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SUMMARY

Optimal designs for nonlinear model with random block effects are systematically studied.

For a large class of nonlinear models, we prove that any optimal design can be based on some

simple structures. We further derive the corresponding general equivalence theorem. This result

allows us to propose an efficient algorithm of deriving specific optimal designs. The application

of the algorithm is demonstrated through deriving a variety of locally optimal designs and

accessing their robustness under different nonlinear models.

Extraordinary amounts of data are being produced in many branches of science as well

as people’s daily activity. Such data are usually huge in both rows and columns. Modeling

such data with limited computation resource has been a challenging problem. We propose an

approach select a very informative subset of the data based on optimal design theory, using

LASSO regression to perform variable selection and estimation. Compare to exist methods like

balanced or weighted sampling, our approach avoids involving sampling error and thus provides

more accurate estimation/prediction, also takes much less time.
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CHAPTER 1

OPTIMAL DESIGN FOR NONLINEAR MODEL WITH RANDOM

BLOCK EFFECT

1.1 Introduction

Nonlinear models found broad applicability during the last decades. They have been applied

in fields such as drug discovery, clinical trials, social sciences, marketing, etc. Methods of analysis

and inference for these models are well established (see for example McCullagh & Nelder, 1989;

McCulloch & Searle, 2001). While using nonlinear models to analyze such data has become

common with advances in computational tools, the study of optimal design for such problems

is far behind the current use of nonlinear models in practice, especially when observations are

correlated.

An optimal/efficient design can reduce the sample size needed for achieving pre-specified

precision of estimation or improving the precision of estimation for the fixed number of sample

size. While the importance of optimal design cannot be overstated, there are many scientific

problems for which tools that can help to identify optimal or efficient designs are simply inade-

quate, not infrequently leading to the use of inferior designs. This inadequacy is partly due to

the fact that identifying optimal designs is a very challenging problem, especially for nonlinear

models. As a result, solutions have often been developed on a case-by-case basis, requiring a

separate proof for each combination of model, objective, and optimality criterion.

1
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Recently, a series papers by Yang and Stufken, 2009; Yang, 2010; Dette and Melas, 2011;

Stufken and Yang, 2012; Yang and Stufken, 2012; and Dette and Schorning, 2013 discovered

if the functions that are elements of the information matrix generate the so called Chebyshev

system, the number of support points in locally optimal designs is small and often is equal to

the number of parameters to be estimated (that is they are so called saturated designs). The

new tools simplify the process of deriving optimal designs, and most of the available optimality

results for nonlinear models can be derived as special cases with the new tools.

However these results focus on the situation where observations are independent, in which

the information matrix has "additive" property, i.e., the information matrix of a design can be

written as the summation of the information matrix at each point. When the observations are

correlated, the "additive" property does not hold any more. Consequently, the new framework

cannot be applied for. Even the celebrated general equivalence theorem, which allows us to ver-

ify a design is indeed optimal, is no longer available. Relatively little is known how to conduct

optimal designs for nonlinear models when the observations are correlated. Müller and Pázman

(1999) presented an iterative algorithm for regression models with correlated error. Pázman

(2010) studied contribution of information from subset of finite design points when correlated

observations are indicated. Dette et al. (2010) derived asymptotic optimal design for popula-

tion pharmacokinetics model with random effects. Keifer and Wynn, (1981) discussed optimal

balanced block and Latin square designs for linear model with various correlation structures.

Kunert et al. (2010) and Cutler (1993) considered optimal design for comparing treatment and

control effects under autoregressive correlation structure. Atkinson (2008) gave some examples
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applying equivalence theorem for D-optimal in constructing optimal design for nonlinear model

with correlated observations. Uciňski and Atkinson (2004) studied design for nonlinear time-

dependent models. Dette & Kunert (2014) studied optimal design for Michaelis-Menten model

and Holland-Letz et al. (2012) proposed an algorithm approach of deriving optimal design based

on linear approximation.

With random block effects, Cheng (1995) and Atkins & Cheng (1999) studied optimal de-

sign under linear models. Recently, Huang and Cheng (2016) extended their results to quadratic

regression with block size two. In this manuscript, we consider a class of nonlinear models with

arbitrary block size. We prove that any optimal design can be based on a simple structure.

We further derive the corresponding general equivalence theorem under the correlated errors

structure. This result allows us to propose an efficient algorithm of deriving specific optimal de-

signs. Our approach works for all general non-linear models and provides a strategy of searching

specific optimal designs.

For the layout of the remainder of this paper, in Section 2, we shall introduce the model and

the information matrix. In Section 3, we shall show that searching for optimal designs can be

restricted to those with identical groups and demonstrate a "complete class" result for several

specific nonlinear models. This result allows us to focus on a specific structure when we derive

any optimal design. In Section 4, we derive the corresponding general equivalence theorem and

propose an efficient algorithm for deriving D-optimal and A-optimal designs. It is understood

that the algorithm can be extended to other optimality readily. Some numerical examples are

given to demonstrate the results in Section 5. Saturated D-optimal design and robustness issue
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are also discussed in this section. A short discussion is given in Section 6. Some lengthy proofs

are postponed in the appendix.

