more specific class of models

• Model Comparison Module, to define criteria for comparing two GSPNs and apply those

criteria to two instances of the model

• Incidence and Marking Module, to derive the incidence matrices and the initial marking

from the model

• Reachability Graph Module, to build the rechability graph

Performance analysis can be conducted using the Simulation Module that performs a Monte

Carlo simulation in order to retrieve the average number of tokens per place and mean transi-

tions throughput. The tool also integrates two analyzers, DNAmaca and SMARTA, to retrieve

state and count measures from the steady state distribution or the probability density and

cumulative distribution functions for the time needed to complete a predefined passage on the

specified model. In addition the GSPN Analysis Module is capable of deriving analytically the

distribution of tokens on places and the mean throughput of timed transitions.

The language used to express performance queries is called Performance Trees, the tool

offers a graphical editor to build such trees and visualize query results directly on them.

53

3.4 Performance evaluation of component-based software systems

Several approaches to prediction of QoS, with particular attention to performance mea-

sures, are reviewed in [32]. In particular the approach in [33] called Component-Based Software

Performance Engineering uses UML with the SPT profile to model applications and perform au-

tomatic transformations to derive execution graphs and queuing networks. Transformed models

can be analyzed by the RAQS solver, whose features are presented in [34], in order to obtain

response time and throughput values of the application.

A similar approach is presented in [35], the main difference is the fact that the language used

to design the application is called Component-Based Modeling Language, which is an extensions

to the Layered Queuing Network (LQN) model. This language is not standardized and widely

used as UML but it is closer to LQN models which are used for performance prediction. This

affinity between the two languages helps to reduce ambiguity. The CBML model can be specified

according to an XML schema. Since CBML is an extension to the LQN its models can be directly

analyzed and solved by LQN solvers without the need of transformations.

Another interesting approach to the problem of performance prediction is presented in [36].

This method aims at ease transformations between different component system models in order

to derive specific models to analyze different aspects of an application. KLAPER defines a

minimal set of modeling constructs useful for performance evaluation. Since the main goal of

this project is not of providing an environment to application designers but rather a model

transformation tool no graphical editors for KLAPER have been developed, component devel-

54

opers are encouraged not to model their applications directly in KLAPER but rather to build

transformations from their modeling language to KLAPER models.

Authors of [37] propose a framework for the assessment of availability of Component-based

applications based on Cloud Services. Applications ad modeled in Systems Modeling Language

(SysML) which is an extension of UML. The model of the application is composed of three kind

of diagrams:

• Internal Block Diagrams (IBDs) describe the structure of the application and the connec-

tions among components.

• State Machine Diagrams (STMs) express the behavior of components and the transitions

between states of the application.

• Activity Diagrams (ADs) are used to model maintenance operations that affect the be-

havior of the application.

• SySML Allocation diagrams are used to represent general cross-association of elements.

Examples of these associations are operation that links a maintenance operation described

in an AD to a specific block in an IBD.

The model of the application is then transformed into a Stochastic Reward Network (SRN)

that can be used to perform analysis on the availability of the modeled application. The

kind of analysis that can be performed with this framework use as input the expected failure

probability of each component of the system and some parameters that specify the behavior

of predefined reactions to component failures. This tool takes into account also the impact

55

of scheduled maintenance operations but is not suited to model an environment in which the

incoming workload affect the availability of some components of the system that may change

dynamically.

CHAPTER 4

MODEL EXTENSIONS

In this chapter we present an extension to the classical DTMC model that allows it to rep-

resent some peculiar aspects typical of Cloud computing. An instance of this DTMC model can

be used to describe an application deployed on multiple Clouds or even in a hybrid environment.

The model can be useful to perform design time analysis of the behavior of the application in

different working scenarios and to conduct analysis similar to the one described in Section 3.1.

These kinds of analysis can be used by system developers to take design decisions regarding the

structure of the application.

4.1 Overview of the solution

The solution we propose in this thesis is shown in Figure 11. It is composed by two main

parts:

• A model that stores information on the structure of the application and on the charac-

teristic of the environment in which it is deployed.

• A simulation engine that uses information about the incoming workload and the Cloud

infrastructure to derive the expected availability of the system along with other perfor-

mance measures.

The model is derived automatically from an instance of a Palladio PCM tool via an extension

of Palladio that we have developed, described in Section 5.2.

56

57

Figure 11: Overview of the solution

58

Figure 12: Type of nodes

4.2 The Model

The DTMC model presented in Section 2.3 is frequently used for availability analysis but

it is not suitable for representing some peculiarities of the Cloud environment. Our goal is to

build a model that is capable of describing a multi-Cloud application with particular focus on

the estimation of availability measures.

As stated in [38] usually models are built using numerical estimates of various parameters

made by domain experts. These parameters usually change over time and precise estimates

are seldom correct, in order to cope with this problem authors suggest to keep models alive at

runtime and dynamically update estimated parameters via monitoring of the real system. We

developed our model with this focus so that it could be used to estimate applications availability

also at runtime.

59

As first step in the specialization of the model we divided the nodes of the classical DTMC

as shown in Figure 12. The main distinction is between Logical and Physical nodes. The

rationale behind this distinction is the following:

• Locigal nodes are those nodes that do not represent any component in the system that

perform computation. The most common logical nodes are those that represent success

or failure states. Logical nodes could be introduced in the chain in order to make the

instance of the model easier to read. An example of such a node could be a node added

to represent the point in which requests enter the system.

• Physical nodes are those that represent components of the application or of the infrastruc-

ture that can be mapped onto a physical resource. This node type can be used to model

load balancers as well as servers, VMs, databases, network links or any other component

that actively perform some kind of computation over the requests flowing in the system.

When modeling an application our main focus should be in specifying properties of physical

nodes as these nodes represent components that may act as bottlenecks for the system. Since

these nodes are so important for the evaluation of the availability of the entire application we

decided to specify them further by diving them in:

• Unlimited Throughput Nodes. These nodes represent physical resources that perform some

very light computation on the requests traversing them. Designers could use these nodes

to model components that are supposed not to cause bottlenecks and whose management

is not in control of the application. This type of node could represent the load balancer

60

of a Cloud provider that distributes requests within an autoscaling group. Usually this

component is provided by the Cloud provider with very efficient specialized hardware that

is managed automatically.

• Limited Throughput Nodes. This node represent a component that actually perform some

heavy computation on incoming requests. We can say that this node is the heart of the

application because it implements the logic of the application that process the requests.

Since this node is responsible of processing requests its limited processing capacity could

not be sufficient to cope with the incoming traffic. When a node is overloaded by requests

it start to reject some of them. A peculiarity of this node is the fact that it has an

outgoing arch to a failure node whose probability depends both on the workload entering

the node and the processing power of the node.

Since Limited Throughput Nodes correspond to physical resources that perform computa-

tion on requests two parameters have been added to these nodes. The first is the Maximum

Service Rate and represent the maximum number of requests that can be processed by the node

each second. The other parameter is the cost of using the node. Physical resource performing

computation are associated with a cost in the infrastructure. One of the main difference be-

tween the Cloud environment and other computing environments is the fact that the processing

power of the application components can change according to the application developers will.

This feature of the Cloud is called auto scaling and is usually implemented by using an homo-

geneous pool of virtual machines behind a load balancer. The system manager can define rules

that, when triggered, modify the number of virtual machines in the pool adding or removing

61

computational power. In order to model this behavior the limited throughput node has been

further distinguished into two separate nodes:

• Autoscaling Group. This node represent a pool of VMs that is capable of change size

according to application needs as presented in 2.1. The maximum processing capacity of

this kind of nodes is given by the number of Active VMs multiplied the Maximum Service

Rate.