1.2 Model Setup and Information matrix:

Suppose there are b groups, each having k observations. Consider a nonlinear model yij =

fθ(xij)+εij, 1 ≤ i ≤ b, 1 ≤ j ≤ k, where fθ(·) is a smooth function with its form only depending

on the parameter θ to be estimated, yij is the response of the jth unit of the ith group, xij is the

corresponding design point in a given design region, say X . Here we assume εij to be normally

distributed with a constant variance σ2. Observations in same group are assumed to have equal

correlation coefficient ρ and those in different groups are uncorrelated. For the sake of finding

optimal designs, we set σ2 = 1 without loss of generality. Then, for group i we have

E(Yi) = fθ(Xi),

Cov(Yi) = (1− ρ)Ik + ρJk := V,

(1.1)

where Yi = (yi1, ...yik)
T , Xi = (xi1, ...xik)

T ∈ X k, fθ(Xi) = (fθ(xi1), ...fθ(xik))
T , Ik is the k × k

identify matrix, and Jk is the k × k matrix with all elements being 1. Since the covariance

matrix is completely symmetric, the order of the components xij in Xi is irrelevant from design

perspective. Suppose the components of Xi consists of mi distinct points, say {xi1, ..., ximi
} with
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corresponding number of replications as {ki1, ..., kimi
} times. Automatically we have

∑mi

j=1 kij =

k. By direct calculations, the information matrix of group i regarding θ is

Mi = F
T
i diag(1

T
ki1
, 1Tki2 , ..., 1

T
kimi

)V−1diag(1ki1 , 1ki2 , ..., 1kimi
)Fi.

= c1(ρ)F
T
i diag(ki1, ..., kimi

)Fi − k
−1c2(ρ, k)F

T
i (ki1, ..., kimi

)T (ki1, ..., kimi
)Fi.

(1.2)

where Fi = (g(xi1), ..., g(ximi
))T with g(xij) = ∂fθ(xij)/∂θ, c1(ρ) = (1− ρ)−1, c2(ρ, k) = kρ(1+

(k − 1)ρ)−1c1(ρ), and 1k is the k × 1 vector with all elements being 1. Here we utilized the

fact V−1 = c1(ρ)Ik − k
−1c2(ρ, k)Jk. In the sequel we would abbreviate c1(ρ) and c2(ρ, k) by c1

and c2 respectively, unless there is a necessity to emphasise their dependence on ρ and k. Let

wij = kij/k,Wi = diag(wi1, ...wimi
), then Mi can be written as

Mi = FTi (c1kWi − c2kWiJmi
Wi) Fi. (1.3)

It turns out the information matrixMi depends on the group size k and the design measure of

group i, namely ξi = {(xij, wij), j = 1, . . . ,mi} with wij = kij/k. In the classical approximate

design theory, we shall denote the information matrix of ξi by

M(ξi) =Mi/k = FTi (c1Wi − c2WiJmi
Wi) Fi,

= c1

∫
g(x)g(x)Tξi(dx) − c2

[∫
g(x)ξi(dx)

] [∫
g(x)ξi(dx)

]T
.

(1.4)
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Since there is no between-group correlations, we have the following model for the full data.

E(Y) = fθ(X),

Cov(Y) = Ib ⊗V,
(1.5)

where Y = (YT1 , ...,Y
T
b)
T , X = (XT1 , ...,X

T
b)
T and fθ(X) = (fθ(X1)

T , ..., fθ(Xb)
T )T . Suppose there

are b∗ distinct groups designs {ξ1, ...,ξb∗}, which appear {n1, ...nb∗} times with the restriction∑b∗

i=1 ni = b. Denote the whole design measure by δ = {(ξi, ζ(ξi)), i = 1, . . . , b∗}, where

ζ(ξi) = ni/b. Then the information matrix of δ is represented by

M(δ) =

b∗∑
i=1

ζ(ξi)M(ξi). (1.6)

In approximate design theory, we would relax the integer constraints on kij and ni and work on

the space {ξi :
∑mi

j=1wij = 1,wij ≥ 0} for ξi and {ζ :
∑b∗

i=1 ζ(ξi) = 1, ζ(ξi) ≥ 0} for ζ.

1.3 Complete Class of Designs

In this section, we try to find the complete class, that is a subclass of designs containing

the optimal designs under various design criteria simultaneously. Meanwhile, the designs in the

derived complete class have very few (mostly minimum) number of supporting points, which

tremendously facilitates the numerical search of specific optimal designs. As compared to exist-

ing results on complete class, Model (Equation 1.5) imposes additional challenges here. There

are two layers of approximate designs as represented by (Equation 1.4) and (Equation 1.6).
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Moreover, the information matrix in (Equation 1.4) does not possess the desirable additivity

property as in most studies. We shall establish complete classes separately for the two layers.

1.3.1 Complete Class of Between-Group Designs

By (Equation 1.4), the within-group information matrix under a design, say ξ, can be

represented by

M(ξ) = c1L(ξ) − c2G(ξ)G(ξ)
T (1.7)

L(ξ) =

∫
g(x)g(x)Tξ(dx) (1.8)

G(ξ) =

∫
g(x)ξ(dx) (1.9)

The concavity ofM(ξ) as shown by Lemma 1.3.1 is substantial for the proofs of two main results

of the paper below, i.e. Theorem 1.3.2 and 1.4.2.

Lemma 1.3.1. M(ξ) is concave in ξ by Lowner’s ordering.

Proof. Since L(ξ) is linear in ξ, it is sufficient to show that G(ξ)G(ξ)T is convex in ξ in view of

c2 > 0. For a constant 0 < α < 1 and two measures ξ1 and ξ2, we have

αG(ξ1)G(ξ1)
T + (1− α)G(ξ2)G(ξ2)

T −G(αξ1 + (1− α)ξ2)G(αξ1 + (1− α)ξ2)
T

= α(1− α)[G(ξ1) −G(ξ2)][G(ξ1) −G(ξ2)]
T ≥ 0

Hence, the proof is completed.
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Theorem 1.3.2. Consider approximate designs under this model, for any design δ = {(ξi, ζ(ξi))|

i = 1, . . . , b∗}, let δ∗ = (ξ̄, 1) where ξ̄ =
∑b∗

i=1 ζ(ξi)ξi. Then we have

M(δ∗) ≥M(δ). (1.10)

by Loewner’s ordering.

This theorem is a direct result of Lemma 1.3.1 through Jensen’s Inequality. This result is

similar to Schmelter (2007), where the mixed effects model with uncorrelated error terms was

studied. Theorem 1.3.2 indicates that we can focus on the class of designs which have identical

design in each group. This greatly simplifies the procedure of deriving approximate optimal

designs, or say we only need to consider one group design.

1.3.2 Complete Class of Within-Group Designs

Even though the within-group information matrix does not share the desirable property of

additivity as in traditional design problems, surprisingly it is still possible to identify complete

class by the same way as in Theorem 1 in Yang (2010). This theorem shows that only a small

number of support points are necessary to achieve optimal design under Model (Equation 1.5).

We first provide the rationale of Theorem 1.3.3. Note that there exists a p × p nonsingular

transformation matrix P(θ), such that the (Equation 1.7) can be written as

M(ξ) = P(θ)

c1
N∑
j=1

wjΦ1(Cj) − c2

N∑
j=1

wjΦ2(Cj)

N∑
j=1

wjΦ2(Cj)
T

P(θ)T , (1.11)
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where Φ2(Cj) = (φ01(Cj), . . . , φ0p(Cj))
T ,

Φ1(Cj) =


φ11(Cj) φ12(Cj) . . . φ1p(Cj)

...
...

. . .
...

φ1p(Cj) φ2p(Cj) . . . φpp(Cj)

 ,

P(θ) is a function of θ only and does not depend on xj or Cj. Cj may depend on θ, and is a one-

to-one map from xj ∈ X to [A,B]. Thus, it is equivalent to write ξ as ξ = {(Ci, wi), i = 1, . . . ,m}.

Under locally optimal design context, for any two given designs ξ = {(Ci, wi), i = 1, . . . ,m}

and ξ∗ = {(C̃i, w̃i), i = 1, . . . ,m∗}, to show that Mξ ≤ Mξ∗ , it suffices to show that the

following equations and inequality hold

m∑
i=1

wiφlt(Ci) =

m∗∑
i=1

w̃iφlt(C̃i), (1.12)

for all l = 0, 1, ...p, t = 1, ...p except for one l = t the following inequality hold

m∑
i=1

wiφll(Ci) ≤
m∗∑
i=1

w̃iφll(C̃i). (1.13)

Now we provide a tool for establishing (Equation 1.12) and (Equation 1.13).

Theorem 1.3.3. Suppose for non-linear model (Equation 1.5), there exists a matrix P(θ) s.t.

its information matrix can be written in the form of (Equation 1.11). Let {φ1, ..., φn} be the
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set of distinct functions from {φ01, ..., φpp} in (Equation 1.11), which are defined on [A,B], and

Γ(C) =
∏n
l=1 γll(C),∀C ∈ [A,B], where

γlt =


φ ′l(C) t = 1, l = 1, ..., n(
γl,t−1(C)

γt−1,t−1(C)

) ′
2 ≤ t ≤ n, t ≤ l ≤ n

. (1.14)

For any given design ξ = {(Cj, wj), j = 1, ...,N}, there always exists a design ξ̃ = {(C̃j, w̃j)} such

that

Mξ ≤Mξ̃
(1.15)

with respect to Loewner ordering.

(a) When n = 2m− 1,N ≥ m and Γ(C) < 0 for C ∈ [A,B], ξ̃ has m support points and one

of them equals A;

(b) When n = 2m− 1,N ≥ m and Γ(C) > 0 for C ∈ [A,B], ξ̃ has m support points and one

of them equals B;

(c) When n = 2m,N ≥ m and Γ(C) > 0 for C ∈ [A,B], ξ̃ has m+ 1 support points and two

of them are A and B;

(d) When n = 2m,N ≥ m+ 1 and Γ(C) < 0 for C ∈ [A,B], ξ̃ has m support points.

Remark. In Theorems 1.3.2 and 1.3.3, we consider optimality with respect to Loewner’s order-

ing, which is stronger than most commonly used optimal criteria, like A-, D- and E- optimality.
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The proof is skipped because it is a direct application of Theorem 1 in Yang (2010). Theorem

1.3.3 allows us to restrict the search of optimal within-group designs to a small subclass, where

designs typically have minimum number of distinct support points. This greatly reduces the

computational burden.

1.4 Numerical Search of Optimal Design

While Theorems 1.3.2 and 1.3.3 has tremendously reduce the design space in the search of

optimal designs, it remains a challenge to find a specific optimal design for a given model and

optimality criterion. For the example of exponential model in Section 1.5, by Theorems 1.3.2

and 1.3.3, we can focus on the class of designs with at most three points, one of which is the

upped bound. To determine the optimal design, we need to further find the remaining two

design points and their weights. General grid search is not feasible if we are looking for some

decent solutions. An efficient algorithm is needed for solving a specific optimality problem. The

classical general equivalence theorem (GET) is a powerful device for verifying the optimality

of a candidate design. However, existing results on GET are all based on the assumption that

the observations are independent, which is not true here. In this section, a new version of GET

under Model (Equation 1.5) is derived and an efficient algorithm is proposed. We focus on two

popular criteria (A and D) for the algorithm with the understanding that the algorithm can be

readily extended to other optimality criterion.