• Fixed. This node is used to model classical servers whose computing capacity is fixed.

This node has been introduced in order to let the user model hybrid environments in which

part of the application is deployed on a Cloud infrastructure while other components (e.g.

a database) is deployed on a in house infrastructure.

Three additional parameters are associated to autoscaling groups. Minumum number of

VMs and Maximum number of VMs represent boundaries to the number of VM that can be

run simultaneously on the resource modeled by the node. A lower bound on the number of

VMs could be used if, for example, building an application that requires high availability, the

designer decides that on each region of a Cloud provider there should be at least two machines

always running. On the other hand the maximum number of running instances is used to model

a resource cap that some providers may impose.

As in [39] we extended the classical DTMC model by adding control variables, with labels

starting with letter ’C’, and measured availability, starting with letter ’a’ as labels to transi-

tions. Measured availability represent factors external to the application that come from the

infrastructure used. This factors may influence the behavior of the application and could lead

62

to degradation of the availability of the system. Examples of this factors are blackout or out-

ages due to middleware management of data centers, which may lead to world wide outages,

or failure of an in-house computing resource. Control variables represent alternative choices,

made according to certain probabilities. This probabilities define the rate at which requests are

routed among connected nods. The values of this variables can be set by application deployers

in order to define how their applications will use different Cloud providers.

A common extension to the DTMC model, discussed in Section 2.3, is the definition of

rewards, or, in our case, costs. In our model rewards are attached to states and model the cost

generated by a request traversing the node. Recalling the distinction of nodes just presented,

one can note that only computing resources represent nodes with a positive cost while logical

nodes have cost equal to zero. This is due to the fact that they are not mapped, as a first

approximation, to any physical resource consumption that leads to an increase in the cost of

the system.

Pricing is usually given in instance hour. The user is charged for every machine for the

entire hour, even if one machine is turned off before the end of the hour. In our solution, we

decided to assume per second billing pay for simplicity. Per hour billing pay is left to future

work.

So we ask the developer to annotate the nominal cost of using the resource modeled by the

node. Instance pricing is usually constant and retrievable on the provider web site. Though, we

took into consideration the fact that prices could change, like for the Amazon spot instances.

APIs are usually provided by the Cloud provider to read current costs.

63

Figure 13: Instance of the model

64

An example of a complete model is reported in Figure 13. The type of node is shown by

the color of the node.

The chain start with a logical node that represents the entry point of requests in the applica-

tion. Requests are directed either to the Cloud platform or to an internal server for processing.

The internal server is composed by an unlimited throughput node that represents the network

infrastructure and a fixed capacity node. Both these nodes could reject requests for different

reasons. The availability value a2 represent the portion of requests that are correctly deliv-

ered to the processing node. The blue Internal Server Processing node represent an in house

server with fixed computational capacity. It can reject requests due to many factors. One of

the main cause of the reduction of the availability of this node is the fact that the incoming

workload could be greater than the actual processing capacity of the node. Rejected requests

flow through arc labeled 1-a7 to a failure state.

Requests directed to the Cloud infrastructure through C0 enter node Cloud. This logical

node represent the entry point in the Cloud infrastructure. It has been introduced to model

the scenario in which the whole Cloud infrastructure fails, represented by the arc to Cloud

Failure node. Cloud Load Balancer node represents a load balancer controlled by the system

administrator, as shown by arc C1. The system administrator can define the portion of requests

that go to each of the two regions of the selected Cloud provider.

Both nodes Cloud Region 1 and Cloud Region 2 represent entry points of autoscaling groups.

These nodes are in charge of distributing requests to available VMs of the corresponging au-

65

toscaling group. The nodes represent the middleware infrastructure of the Cloud provider that

manages VMs.

Requests successfully dispatched to autoscaling groups enter nodes R1 Processing and R2

processing. These nodes are similar to the Internal Server Processing node with the only

difference that their computational power can changed according to some policy defined by

the system administrator. The portion of requests successfully processed by these nodes goes

directly to the final success state.

The parameter that we wish to estimate from this model of the application is the portion

of requests arriving to the final success state with respect to the total incoming requests.

CHAPTER 5

TOOL

This Chapter introduces the two tools developed in this thesis. The first tool presented in

Section 5.1 is a simulation engine that takes as input an instance of the model described in

Chapter 4 and some specification of the working condition that the user is interested in. The

simulation engine gives as output the availability of the system during the simulated period,

the total cost of using the system and some other performance information. The second tool

presented in Section 5.2 is an extension to the Palladio Bench IDE that can be used to derive

models useful to analyze the availability of modeled applications.

5.1 Simulation

The model described in Section 4.2 has been developed with the intent to describe availabil-

ity related aspects of an application. In order to validate the design created by the development

team we built a simulation tool that is capable of evaluating the availability of the modeled

system against many scenarios that may occur in the Cloud environment. The tool simulates

on open workload in which requests enter the system, flow through the chain of the model

presented in Section 4.2 and exit the system.

We built our simulation engine by looking at the infrastructure offered by Amazon Cloud.

This infrastructure is quite common among Cloud providers. It has the concepts of regions,

which are geographically separate data centers, availability zones, which are independent data

66

67

centers in the same region, and autoscaling groups. As explained in 2.7.1 load balancing among

instances of the same autoscaling group is done equally. This factors has been taken in consid-

eration while building the simulation system trying, at the same time, to generalize them.

The following sections describe parameters that can be tuned in order to simulate different

scenarios and the outcome of the simulation.

5.1.1 Workload

The input workload is the number of requests that enter the system per second. This

parameter can be set to a fixed value for the entire simulation in order to asses the behavior

of the modeled application in a steady state. It is quite rare that in a real case the workload

is constant. In many situations the system manager is interested in evaluating how the system

reacts in case of a peak of requests.

An example of a common workload is the one of Figure 14. It presents two peaks of requests

centered at two different hours of the day.

The simulation engine takes as an input a Matlab function that describes the workload, at

each step of the simulation and generates the incoming traffic according to it. The function

used to specify the arrival rate of Figure 14 is:

Listing 5.1: Matlab function used to generate the bimodal distribution

a r r i v a l r a t e = 0.75 e6 ∗(1 + . . .

2 .5∗ r e c t pu l s (t−(10∗60∗60) ,8∗60∗60) .∗ . . .

(1+cos ((t−(10∗60∗60)) ∗2∗ pi /(8∗60∗60))) + . . .

4∗ r e c t pu l s (t−(19∗60∗60) ,10∗60∗60) .∗ . . .

5 (1+cos ((t−(19∗60∗60)) ∗2∗ pi /(10∗60∗60)))) ;

68

Figure 14: Bimodal distribution of requests

At each step of the simulation the tool evaluates the specified function and scales it by the

number of seconds considered in the simulation steps in order to get the mean arrival rate of

requests. It then generates the actual number of requests assuming the inter arrival times to

be exponentially distributed. A Poissonian random number generator with mean given by the

user defined function is used. More information about realistic traffic generation can be found

in [40]

5.1.2 Infrastructural parameters

The model described in Section 4.2 include some aspects of the infrastructure that is used to

run the application. The simulation of the impact of infrastructural factors on the availability

of the application requires the specification of some parameters specific to the modeled scenario.

69

In particular the user can specify the availability of nodes in the Markov chain. This parameter

can be used to model different scenarios like the complete or partial failure of a service due to

factors external to the application.

Another parameter specific to the Cloud infrastructure is the VM startup time. This pa-

rameter specify how many seconds a VM of a particular autoscaling group needs to boot up and

perform initialization operations before being ready to serve requests. As shown in [3] this value

depends on the Cloud provider, the operating system of the virtual machine, the computational

power of the machine and many other factors. The simulator keeps track of scaling requests

made by the autoscaling controller of each autoscaling group and uses timers set according to

the user specified parameters to simulate the boot up of machines.