1.4.1 The General Equivalence Theorem

There are many different ways to maximize the information matrix M(ξ). For example,

an A-optimal design minimizes average (or sum) of variances of the parameter estimators, i.e.
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minξ Tr(M(ξ)−1). A D-optimal design minimizes volume of confidence region of the estima-

tors, i.e. minξ |M(ξ)−1|. Kiefer (1974) unified these criteria by the function Φp(M(ξ)) =[
1
vTr(M(ξ)−p)

]1/p, where D- and A- criteria are special cases when p = 0 and p = 1, respec-

tively. Note that the case p = 0 is understood as limp→0Φp(M(ξ)−1) = |M(ξ)−1|1/v. It is well

known that Φp(M(ξ)) is convex in M(ξ) (Fedorov and Hackl 1997, sec. 2.2). This together

with Lemma 1.3.1 leads to Lemma 1.4.1, which allows us to establish Theorem 1.4.2, the GET

for Φp-optimal design under model (Equation 1.1).

Lemma 1.4.1. Φp(M(ξ)) is convex in ξ.

Theorem 1.4.2. A within-group design, ξ, minimize Φp(M(ξ)) if and only if

min
x∈χ

η(x,ξ) = Tr(D(ξ)ψ(ξ,ξ)), (1.16)

where

D(ξ) =
∂Φp(M)

∂M

∣∣∣∣
M=M(ξ)

,

ψ(ν,ξ) =c1L(ν) − c2[G(ν)G(ξ)
T +G(ξ)G(ν)T ],

η(x,ξ) =c1g(x)
TD(ξ)g(x) − 2c2G(ξ)

TD(ξ)g(x),

and L(ξ), G(ξ) defined as in (Equation 1.8) and (Equation 1.9). Moreover, all supporting points

of ξ satisfying the equality in (Equation 1.16).
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Proof. By direct calculation we have

∂M((1− α)ξ+ αν)

∂α

∣∣∣∣
α=0

= ψ(ν,ξ) −ψ(ξ,ξ). (1.17)

By Lemma 1.4.1, ξ is Φp-optimal if and only if

0 ≤ ∂Φp(M((1− α)ξ+ αν))

∂α

∣∣∣∣
α=0

= Tr(D(ξ)[ψ(ν,ξ) −ψ(ξ,ξ)]),

(1.18)

for any design ν. Let νx be a degenerated design supported on only one point x, then we have

Tr(D(ξ)ψ(νx,ξ)) = η(x,ξ). (1.19)

By (Equation 1.18), we have

min
ξ∈χ

η(x,ξ) ≥ Tr(D(ξ)ψ(ξ,ξ)). (1.20)

Due to (Equation 1.19) and
∫
ψ(ν,ξ)ξ(dx) = ψ(ξ,ξ), we have

∫
η(x,ξ)ξ(dx) = Tr(D(ξ)ψ(ξ,ξ)). (1.21)

which implies

min
ξ∈χ

η(x,ξ) ≤ Tr(D(ξ)ψ(ξ,ξ)). (1.22)
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The theorem is completed in view of (Equation 1.20)-(Equation 1.22).

Remark. For commonly used A- and D-optimality, D(ξ) = −1
vM(ξ)−2 and − 1

v |M(ξ)|1/vM(ξ)−1

respectively. It can be shown Condition (Equation 1.16) is equivalent to maxx∈χ d(ξ) ≤ 0, where

d(ξ, x) =


c1g(x)

TM(ξ)−2g(x) − 2c2G(ξ)
TM(ξ)−2g(x) − Tr

(
M(ξ)−2ψ(ξ,ξ)

)
, A-optimal;

c1g(x)
TM(ξ)−1g(x) − 2c2G(ξ)

TM(ξ)−1g(x) − Tr
(
M(ξ)−1ψ(ξ,ξ)

)
, D-optimal

(1.23)

1.4.2 Optimal weights for given support points

In this section, we propose an algorithm based on the same strategy of the optimal weights

exchange algorithm (OWEA) proposed by Yang, Biedermann, and Tang (2013). The OWEA

can be viewed as an extension of the Fedorov-Wynn algorithm (Wynn, 1970, Fedorov, 1972) by

adding an optimization step for the weights. However this step in the OWEA is for the model

with independent observation at each design point. Theorems 1.4.3 and 1.4.4 show that such

technique can be extended to the correlated errors case under D- and A- optimality criteria.

Although the two theorems can be proved through the convexity of Φp(M(ξ)) (Lemma 1.4.1),

we give different proofs in appendix by showing the corresponding Hessian matrix is nonnegative

definite matrix. The proofs provide the needed expressions of the Gradient vector and Hessian

matrix in the deriving of optimal weights.