The maximum capacity parameter specifies the maximum number of request that a node

can process each second. This value can be used to represent the computational capacity of

autoscaling groups or of an in house server. The meaning of this parameter is different between

nodes representing an autoscaling group and fixed throughput nodes. If a node is of type

Autoscaling Group the maximum number of request that the node is capable of processing

is given by the number of requests multiplied by the number of active VMs. In a Cloud

environment physical resources are shared among VMs of many application providers and the

actual performance of a VM can vary significantly. Examples of the variability of VM resources

like CPU, memory or HDD are shown in [41].

70

5.1.3 Simulation parameters

Some other parameters can be used to tweak the simulation according to user needs. The

Simulation time and time step size are used to specify the period of time that the system will

simulate and the granularity of the discretization used for the simulation. These values are

used to define the number of steps for the entire simulation.

The goal of the simulator is to evaluate the design of the application modeled by the de-

velopment team. In order to evaluate more precisely the behavior of the application in the

Cloud environment it is necessary to define a policy to manage the scaling capability of the

underlying infrastructure. In order to do that we implemented a mechanism that is widely used

on Amazon based on triggers on the CPU utilization. When the CPU utilization of a node

in the model representing an autoscaling group exceeds a threshold the number of VMs in the

node is adjusted by multiplying the number of currently available machines by a factor. The

simulator let the user configure different thresholds and corresponding multiplication factors.

Thresholds can be used both for increasing or decreasing the number of virtual machines in a

node.

The last two parameters that have to be specified to completely define the control policy of

autoscaling nodes are the width of the time window used to calculate the average value of the

CPU lode of nodes and the frequency with which the control policy is applied.

The user can vary these parameters in order to simulate different scenarios. For example if

the user wants to test how its application reacts to a peak of requests he may put the desired

shape of the incoming workload and leave other parameters unchanged. Another example could

71

be testing how service rate variation during time of the day affects the application. In order to

simulate this scenario the user can adjust the maximum node capacity parameter. Some of the

scenarios that we have simulated are described in Chapter 6

5.1.4 Simulation Engine

Every request entering the system is dispatched among nodes following the DTMC model.

If a processing node is unavailable for a period of time, i.e. its availability is set to zero, all

requests going to that node are routed to the corresponding failing node. Nodes can also discard

requests because of their limited computational capacity. This aspect is simulated using the

maximum capacity parameter. Whenever a node is fed with more requests than those it can

serve, exceeding requests are routed to its corresponding failure node. The number of requests

that a node can satisfy can be fixed in case of non scaling nodes or change. As explained in

4.2 nodes capable of autoscaling model group of VMs in the Cloud, their maximum processing

capacity is given by

number of VMs×VM maximum service rate

By using this formula we are exploiting the fact that VMs in the same node have the same

processing capacity. This assumption is quite usual in real solutions for performance reasons,

since load balancing is usually homogeneous. Anyway, this aspect can be taken into account

while designing the model by splitting the node into two sub nodes with different processing

capacity and costs. Requests flowing through an autoscaling node may trigger a rule and start

the scale out (or down) process. The simulation engine takes into consideration scaling actions

72

that may be taken by a policy defined by the application developer and changes the number of

VMs in the corresponding node only after a startup time defined by the user.

The simulation tool runs the simulation algorithm according to the parameters defined by

the user and shows the total availability of the system, the availability of each node and the

total costs. Examples of the output of the simulation can be seen in chapter 6.

For each step k of the simulation the engine performs the following operations:

1. loads the value of all parameters describing the state of the system environment at step k

2. the incoming traffic is then iteratively distributed to all nodes of the DTMC model ac-

cording to the transition matrix until all requests reach an absorbing node (success or

failure state)

3. as described in [40], a simple way to simulate a realistic service time is modeling its dis-

tribution by means of exponential variables. So, for each node traversed by the requests,

the total service time needed to serve incoming workload is generated using a random

generator over the Gamma distribution

Γ

(
number of reqs,

1

number of VMs×VM maximum service rate

)

In fact, the gamma distribution models sums of exponentially distributed random vari-

ables.

4. the amount of requests that fails due to timeout are computed by comparing the duration

of the step and the total service time required

73

5. the average cpu usage is updated by comparing the total service time required by the

node to process incoming requests and the duration of the step

6. the measured availability of each node is updated according to the success rate of the step

7. computes the availability of the system in the current step.

8. updates the number of running machines by checking if any node had requested a scale

out and the timeout for the scale out of the node has expired

9. historical data is saved

10. the autoscale controller checks if any scale out or scale in process has to be performed

according to the user defined rules

Here it follows the while cycle used to simulate in matlab one step of requests processed by

the system.

a r r i v a l s = po i s s rnd (a r r i v a l r a t e (t) ∗ s e c ond s pe r s t ep) ;

workload = ze ro s (1 , n nodes) ;

incoming workload = input node ∗ a r r i v a l s ;

outgo ing workload = ze ro s (1 , n nodes) ;

5 f a i l u r e s = ze ro s (1 , n nodes) ;

s u c c e s s e s = ze ro s (1 , n nodes) ;

s e r v i c e t ime = ze ro s (1 , n nodes) ;

t im e l e f t = s e cond s pe r s t ep ∗ ones (1 , n nodes) ;

whi l e any (incoming workload ˜= outgoing workload)

10 workload = workload + incoming workload ;

to do = incoming workload ;

74

s e r v i c e t im e r e qu i r e d = gamrnd (f l o o r (to do) , 1 . / (running machines .∗

s e r v i c e r a t e (t))) + mod(to do , 1) .∗ 1 . / (running machines .∗ s e r v i c e r a t e (t

)) ;

outgo ing workload = min (1 , t im e l e f t . / s e r v i c e t im e r e qu i r e d) .∗ to do ;

t imed out r eq s = to do − outgo ing workload ;

15 f a i l e d f r om ex t p r ob l ems r e q s = outgo ing workload .∗ sum(

d tmc mat r i x no f a i l u r e l o op s (: , f a i l u r e n o d e s) , 2) ’ ;

f a i l u r e s = f a i l u r e s + t imed out r eq s + f a i l e d f r om ex t p r ob l ems r e q s ;

s u c c e s s e s = su c c e s s e s + outgo ing workload − f a i l e d f r om ex t p r ob l ems r e q s ;

outgo ing workload (succe s s node | f a i l u r e n o d e s)=0;

incoming workload = outgo ing workload ∗ dtmc matrix + t imed out r eq s ∗

d tmc mat r i x t o f a i l u r e node s ;

20 t im e l e f t = max(0 , t im e l e f t − s e r v i c e t im e r e qu i r e d) ;

s e r v i c e t ime = min (s e conds pe r s t ep , s e r v i c e t ime + s e r v i c e t im e r e qu i r e d) ;

end

cpu load = s e r v i c e t ime . / s e c ond s pe r s t ep ;

25 a v a i l a b i l i t y = ones (1 , n nodes) ;

a v a i l a b i l i t y (workload˜=0) = min (1 , s u c c e s s e s (workload˜=0) . / workload (workload˜=0)) ;

a v a i l a b i l i t y v a l u e s = num2cel l (a v a i l a b i l i t y) ;

s y s t em av a i l a b i l i t y = s y s t em av a i l a b i l i t y f u n c t i o n (c t r l v a l u e s { :} , a v a i l a b i l i t y v a l u e s

{ :}) ;

5.2 Palladio Extension

In order to exploit the simplicity of modeling a software system offered by Palladio we

decided to extend it by allowing the generation of an instance of the model introduced in Section

4.2. In order to do so, we extended Palladio Bench by implementing a post processing phase

that is executed after the generation of the DTMC model by Palladio. This post processing

75

phase transforms the DTMC and annotates it by adding the parameters introduced in Section

4.2.