Notice that the D- and A-optimality criteria are equivalent to minimize

Φ̃p(ξ) =


log |Σξ(θ)|, if p = 0;

Tr(Σξ(θ)), if p = 1;

(1.24)
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Let ξ = {(xi, wi), i = 1, . . . , n} be the within-group design. Define w = (w1, w2, ..., wn)
T

and Ω = {ωi ≥ 0, i = 1, ..., n − 1,
∑n−1
i=1 ωi ≤ 1}. For a given set of support points, Theorems

1.4.3 and 1.4.4 provde a direct support that A− and D− optimal criteria functions are convex

with respect to the weight vector, as well as expressions (first and second derivative in their

proof) which helps derive the algorithm in section 4.3.

Theorem 1.4.3. The minimum value of log |Σξ(θ)|, as a function of w, is achieved at any

critical point in Ω or at the boundary of Ω.

Theorem 1.4.4. The minimum value of Tr(Σξ(θ)), as a function of w, is achieved at any

critical point in Ω or at the boundary of Ω.

1.4.3 Implementation of the Algorithm

When the design space is continuous, for computational convenience we shall restrict the

design space to Xn, which is the collection of n evenly spaced points in X . If X is discrete, let

Xn = X . Based on Theorem 1.4.2, we propose the following algorithm.
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1. Initialization. Set S(0) to be the set of m + 1 design points uniformly distributed in χn,

where m is the parameter in Theorem 1.3.3. Derive the optimal design ξ0 for the given

initial support points with the initial weights being uniform.

2. Update. At iteration t ≥ 1, derive the new set of supporting points

S(t) = S(t−1) ∪ {x∗t },where x
∗
t = arg max

x∈χn
d(ξt−1, x), (1.25)

and d(ξ, x) is defined as in (Equation 1.23). Derive ξt which is the optimal design on the

supporting set S(t). The weight in ξt−1 will be the initial solution in deriving the weights

in ξt. Points with zero weight in ξt shall be removed from S(t).

3. Stopping rule. If maxx∈χn d(ξt, x) ≤ ε0, for some pre-specified value of ε0, stop and output

ξt as the optimal design. Otherwise, go back to the updating step.

We shall give more details for deriving the optimal weight in the update step of the algo-

rithm. It is a modification of the classical Newton-Raphson method. Let w(t)
0 be the initial

candidate value of the weight for ξt, w
(t)
j its value at the jth iteration. Below is the algorithm

from jth to (j+ 1)th iteration.

(a) w(t)
j+1 = w

(t)
j − a

(
∂2Φ̃

(t)
p

∂w∂wT

)−1
∂Φ̃

(t)
p

∂w
. Expressions of

∂2Φ̃
(t)
p

∂w∂wT
,
∂Φ̃

(t)
p

∂w
can be found in

proof of Theorem 1.4.3 and 1.4.4 in appendix.

(b) If there are non-positive components in w(t)
j+1, go to (d), otherwise go to (c).
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(c) If ||w(t)
j+1 −w

(t)
j || < ε, where ε > 0 is a pre-specified small positive value as threshold for

convergence, output w(t) as the optimal weight. Otherwise, go back to (a).

(d) Reduce a to a/2. Repeat (a) and (b) until a reach a pre-specified small value, say 0.00001.

If there is still a non-positive component in weight, then remove the support point with

the smallest weight. Go back to (a).

An important property of an algorithm is convergence. The next theorem shows that the

proposed algorithm does hold such property.

Theorem 1.4.5. Suppose Mξ
S(0)

is nonsingular, the sequence of designs {ξS(t) : ∀t ≥ 0} will

converge to the optimal design ξ∗ that minimize Φp(ξ).

1.5 Examples

1.5.1 Michaelis-Menten model

The Michaelis-Menten model is a nonlinear model that is widely used in the biological

sciences. The model can be written in the form of (Equation 1.5) with

f(xij,θ) =
θ1xij

θ2 + xij
, θ = (θ1, θ2).

So we have

∂F(Xi, θ)

∂θ
=


xi1

θ2 + xi1

xi2
θ2 + xi2

...
xik

θ2 + xik

−
θ1xi1

(θ2 + xi1)2
−

θ1xi2
(θ2 + xi2)2

... −
θ1xik

(θ2 + xik)2


T

.
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Under approximate design δ with identical within-group {(xi, wi), i = 1, . . . ,m}, the information

matrix can be written as

M(δ) =c1

m∑
j=1

wj


x2j

(θ2 + xj)2
−

θ1x
2
j

(θ2 + xj)3

−
θ1x

2
j

(θ2 + xj)3
θ21x

2
j

(θ2 + xj)4



− c2

m∑
j=1

wj


xj

θ2 + xj

−
θ1xj

(θ2 + xj)2

∑
j

wj

(
xj

θ2 + xj
,−

θ1xj

(θ2 + xj)2

)
.

Let P(θ) =

 1 0

1 θ2/θ1


−1

. Then we have

P(θ)−1M(δ)
(
P(θ)T

)−1
=c1

m∑
j=1

wj

 C2j C3j

C3j C4j



− c2

∑wj

 Cj

C2j



∑wj

 Cj

C2j



T

,

where Cj = xj/(θ2 + xj). Let φ1(C) = C, φ2(C) = C2, φ3(C) = C3, and φ4(C) = C4. Applying

Theorem 1.3.3 with n = 4, we can verify that Γ(C) = 24 > 0. Thus we can focus on the class of

within-group designs with at most three support points, including upper and lower bounds of

Cj.
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TABLE I: Optimal designs for Michaelis-Menten model

Block size k = 3

D-optimal A-optimal
(θ1, θ2) ρ (xi, wi) ρ (xi, wi)

(5,6)

0.4 (3,0.5) 0.5 (3,0.3456)
(1.199,0.5) (1.1884,0.6544)