We decided to reuse many of the features already available in Palladio and integrate our code

by reusing its structures. One of the features that we used is the sensitivity file. A sensitivity

file is an XML file that can be generated in Palladio in order to modify some parameters of the

model while performing its evaluation. In a sensitivity file system, designers can change some

of the numerical values introduced in the model in order to easily perform multiple evaluations

of it and compare different design choices. Examples of parameters that can be specified in a

sensitivity file are the failure probabilities of each failure type and the branching probabilities

of branch actions in SEFF diagrams.

Figure 15 shows a simple repository composed of four components: a web server, that

processes incoming requests and uses some external processing to produce the result, a load

balancer component, that is responsible of distributing incoming traffic, and two components

modeling some service on two different Cloud providers.

Let assume that we are now interested only in the impact of Cloud failure on this simple

architecture. Therefore, we model internal processing action of Cloud providers with a failure

type description by utilizing SEFF diagrams, depicted in Figures 16(a) and 16(b). The load

balancer SEFF diagram is shown in Figure 16(c) we can imagine that system developer does

not have control on the availabilities of Cloud provider but only on the probabilities on the load

balancer.

76

Figure 15: Example Repository

(a) (b) (c)

Figure 16: SEFF diagrams

77

Figure 17: Sensitivity file example

If we model this system in Palladio we can run its evaluation tool based on DTMC and

discover that the expected availability of the system is 0.85. This result was expected because

if we simply analyze the diagrams presented we can see that the application uses equally both

Clouds which have availability values of 0.9 and 0.8 respectively, the result of this single evalua-

tion is not very helpful to developers who have to decide the best values for their load balancer.

By specifying in a sensitivity file like the one in Figure 17 a variation of the parameters for

the load balancer, Palladio is able to run several iterations of the evaluation of the system by

modifying the specified values.

The result of this analysis is stored in a log and can be viewed in table V, this table is

much more useful because it shows how the choice of the value for the load balancer variable

affects the final availability of the system. In this toy example the best choice of using only the

Cloud with the higher availability was clear, but the purpose of this example is to show how

the sensitivity analysis work, not to model any complex real case.

78

TABLE V: RESULT OF A SENSITIVITY RUN

Branch Name Branch Probability Success Probability

Azure

0 0.8
0.2 0.82
0.2 0.84
0.2 0.86
0.2 0.88
1 0.9

The sensitivity analysis is useful if the number of changing parameters is small, otherwise

the output produced is too detailed to be used by developers. In our work we reused the

structure of the sensitivity analysis mainly because the graphical tool for building sensitivity

files is well integrated in Palladio and the resulting XML is easy to parse with common parsers

like the javax.xml.parsers.DocumentBuilder.

Reusing this file to query the user for information used to annotate the model made also

simpler the mapping between attributes of the model and elements of Palladio.

Since Palladio transformations give as a result a static model in which all transitions have

a fixed probability we had to keep track of the failure types defined by the user and mark them

as measured availabilities. We also kept track of branches whose probability had been marked

as control variables in the sensitivity file in order to mark them as control variables also in the

model. The sensitivity file is structured as in Figure 18 in this example we can see that the

user has specified four failure type parameters which will be marked as measured availabilities

and three probabilistic branch parameters.

79

Figure 18: Complete Sensitivity File

At this point the user would specify the range in which parameters can vary but, since we

are interested in more attributes for each node, we require the user to specify a string parameter

sequence as a child of each software failure type. In this parameter the user can insert a number

of strings to specify each of the attributes described in Section 4.2.

In order to obtain the final model we exploited the transformation engine already built in

Palladio to obtain a DTMC which is then transformed and refined until it meets our needs.

Even if the modeled application is very simple the DTMC resulting from the transformation

done by Palladio is huge. Palladio offers natively the possibility to reduce this chain but what it

practically does is solving the chain by calculating all the failure and success probabilities (one

failure probability for each specified failure type) and build a new very compressed DTMC with

one start state directly connected to the success state and to all failure states annotated with

their probabilities. This small matrix does not contain enough information on the structure of

the application so is useless if we want to perform a different kind of analysis. For this reason

80

Figure 19: First step of the transformation

we decided to skip the chain reduction offered by Palladio and implement an ad-hoc reduction

function which simply eliminates all the transitions that have probability one. This reduction is

very simple from the logical point of view but helps to heavily reduce the size of the final chain

and prepare it for further transformations. So, for example, the result of applying this simple

transformation step to the Palladio model depicted in Figure 15, can be seen in Figure 19. For

this example, the web server and the load balancer controller are set to logic nodes since, as we

said in Section 4.2, we do not see them as possible point of failures of our architecture and we

want to focuse more on the backend.

The next step of the transformation is to move labels of non controlled variables from

failure states to corresponding success states, this is done in order to simplify the process of

the successive function which is expands those states by adding a failure state for each of them

which corresponds to failing requests due to the limited processing capabilities of these nodes.

The output of steps two and three can be seen respectivly in Figure 20(a) and Figure 20(b).

81

(a)

(b)

Figure 20: Second and third steps of the transformation

Steps four and five are dedicated to the generation of measured availability variables, in

order to do so we need to label as non controlled all the states having as incoming transition

only transitions that do not represent control variables or measured availabilities. Step four

does this by labeling corresponding states and step five moves the labels from states to the

corresponding transitions. The output of these steps is shown in Figures 21(a) and 21(b).

The last modification that we need to perform on the DTMC is to add self loops with

probability one to all final success or failure states in order to make them absorbing states for

82

(a)

(b)

Figure 21: Fourth and fifth steps of the transformation

requests flowing in the system. This is done in the last step which gives as output the model

in Figure 22.

As introduced in Chapter 1 we have developed a simulation engine capable of deriving avail-

ability measures from applications described using this model against user defined scenarios.

The code for the simulator, that will be described in Section 5.1, is composed by some matlab

files with some tokens in correspondence with fields that describe the model, simulation param-

eters or user inputs. After generating the final DTMC model, the tool parses these template

83

Figure 22: Final result of the transformation

files and writes in the appropriate sections information like the matrix of the DTMC system

and all the parameters needed for the simulation.

CHAPTER 6

EXPERIMENTAL ANALYSIS

We now present two use cases that have been used to evaluate our approach. These use

cases simulate the behavior of an application deployed on multiple clouds against different

working conditions. The simulation technique used for this tests is introduced in Section 5.1.

Each use case represent a different deployment configuration of a Web application that has

been simulated against different scenarios. In particular the use case of Section 6.1 shows the

replication of the application on two independent cloud providers. The use case of Section 6.2

enrich the previous one by replicating the application also on a sub-region of one of the two

Clouds.

6.1 A Web System Use Case

The purpose of this use case is to show the capability of the model and the tool to specify

to describe and analyze many different kind of failures or working conditions that may affect a

Cloud environment.

The Palladio repository model of the application is shown in Figure 23. It shows two

components representing different autoscaling groups, one for each cloud provider, and a load

balancer component. From this Palladio description of the application our tool automatically

derived the DTMC model shown in Figure 24 where the two autoscaling groups are represented

by the green nodes and the load balancer by an initial node with two outgoing arcs. Probabilities

84

85

associated with these arcs have been fed by the application developer in the Palladio models

and, for this example, are both equal to 0.5.

Nodes 2 and 5 represent respectively entry points of Cloud provider 1 and 2. A request in one

of these states can either reach the corresponding auto scaling group and be processed by the

application or fail and reach one of the two final failure states 3 and 7. Probabilities of reaching

one of the two autoscaling group from their respective cloud entry points are represented by

a2 and a5. In our scenario those values represent the availability of cloud providers or, more

precisely, that part of the availability that can not be related to the application but only to

the cloud infrastructure. Events like a power outage, a connectivity issue or effects of the

multitenancy can affect these values.

Avilability issues due to the failing of processing requests that reach an autoscaling group

is modeled by the probability associated to the arc that exits the aoutoscaling group and enters

the corresponding failure state. In particular these probabilities are represented by a4 and a6.

These probabilities are affected by software bugs contained in the application and by the limited

computational capacity of VMs that host it.

In order to show the capability of the tool to simulate different working conditions we

modeled three different scenarios reported in Sections 6.1.1, 6.1.2 and 6.1.3. Each scenario

shows a variation of a common configuration of the system that is reported in Table VI. These

parameters have been kept consistent in all the scenarios since they model static aspects of the

cloud environment such as the cost of using a VM or their maximum service rate. Also the

behavior of the application, in terms of scaling policies, have been kept consistent.

86

Figure 23: Palladio model of the first usecase

Figure 24: DTMC model representation of the Multi-Cloud application.

87

TABLE VI: PARAMETERS OF SCENARIO 1

Cloud 1 Cloud 2

Cost per VM 0.30$/hr 0.50$/hr

VM startup time 100 s 100 s

VM nominal SR 10, 000 reqs
s 15, 000 reqs

s

TABLE VII: SCALING POLICIES

Scaling policy

CPU scale out

100% 3×
90% 2×
85% 1.5×
80% 1.1×

CPU scale in

20% 1/2×
40% 1/1.6×
50% 1/1.3×
60% 1/1.1×

In this use case Cloud provider 1 offer cheap virtual machines with a quite low processing

capacity while Cloud 2 offers more expensive and powerful machines.

The policy for managing the autoscaling of the application has been designed by the ap-

plication developer and is reported in Table VII. The central column represent the values that

trigger the scaling action while the right column shows the multiplication factor that is applied

to the number of currently running VMs.

88

6.1.1 Scenario 1

The first scenario we introduce allow us to show the effect of a system failure at the cloud

entry point. The simulation spans four hour of usage of the system during which the arrival

rate is constant at 1e6 requests per second.

This scenario simulate a total failure between 00:30 and 01:00 and a gradual degradation

of service between 01:30 and 02:30. The first failure can be due to a loss of connectivity to

the Cloud datacenter, a power outage or a major failure of the middleware that manages the

datacenter. The gradual and partial degradation of the QoS of the cloud may be an effect of

the multitenancy tipical of the Cloud. If the datacenter is overloaded with requests that has to

be served by different applications the middleware system, and the load balancer in particular,

could discard some requests that will not reach the autoscaling group.

As shown by Figure 25 the availability of Cloud 1 is not affected by these failures.

One of the outputs of the simulation is shown in Figure 26. It is the overall availability of

the entire application. We can recognize three main working conditions:

• Start-up. The Scenario starts with the application deployed on 2 VMs in the autoscaling

group of Cloud 1 and 1 VM in the autoscaling group of Cloud 2. The incoming number of

request is of 1e6 requests per seconds which is split by the load balancer to 5e5 requests

per seconds to each autoscaling group. Since the number of VMs that the application is

using is not enough to serve all the requests the availability of the system is very low.

The scaling policy needs about 5 minutes to increase the number of VMs to 53 for cloud 1

and 77 for Cloud 2 which are enough to serve all the requests and have 100% availability.

89

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Clouds Availabilities

5: Cloud 2

2: Cloud 1

Figure 25: Cloud provider availability in Scenario 1

90

• First failure. The first failure of Cloud 2 happens at minute 15. Since it is a total blackout

no requests are capable of reaching the autoscaling group and all of them flow directly in

to the final failure state. The application developer set the load balancer to forward 50%

of the incoming requests to this cloud so the overall availability of the system is halved.

Since no requests reach the autoscaling group the number of VMs inside it is reduced to

its minimum, which in this case is 1. When the issue that caused the failure is resolved at

minute 45 requests starts flowing again into the autoscaling group that enters in a second

start up phase. 5 minutes later the number of VMs of this autoscaling group is restored

and the availability of the application goes back to 100%.

• Second failure. The secon failure starts at time 01:30. The main difference with respect

to the previous failure is the fact that now Cloud 2 shows a gradual degradation of

its availability which stops at 50% and then raises back to 100%. The effect of this

degradation is that the overall availability of the application is gradually reduced to 75%

and then brought back to 100%. Since Cloud 2 is serving only half of the incoming

requests the effect of its loss of availability over the availability of the entire system is

reduced.

The number of virtual machines used for each Cloud provider during the simulation is shown

in Figure 27.

During the Start-up phase both autoscaling group increase the number of running VMs

in order to fulfill all the incoming requests. In particular Cloud 1 keeps adding VMs to the

autoscaling group until it reaches 108 VMs. This is a very strong reaction to the incoming

91

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

A
va

ila
b

ili
ty

Time

System Availability

System Availability

Figure 26: Overall availability of the application of Scenario 1

workload and few minutes later the number of VMs is reduced to 77. This strong reaction

is due to the fact that at minute 4 Cloud 1 hosts 54 VMs but, as shown in Figure 28, the

CPU load is over 90%. The scaling policy defined in VI tells the autoscaling group to double

the number of VM. When the new machines starts to serve requests the average CPU load is

reduced to 42%. Again the scaling policy tells the autoscaling group to recduce the number of

VMs. The behavior of Cloud 2 during Start-up is similar to the one of Cloud 1 but enters a

stable configuration with 53VMs.

During the first failure no requests reach the autoscaling group of Cloud 2 so the load of

the CPU of those machines goes to zero. Again the scaling policy comes into play by reducing

the number of virtual machines. Suddenly the availability of the Cloud provider is restored to

92

0

20

40

60

80

100

120

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Running Machines

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 27: Active VMs on Scenario 1

100% and the requests start reaching the autoscaling group which now contains just a single

VM. The system then enters another Start-up phase that is just limited to Cloud 2.

During the second failure the autoscaling group of Cloud 2 sees the number of incoming

requests gradually decreasing. Figure 28 shows how the average CPU load of VMs of this

autoscaling group decreases until it reaches 60%. Then a scale in is performed and the number

of VMs is reduced. This leads to an increase of the CPU load of the remaining VMs but since

the number of incoming requests is still reducing the CPU load is reduced again. When the

availability of the cloud provider is restored a gradual scale up phase is performed.

The cost of using the system calculated by the tool at the end of the simulation is of 117,98$

and the overall availability during the simulated period is of 83%

93

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

CPU Usage

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 28: CPU usage of Cloud 1 and Cloud 2 in Scenario 1

6.1.2 Scenario 2

This scenario allows us show what happens to the system when the availability of the cliud

provider is full but the service rate of the virtual machines is reduced.

This kind of problems are typical of the Cloud environment since Cloud providers try to

pack VMs of different users in the same physical machine in order to reduce power usage of

their datacenters.

The base setup of this scenario is similare to the one presented in Section 6.1.1 but the

availability of both Cloud provider 1 and Cloud provider 2 are kept constant at 100%.

Again we simulated two different kind of failures for this scenario that are reported in Figure

29:

94

• Sudden degradation. A sudden loss of service rate of VMs of Cloud 1 happend betweeb

00:10 and 00:40. The Service rate is suddenly reduced by 80%. This may be caused by

an application of another user of the Cloud environment accessing a critical resource for

the application like HDD in a very intensive way.