0.5
(0,0.1111)

0.6
(0,0.0664)

(3,0.4444) (3,0.3242)
(1.2003,0.4444) (1.1998,0.6094)

(1,2)

0.4 (3,0.5) 0.5 (3,0.3411)
(0.8576,0.5) (0.8529,0.6589)

0.5
(0,0.1111)

0.6
(3,0.3158)

(3,0.4444) (0,0.0763)
(0.8576,0.4444) (0.857,0.608)

Block size k = 10

(5,6)

0.1 (3,0.5) 0.2 (3,0.3417)
(1.2009,0.5) (1.1624,0.6583)

0.2
(0,0.0667)

0.3
(3,0.3272)

(3,0.4667) (0,0.0579)
(1.199,0.4667) (1.1998,0.6149)

Suppose the design space be χ = [0, 3]. Table Table I lists different optimal designs for

different configurations of the correlation coefficient ρ, pre-specified θ, block size k and the

optimality criterion (A or D). All numeric solutions are based on 30000 grids on design space

[0, 3], and all values of support points or weights are rounded to the multiples of 0.0001. Table

Table I reveals a few interesting patterns.

First, boundary points may not always be support points. Theorem 1.3.3 (c) indicates that

at most three support points are necessary, while in Table Table I, some optimal designs only

require two support points. By Theorem 1.3.3, lower and upper bound of Cj should be in the
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support set when there are three supporting points. When an optimal design has only two

support points, it may not necessarily include both upper and lower bound of Cj. From Table

Table I, we can see only upper bound is included when optimal design has only two support

points.

Second, the number of support points tend to increase when ρ or block size k increase. This

is not surprising. From (Equation 1.4), Iξ is proportional to

∫
g(x)g(x)Tξi(dx) −

c2
c1

[∫
g(x)ξi(dx)

] [∫
g(x)ξi(dx)

]T
. (1.26)

When there is no correlation within a block, the information matrix is first part of (Equa-

tion 1.26) and optimal design are based on two support points (Example 14.6, Biedermann and

Yang, 2015 ). When c2/c1 is small, optimal designs mainly depend on the first part. As it

increases, second part becomes more dominant. On the other hand,

c2
c1

=
kρ

1+ (k− 1)ρ

is a increasing function of ρ and k.

Third, the saturated D-optimal design always has equal weights. This phenomena has been

well known in the independent observation case. The numerical results shows it also holds for

the correlated data. Now we confirm this by Theorem 1.5.1. Cheng (1995) showed similar result

for linear model with same correlation structure under setup of exact design. Here we show it

is also true for non-linear model under approximate design.
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Theorem 1.5.1. For any model in the form of (Equation 1.5), when θ = (θ1, ...θp), if ξ =

{(xj, wj)} supported on m points is D-optimal design when ρ = 0, then ξ is also saturated D-

optimal design when ρ 6= 0. Furthermore, ξ has equal weights at all support points.

Proof. InMξ = σ
−2FTV−1F, F is always square matrix when ξ is saturated design, thus we have

|Mξ| = σ
−2|FT ||V|−1|F|

= σ−2|V|−1 × |FTF|

= σ−1
(
1+

kρ

1− ρ

)−1(
k

1− ρ

)m∏
wj × |FTF|

(1.27)

By (Equation 1.27), it is obvious that for any {wj|j = 1, ...m}, |Mξ| is maximized when |FTF| –

D-optimal function for uncorrletated model – is maximized, for all ρ ∈ [0, 1], and for any fixed

F, |Mξ| achieves maximum when w1 = ... = wm = 1/m.

Remark. Since D-optimal design for the Michaelis-Menten model with independent errors is

based on two points, the proof of Theorem 1.5.1 also shows that a two-points D-optimal design

when ρ 6= 0 must be the D-optimal design for independent case. Since the block size k is irrelevant

to optimal design when observations are independent, it is not surprised, for (θ1, θ2) = (5, 6),

the two D-optimal designs when (ρ, k) = (0.1, 3) and (ρ, k) = (0.4, 10) are identical with the

understanding the slight difference is due to computing errors. The next two examples also show

the similar patterns.
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1.5.2 Exponential Model

The model can be written in the form of (Equation 1.5) with

f(xij,θ) = θ1 exp(xij/θ2),

θ = (θ1, θ2).

Under approximate design δ with identical within-group {(xi, wi), i = 1, . . . ,m}, we have

(P(θ))−1M(δ)
(
P(θ)T

)−1
=c1k

∑
j

wj

 e2Cj Cje
2Cj

Cje
2Cj C2j e

2Cj



− c2
∑
j

wj

 eCj

Cje
Cj

∑
j

wj

(
eCj Cje

Cj

)
,

where Cj = xj/θ2 and P(θ) =

 1 0

0 −
θ1
θ2

. Let φ1(C) = eC, φ2(C) = CeC, φ3(C) = e2C,

φ4(C) = Ce2C, and φ5(C) = C2e2C. Applying Theorem 1.3.3 with n = 5, we can verify that

Γ(C) = 4e2C > 0, for any C. Thus, we can focus on within-group designs supported by at most

three distinct points including the upper bound of C.

Table Table II lists the optimal designs under different configurations of the parameters

when design space [0, 3] has 30000 grids. It exhibits similar patterns as in Table Table I.
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TABLE II: Optimal designs for exponential model

Block size k = 3

D-optimal A-optimal
(θ1, θ2) ρ (xi, wi) ρ (xi, wi)

(5,6)
0.6 (0,0.5) 0.6 (0,0.6411)

(3,0.5) (3,0.3589)

0.9 (0,0.5) 0.9 (0,0.6411)
(3,0.5) (3,0.3589)

(1,2)

0.5 (3,0.5) 0.7 (3,0.2861)
(0.9982,0.5) (1.4878,0.7139)

0.9
(0,0.2634)

0.9
(0,0.076)

(3 ,0.4391) (3,0.2977)
(1.5775,0.2975) (1.8531,0.6263)

Block size k = 10

(5,6) 0.9 (0,0.5) 0.9 (3,0.3906)
(3,0.5) (0.7768,0.6094)

(1,2)

0.4 (3,0.5) 0.6 (3,0.3183)
(0.9992,0.5) (1.7483,0.6817)

0.5
(0,0.1037)

0.7
(0,0.0423)

(3,0.4882) (3,0.3122)
(1.1488,0.4081) (1.848,0.6455)

1.5.3 Three parameters Emax model

Dette, Melas and Wong (2005) studied another version of Emax model, which can be written

in the form (Equation 1.5) with

f(xij,θ) =
θ0x

θ2
ij

θ1 + x
θ2
ij

,

θ = (θ0, θ1, θ2)
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where θ0, θ1 > 0 and θ2 6= 0. Under approximate design δ with identical within-group

{(xi, wi), i = 1, . . . ,m}, we have

M(δ∗) =c1P(θ)
∑
j

wj



1

(1+ Cj)2
1

(1+ Cj)3
Cj logCj
(1+ Cj)3

1

(1+ Cj)3
1

(1+ Cj)4
Cj logCj
(1+ Cj)4

Cj logCj
(1+ Cj)3

Cj logCj
(1+ Cj)4

C2j log2Cj

(1+ Cj)4


P(θ)T

−c2P(θ)
∑
j

wj



1

1+ Cj
1

(1+ Cj)2

Cj logCj
(1+ Cj)2


∑
j

wj

(
1

1+ Cj

1

(1+ Cj)2
Cj logCj
(1+ Cj)2

)
P(θ)T ,

where Cj = θ1x
−θ2
j and

P(θ) =


1 0 0

−θ0
θ1

θ0
θ1

0

θ0
θ2

log θ1 −
θ0
θ2

log θ1
−θ0
θ2

 ,

Let φ1(C) = 1
(1+C)4

, φ2(C) = 1
(1+C)3

, φ3(C) = C logC
(1+C)4

, φ4(C) = 1
(1+C)2

, φ5(C) = C logC
(1+C)3

,

φ6(C) =
1

(1+C) , φ7(C) =
C2 log2 C
(1+C)4

, and φ8(C) = C logC
(1+C)2

. Applying Theorem 1.3.3 with n = 8, we

can verify that Γ(C) =
−12

C5(1+ C)4
< 0, for any C > 0, which is satisfied when the design space

is X = [1, 4].
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Table Table III lists the optimal designs under different configurations of the parameters

when design space [1, 4] has 30000 grids. It exhibits similar patterns as in Table Table I.

TABLE III: Optimal designs for Emax model

Block size k = 3

D-optimal A-optimal
(θ0, θ1, θ2) ρ (xi, wi) ρ (xi, wi)

(1,2,3)

0.5
(1,0.3333)

0.5
(1,0.409)

(4,0.3333) (4,0.2215)
(1.757,0.3333) (1.759,0.3695)

0.9
(1,0.3333)

0.9
(4,0.2301)

(4,0.3333) (1.045,0.3902)
(1.755,0.3333) (1.846,0.3797)

(1,5,6) 0.8

(1,0.1241)

0.9

(4,0.1642)
(4,0.325) (1,0.0217)

(1.563,0.3182) (1.205,0.4472)
(1.143,0.2327) (1.629,0.3669)
Block size k = 10

(1,2,3)

0.8
(1,0.3333)

0.7
(4,0.2325)

(4,0.3333) (1.1035,0.3743)
(1.755,0.3333) (1.9145,0.3932)

0.9

(1,0.3112)

0.8

(4,0.234)
(4,0.3256) (1,0.0084)

(1.34,0.0647) (1.167,0.3527)
(1.819,0.2984) (1.987,0.405)

(1,5,6) 0.5

(1,0.1822)

0.6

(4,0.1748)
(4,0.3139) (1,0.0067)

(1.188,0.2049) (1.716,0.3774)
(1.5845,0.2989) (1.2185,0.4411)



26

1.6 Robustness of locally optimal designs

Optimal designs discussed in previous sections are computed based on the pre-specified value

of ρ, which is usually unknown in practice. Under this case, design efficiency with wrongly

specified ρ should be considered. The D- and A-efficiencies of a given design, say ξ, are defined

as

D-eff(ξ) = Φ0(ξ∗D)/Ψ0(ξ)

A-eff(ξ) = Φ1(ξ∗A)/Ψ1(ξ)

(1.28)

where ξ∗D and ξ∗A are D- and A- optimal design with true values of parameters, respectively.

We generated a design when ρ is specified as 0 and measured its efficiencies when the true

value of ρ takes other values as in Table Table IV. When true value of ρ, and hence c2/c1,

is small, the optimal design will be identical to the case where ρ = c2/c1 = 0. In such cases,

the designs under the wrongly specified ρ is still optimal. We can find that when true ρ ≤ 0.5,

corresponding design efficiencies are close to or higher than 95%. However, when ρ is further

away from the wrongly misspecified value 0, design efficiencies will decrease. This is also true

when ρ are wrongly specified to values other than 0.