• Gradual degradation. A gradual degradation of the service rate of the VMs composing

the autoscaling group of Cloud 2 is simulated between 01:30 and 02:00. This scenario

simulate the interference of an application of another user that receives a peack of requests

and gradually starts asking for more resources. If the scaling policy of the other users’

application is not capable of reacting to the increasing number of requests by adding more

VMs and maintaining the same CPU usage level, that application will stress the physical

CPU of the machine more heavily.

Figure 30 shows the CPU usage of VMs of both Cloud 1 and Cloud 2 hosting the autoscaling

groups of the application. Since the service rate of Cloud 1 during the first failure is reduced

requests processed by that autoscaling group will require much more CPU time so the CPU

load is suddenly increased from 65% to 100%. This sudden increase makes the system discard

some requests and causes a loss of availability shown in Figure 32. The main difference between

this loss of availability and those presented in Scenario 1 is the fact that the scaling capability

of the cloud environment can be exploited to reduce or even fill completely this loss.

Figure 24 shows the Markov chain representation of the system. From this representation

we can see that he failing requests of Scenario 1 flow directly from state 5 to state 7 while in

this Scenario they all go through state 4. Since the application developer has control over the

95

0

2000

4000

6000

8000

10000

12000

14000

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Mean Service Rate per Machine

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 29: Changes in the Maximum Service Rate of VMs in Scenario 2

number of VMs in the autoscaling group represented by state 4 it has partial control over the

probability of going from that state to the final success state. This control is applied by the

scaling policies.

Figure 31 shows how the scaling policy defined by the application developer is used to reduce

this loss of availability by increasing the number of VMs. In particular then the number of VMs

is increase at time 00:15 the average CPU load of the autoscalign group is reduced from 100%

to 64%. At the end of the failure the CPU load of the autoscaling group is reduced and the

number of VMs is reduced as well in order to bring back the utilization near 65% and reduce

costs.

96

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

CPU Usage

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 30: CPU utilizations of Scenario 2

Figure 32 shows that the speed of change in the service rate of the VMs from 100% to

only 20% caused a loss of availability that the autosclaing policy was capable of restoring only

after some amount of time. It is interesting to notice that the figure shows no degradation of

availability in the second half of the simulation. This is due to the fact that the second failure

happens in a gradual way.

A gradual reduction of the service rate of VMs in the autoscaling group of Cloud 2 causes a

gradual increase in their CPU loads that, thanks to the scaling policy defined by the application

developer, never reaches 100% and never reject any user request.

The simulation shows that the availability of the entire system for the simulated period is

of 96% and the total cost is 193.26$

97

0

100

200

300

400

500

600

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Running Machines

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 31: Number of VMs of Scenario 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

A
va

ila
b

ili
ty

Time

System Availability

System Availability

Figure 32: Overall availability of the system in Scenario 2

98

6.1.3 Scenario 3

This last Scenario for the first use case allow us to show the capability of the simulation

tool to deal with variable workloads. Leaving all parameters of Table VI untouched we changed

the number of requests that enter the system as shown in Figure 33.

We used a bi-modal distribution to generate the workload since it represents a common

pattern that can be found in traces of web applications since it models. The distribution is

made of a base number of requests which is 1e6 req
s and two peaks centered respectively at 00:45

and at 02:00. The first peak spans 30 minutes and has a maximum of 6e6 req
s while the second

lasts for 1 hour reaching a maximum of 9e6 req
s .

Figure 34 shows the CPU utilization of the two autoscaling groups. Similarly to the two

previous scenarios the first minutes of the simulation are used to reach a stable configuration in

which the system is capable of serving all users requests and no scaling action is taking place.

At minute 00:30 the workload starts increasing and the CPU utilization of both autoscaling

groups grows as well reaching very rapidly 100%. The scaling policy defined in Table VI reacts

to the increased CPU utilization by adding up more VMs to the autoscaling group.

As shown in Figures 35 and 34 the first reaction of the scaling policy to the incremented

workload is not enough to keep the utilization level in the safety range specified by the scaling

policy so after few minutes more VMs are added to the autoscaling group. As more requests

come into the system and the CPU utilization surpasses the triggers defined in the scaling

policy more VMs are added.

99

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Arrival Rate

Arrival Rate

Figure 33: Bimodal distribution of incoming requests of Scenario 3

In the second part of the peak the number of requests starts decreasing and so does the

CPU utilization of the autoscaling group. Scaling policies then reduce the number of VMs in

order to keep the utilization level over 60%. At the end of the first peak of requests the system

goes back to a stable configuration.

At time 01:45 the workload starts to increase again but at a lower rate than the first peak.

Even if the maximum number of requests for the second peak is higher than the one of the first

peak the scaling policy is capable of increasing the number of VMs so that the CPU utilization

of both autoscaling groups reaches 100% only for a very short time.

The effects of the scaling policy and the workload on the availability is shown in Figure 36.

During the first peak of requests the system suffers a severe loss of availability because the slope

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

CPU Usage

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 34: CPU utilization of autoscaling groups of Cloud 1 and 2 of Scenario 3

of the peak is very steep and the scaling policy can not compensate rapidly the new incoming

requests by adding enough machines. During the second peak the availability of the system is

less affected even if the maximum amount of requests is higher because the slope is lower.

The results of the simulation shows that the overall availability of the system is 98.68% and

the cost is 361.78$

101

0

100

200

300

400

500

600

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

Time

Running Machines

4: Autoscaling Group 1

6: Autoscaling Group 2

Figure 35: Number of VMs for Scenario 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.10 0.20 0.30 0.40 0.50 1.00 1.10 1.20 1.30 1.40 1.50 2.00 2.10 2.20 2.30 2.40 2.50

A
va

ila
b

ili
ty

Time

System Availability

System Availability

Figure 36: Overall availability of the system of Scenario 3

102

6.2 A Multi-Region Use Case

The second use case allow us to mix some of the different working conditions introduced with

the use case of Section 6.1. In order to analyze a more challenging scenario we expanded the

model used in the previous use case by splitting one of the two Cloud providers in two regions.

The deployment of the application as a Palladio diagram is shown in Figure 37. Requests

entering the system are directed by the first load balancer to one of two Cloud providers.

Requests that are directed to Cloud 1 are then forwarded either to region 1 or region 2 by

a second load balancer internal to the Cloud. The mapping from the Palladio model to the

DTMC is shown in Figure 38.

Table VIII shows performance parameters for this use case.

Table IX shows the scaling policy defined by the application developer.

The scenario in this use case simulates 24 hours of usage of an application deployed on three

Cloud providers. In order to make the scenario more realistic all the three aspects introduced

Figure 37: Application deployment of Use Case 2

103

Figure 38: DTMC represneting the deployment of the application in Use Case 2

TABLE VIII: PERFORMANCE PARAMETERS OF USE CASE 2

Cloud 1 (R1) Cloud 1 (R2) Cloud 2

Cost per VM 0.5$/hr 0.5$/hr 0.3$/hr
VM startup time 80 s 100 s 50 s
VM nominal SR 10, 000 reqs

s 15, 000 reqs
s 10, 000 reqs

s

TABLE IX: SCALING POLICIES OF USE CASE 2

CPU scale out policy

100% 3×
90% 2×
85% 1.5×
80% 1.1×

CPU scale in policy

20% 1/2×
40% 1/1.6×
50% 1/1.3×
60% 1/1.1×

104

in Section 6.1, dynamic arrival rate, variable Cloud availability and service rates, have been

introduced in this scenario.

During the simulated period the incoming workload of the application is characterized by a

bimodal distribution with two peaks occurring at time 10:00 and 16:00 as shown in Figure 40.

This is a common pattern in real systems that are usually more stressed at daytime with peaks

during working hours.

The three Clouds are characterized by different service rate profiles, in particular:

• Cloud 1 - Region 1 shows a degradation of its service rate at night, especially between

23:00 and 06:00. This aspect simulates the influence of other application running in the

same region performing batch processing or a middleware system update that is usually

done at night to limit service disruption.

• Cloud 1 - Region 2 shows the nominal service rate of 1.5e4 req
s

• Cloud 2 shows the nominal service rate of 1e4 req
s for most of the time but has a small

degradation around time 13:00 due to a peak of requests in other applications running on

the same datacenter.

The three Clouds show the following availability profiles:

• Cloud 1 - Region 1 has a total blackout from 14:00 to 16:00. This evet may be caused by

a lack of connectivity to that provider.

• Cloud 1 - Region 2 shows a slight degradation of service between 09:30 and 11:00.

• Cloud 2 is fully available all the time.

105

In addition to the failures described above another limitation has been introduced in this

scenario. The total number of VMs that Cloud 2 can provide to run the application has been

capped to 100. This is a common situation because if a user decide to provide its application

in a Cloud environment he would probably make a contract in order to get discount on certain

amount of VMs. We can think about Cloud 2 as a particular type of VMs for which we have

such kind of contract.

Figure 41 shows the availability of the entire system during the simulation. We can see that

the system has two main losses of availability.

The first loss happens near time 10:00. This loss is due to a combination of factors. First of

all the increasing number of requests makes the number of needed VMs grow. When Cloud 2

reaches his maximum number of available VMs, as shown in Figure 39 it starts to reject part of

the requests that are sent to it. In addition to this failure the availability of region 2 of Cloud

1 decreases. When the number of requests decreases and the availability of Cloud 2 is restored

the system goes back in a state where all received requests are fulfilled.

The second loss of availability happens between time 14:00 and 17:00. The sudden loss

of availability is due to the blackout of region 1 of Cloud 1 that was processing slightly more

than 30% of all the requests. After this sudden loss of availability there is another gradual

degradation that is again due to the fact that Cloud 2 has reached the maximum number of

available VMs and can not scale out further.

If we look at Figures 39 and 42 we see that the average CPU load and the number of machines

of region 1 in Cloud 1 before 05:00 and after 23:00 is higher than during their corresponding

106

0

50

100

150

200

250

300

350

400

450

500

Time

Running Machines

6: Autoscaling Group 1

7: Autoscaling Group 2

9: Autoscaling Group 3

Figure 39: Number of VMs of use case 2

0

2000000

4000000

6000000

8000000

10000000

12000000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Time

Arrival Rate

Arrival Rate

Figure 40: Arrival rate of use case 2

107

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
va

ila
b

ili
ty

Time

System Availability

System
Availability

Figure 41: System availability of use case 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time

CPU Usage

6: Autoscaling Group
1

7: Autoscaling Group
2

9: Autoscaling Group
3

Figure 42: Average CPU load of use case 2

108

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time

Clouds Availabilities

4: Region 1

5: Region 2

8: Cloud 2

Figure 43: Cloud provider availability of use case 2

0

2000

4000

6000

8000

10000

12000

14000

Time

Mean Service Rate per Machine

6: Autoscaling Group 1

7: Autoscaling Group 2

9: Autoscaling Group 3

Figure 44: Maximum VMs service rate of use case 2

109

values in the steady state. This is due to the fact that region 1 shows a lower service rate during

that time. The same happens to Cloud 2 near time 13:00. The fact that this behavior does

not affect Figure 41 shows that the control policies defined by the application administrator

are able to cope with this kind of failures.

6.3 Results analysis

Scenarios presented in this Chapter cover a variety of different failures and working condi-

tions that could happen in a real Cloud environment. These results show that the simulation

tool is capable of reproducing combinations of different factors affecting the availability of an

application deployed in a Cloud enviroment.

All the simulation presented in this Chapters have been performed on a laptop with an

Intel Core i7 CPU (Q740) running at 1.73GHz and 8GBs of RAM. The time needed to simulate

scenarios presented in Section 6.1 never exceeded 15 minutes and the time needed to simulate

the 24 hours scenario of Section 6.2 was of 1 hour and 33 minutes. The time needed to simulate

the system could also be reduced by changing a parameter in the simulation tool that define

the number of steps for the simulation. The simulations presented here have been run with the

default value of 1 that produces 1 simulation step for each simulated second. A less accurate

simulation of the 24 hours use case that still presents all of the system behaviors presented

in Section 6.2 have been produced in less than 5 minutes by using a simulation step every 20

seconds.

The flexibility of the simulation tool makes it useful to application developer to build and

test their control policies according to expected failure scenarios.

CHAPTER 7

CONCLUSIONS

In this thesis we approached the evaluation of model based application provided in a Cloud

environment.

First, we extended the state of the art by augmenting the model used to describe a service

oriented application from the availability viewpoint to cope with Multi-Cloud applications. In

particular, we proposed to model each state of the DTMC as a resource with a processing ca-

pacity. Each state can model a component with fixed capacity or a scalable one. Scalable nodes

are used to model autoscaling groups of a generic Cloud provider. Therefore, we introduced

the concept of virtual machine with its cost per hour and service rate inside the model.

We then developed a simulation tool in Matlab capable of testing an application against dif-

ferent working conditions. We extended the already existing modeling integrated environment

Palladio Bench to allow developers to model their Multi-Cloud application and generate models

compliant to the simulation tool. The simulation tools allows the specification of scaling control

policies so that Cloud application administrators can test at the same time the architectural

choices and the dynamic behavior of the system.

Both the model and simulation tool has been built in order to be extended by allowing the

addition of more complex control logic both from the scaling point of view and for the request

distribution. Future improvements could aid the developer in the specification of complex

control policies in order to build more failure tolerant Cloud applications.

110

111

As a future research both model and simulation could be improved by providing more

realistic descriptions and features, according to the current solutions offered by Cloud providers

like hourly price, on spot instances and other type of contracts. An interesting evolution could

be the definition of a database of real world working conditions derived from historical logs of

data centers.

Another interesting topic to investigate for future research is how the scaling policy affects

the availability of the system. The author of [42] proposes an autoscale controller that utilizes

the simulation system presented in this thesis to control the deployment of the configuration

in terms of autoscaling actions and traffic redirection at the load balancer level in order to

guarantee availability requirements.

CITED LITERATURE

[1] Bitcurrent: Cloud performance from the end user. Technical report,
http://www.bitcurrent.com/, 2010.

[2] Brosig, F., Huber, N., and Kounev, S.: Descartes Meta-Model (DMM). Technical report,
Karlsruhe Institute of Technology (KIT), 2012. To be published.

[3] Mao, M. and Humphrey, M.: A performance study on the vm startup time in the cloud.
pages 423 –430, June 2012.

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M.: A view of cloud computing.
Communications of the ACM, 53(4):50–58, April 2010.

[5] Amazonec2. http://aws.amazon.com/ec2/. Accessed date 07/10/2013.

[6] Rackspace. http://www.rackspace.com/cloud/. Accessed date 07/10/2013.

[7] Terramark. http://www.terremark.com/services/infrastructure-cloud-services/enterprise-
cloud.aspx. Accessed date 07/10/2013.

[8] Salesforce. http://www.force.com/. Accessed date 07/10/2013.

[9] Appengine. https://developers.google.com/appengine/. Accessed date 07/10/2013.

[10] Googleapps. http://www.google.it/intl/it/enterprise/apps/business/. Accessed date
07/10/2013.

[11] Netsuite. http://www.netsuite.com/portal/home.shtml. Accessed date 07/10/2013.

[12] Freshbooks. http://www.freshbooks.com/. Accessed date 07/10/2013.

[13] Hotmail. http://it.msn.com/. Accessed date 07/10/2013.

[14] Amazons3. http://aws.amazon.com/s3/. Accessed date 07/10/2013.

[15] Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. on Dependable and Secure Computing,
1(1):11–33, 2004.

[16] Danilo Ardagna, M. C.: D51 - analysis of the state of the art and scope definition. Public
deliverable, 2013.

[17] Baier, C. and Katoen, J.-P.: Principle of Model Checking. April 2008.

[18] Petcu, D.: Portability and interoperability between clouds: Challenges and case study.
6994:62–74, 2011.

[19] Hogan, M. D., Liu, F., Sokol, A. W., and Jin, T.: Cloud computing standards roadmap.
2011.

112

CITED LITERATURE (Continued) 113

[20] Rackspace. http://www.rackspace.com/cloud/public/servers/compare/. Accessed date
07/10/2013.

[21] Akamai. http://www.akamai.com/. Accessed date 07/10/2013.

[22] Becker, S., Koziolek, H., and Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw., 82(1):3–22, January 2009.

[23] Becker, S., Koziolek, H., and Reussner, R.: The palladio component model for model-driven
performance prediction. Journal of Systems and Software, 82(1):3 – 22, 2009. Special
Issue: Software Performance - Modeling and Analysis.

[24] Franks, G., Maly, P., Woodside, M., Petriu, D., , and Hubbard, A.: Layered Queueing
Network Solver and Simulator User Manual. Real-Time and Distributed Systems Lab,

Carleton Univ, Canada, 2009.

[25] Cortellessa, V., Marco, A. D., and Inverardi, P.: Model-Based Software Performance
Analysis. Springer, 2011.

[26] Zimmermann, A.: Modeling and evaluation of stochastic petri nets with timenet
4.1. In Performance Evaluation Methodologies and Tools (VALUETOOLS), 2012 6th
International Conference on, pages 54 –63, Oct. 2012.

[27] Hirel, C., Tuffin, B., and Trivedi, K. S.: Spnp: Stochastic petri nets. ver-
sion 6.0. In Proceedings of the 11th International Conference on Computer Performance
Evaluation: Modelling Techniques and Tools, TOOLS ’00, pages 354–357, London, UK,

UK, 2000. Springer-Verlag.

[28] Bini, D. A., Meini, B., Steffé, S., and Van Houdt, B.: Structured markov chains solver: soft-
ware tools. In Proceeding from the 2006 workshop on Tools for solving structured Markov
chains, SMCtools ’06, New York, NY, USA, 2006. ACM.

[29] Hirel, C., Sahner, R. A., Zang, X., and Trivedi, K. S.: Reliability and performabil-
ity modeling using sharpe 2000. In Proceedings of the 11th International Conference on
Computer Performance Evaluation: Modelling Techniques and Tools, TOOLS ’00, pages

345–349, London, UK, UK, 2000. Springer-Verlag.

[30] Trivedi, K.: Srept: a tool for software reliability estimation and prediction. In Dependable
Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, page

546, 2002.

[31] Pipe. http://pipe2.sourceforge.net/index.html. Accessed date 07/10/2013.

[32] Koziolek, H.: Performance evaluation of component-based software systems: A survey.
Performance Evaluation, 67(8):634 – 658, 2010. Special Issue on Software and Performance.

[33] Bertolino, A. and Mirandola, R.: Cb-spe tool: Putting component-based perfor-
mance engineering into practice. In PROC. 7TH INTERNATIONAL SYMPOSIUM
ON COMPONENT-BASED SOFTWARE ENGINEERING (CBSE 2004, pages 233–248.
Springer, 2004.

CITED LITERATURE (Continued) 114

[34] Kamath, M., Sivaramakrishnan, S., and Shirhatti, G.: RAQS: A software package to
support instruction and research in queueing systems. In Proceedings of the 4th Industrial
Engineering Research Conference, IIE, Norcross, GA., pages 944–953, 1995.

[35] Wu, X. and Woodside, M.: Performance modeling from software components. SIGSOFT
Softw. Eng. Notes, 29(1):290–301, January 2004.

[36] Grassi, V., Mirandola, R., and Sabetta, A.: From design to analysis models: a kernel lan-
guage for performance and reliability analysis of component-based systems. In Proceedings
of the 5th international workshop on Software and performance, WOSP ’05, pages 25–36,

New York, NY, USA, 2005. ACM.

[37] Machida, F., Andrade, E., Kim, D. S., and Trivedi, K.: Candy: Component-based
availability modeling framework for cloud service management using sysml. In Reliable
Distributed Systems (SRDS), 2011 30th IEEE Symposium on, pages 209 –218, Oct. 2011.

[38] Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 111–121, Washington, DC, USA, 2009. IEEE Computer
Society.

[39] Filieri, A., Ghezzi, C., Leva, A., and Maggio, M.: Self-adaptive software meets control
theory: A preliminary approach supporting reliability requirements. pages 283 –292, Nov.
2011.

[40] Almeida, J. M., Almeida, V. A. F., Ardagna, D., Cunha, I. S., Francalanci, C., and
Trubian, M.: Joint admission control and resource allocation in virtualized servers. J.
Parallel Distrib. Comput., 2010.

[41] Schad, J., Dittrich, J., and Quiané-Ruiz, J.-A.: Runtime measurements in the cloud: ob-
serving, analyzing, and reducing variance. Proc. VLDB Endow., 3(1-2):460–471, Septem-
ber 2010.

[42] Marco, M.: Model Based Control for Multi-Cloud Applications. Master’s thesis, UIC,
Chicago, 2013.

[43] Number, O. M. G. D. and Files, A.: Uml profile for marte : Modeling and analysis of
real-time embedded systems. Engineering, 15(November):738, 2009.

[44] Reussner, R., Becker, S., Happe, J., Koziolek, H., Krogmann, K., and Kuper-
berg, M.: The Palladio component model. Karlsruhe, 2007. http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000007341.

VITA

NAME: Giovanni Paolo Gibilisco

EDUCATION: Bachelor of Science in Engineering of Computing Systems,

Politecnico di Milano, 2009

Master of Science in Engineering of Computing Systems,

Politecnico di Milano, 2012

Master of Science in Computer Science, University of Illi-

nois at Chicago, 2013

PUBLICATIONS: Model Based Control for Multi-cloud Applications - MiSE 2013

115

	1 Introduction
	 Thesis objectives
	 Structure of the thesis

	2 Background
	 Cloud Computing
	 Non-Functional Requirements
	 The Discrete Time Markov Chain with Reward
	 Availability in the cloud
	 Cloud Portability
	 Scaling
	 Infrastructure-as-a-Service (IaaS)
	 Amazon EC2
	 Rackspace Cloud
	 Terremark Cloud Computing

	 Platform-as-a-Service (Paas)
	 Google App Engine
	 Microsoft's Windows Azure Platform

	 Software-as-a-Service (SaaS)
	 Google applications
	 Rackspace
	 Microsoft

	3 Existing Tools and Methodologies
	 Palladio-Bench
	 Palladio Component Model
	 PCM transformations

	 The Descartes Meta-Model
	 Model solving tools
	 Simulation tools
	 Analytic Solvers

	 Performance evaluation of component-based software systems

	4 Model Extensions
	 Overview of the solution
	 The Model

	5 Tool
	 Simulation
	 Workload
	 Infrastructural parameters
	 Simulation parameters
	 Simulation Engine

	 Palladio Extension

	6 Experimental Analysis
	 A Web System Use Case
	 Scenario 1
	 Scenario 2
	 Scenario 3

	 A Multi-Region Use Case
	 Results analysis

	7 Conclusions
	 CITED LITERATURE
	 VITA