Locally optimal designs also depend on pre-specified θ. Under D- optimal criteria, saturated

optimal design always have 100% efficiency. Under both D- and A- optimal criteria, design

efficiency decreases as specified θ diverges from its true value. Table Table V provides the

efficiencies of a design based on the setting of ρ = 0.5 and θ = (5, 6) at various true values of θ.

We noticed that even θ is far away from the pre-specified value, design efficiencies are mostly

higher than 90%.
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TABLE IV: D-efficiency and A-efficiency of optimal designs with wrong ρ

true ρ D- efficiency A- efficiency

Design: (3,0.5) (3,0.3081)
(1.2,0.5) (0.96,0.6919)

0 1.0000 1.0000
0.1 1.0000 0.9981
0.4 1.0000 0.9643
0.45 0.9864 0.9526
0.5 0.9492 0.9382
0.6 0.8216 0.8852
0.7 0.6460 0.7735
0.8 0.4424 0.5973
0.9 0.2242 0.3460

All designes have prespecified ρ = 0

and truely specified θ = (5, 6)

TABLE V: D-efficiency and A-efficiency of optimal desings with wrong θ

true θ D- efficiency A- efficiency

Design:
(3,0.4444) (3,0.3458)
(1.2,0.4444) (1.19,0.6542)
(0,0.1111)

(5,3) 0.9596 0.9292
(5,6) 1.0000 1.0000
(5,16) 0.9731 0.9609
(5,60) 0.9386 0.9154

All designs have pre-specified θ =
(5, 6), and truely specified ρ = 0.5
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To sum up, Tables Table IV and Table V indicate that optimal designs are quite robust

with respect to misspecified values of θ and ρ under Michaelis-Menten model. Simulations with

other examples yields similar conclusions. They are omitted here due to space limit.

1.7 Discussion

Although nonlinear models with correlated responses are not uncommon in practice, little

optimality work has been done. The main challenge is that the information matrix does not

have the “additive" property, where most available powerful tools are applied to.

For the nonlinear models with random block effects, the variance-covariance matrix for the

observations within a block is compound symmetric. Because of this structure, we are able

to characterize the format of optimal designs and derive the corresponding general equivalence

theorem. Unlike nonlinear models with independent observations, in which optimal designs are

often based on saturated design, optimal designs for nonlinear models with random block effects

are not longer this case. The number of support points depends on how strong the correlation

ρ is. When ρ is close to 0, it is often equal to minimum number of support points, just like that

of independent case. When ρ is close to 1, optimal designs are often based on one more point

than that of saturated designs.

For nonlinear models with other correlation structures, the information matrix becomes more

complicated. The method employed in this manuscript is unlikely applicable. Specifically, it is

not clear whether the general equivalence theorem still holds. Given the importance of nonlinear

models with correlated responses, more research in this direction is certainly needed.



CHAPTER 2

INFORMATION-BASED OPTIMAL SUBDATA SELECTION FOR

LASSO REGRESSION

2.1 Introduction

Extraordinary amounts of data are being produced in many branches of science as well as

people’s daily activity. For example, the cross-continental Square Kilometre Array, the next gen-

eration of astronomical telescopes, will generate 700 terabytes of data per second (Mattmann et

al. (2014)). An analysis of all of the data is simply not feasible. Although impressive advances in

high performance computing and data distribution platforms, computational limitations remain

for data of this size. In addition, state of the art platforms can be expensive and are not always

readily available.

Arguably speaking, the main computation challenge of analyzing big data is due to large

number of observations (n). One strategy of analyzing such massive data is data reduction.

Instead of analyzing the full dataset, a selected subdata set is analyzed. The existing data

reduction method is mainly based on random sampling approach, such as uniform sampling

and leveraging algorithm sampling (Ma et al. (2015)). While this approach enjoys the easy

implement, Wang et al. (2017) has shown random sampling approach has limitation in terms

of extract the information from the full data - the information contained in the subdata is

bounded by the size of subsample. Wang (2016) proposed a novel approach called information-

29
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based optimal subdata selection(IBOSS), which demonstrates advantage in both computing

speed and estimating accuracy. Instead of random sampling, this approach chooses a group

of most informative data points from the whole data set, which depends on basic motivation

of optimal experiment design (Kiefer and Wolfowitz (1959)). However, the IBOSS approach is

mainly for the situation that p is relatively small.

There are many situation that p is large. A well known example is Kaggle competition data

from Netflix with a sample of 480,000 customers(rows) and 18,000 movies(columns), which will

keep expanding in both rows and columns as new customers reviews or new movies added. There

already exists rich and well developed methodology of variable selection or screening for data

with large p. Except some traditional variable selection methods like partial least squares and

principle component analysis, approaches targeting high dimension variable selection include

a series of penalized regression approaches like LASSO (Tibshirani (1996)), ridge (Hoerl and

Kennard (1970)), elastic net (Zou and Hastie (2005)), SCAD (Fan and Li (2001)) and so on.

Some focus on even higher dimension – when p >> n – are like Dantzig selector by Candes and

Tao (2007), sure independence screening by Fan and Lv (2008).

In spite of the excellent performance of these approaches, the computation challenge is still

there when n is huge. Recently, split-and-conquer approach (Chen and Xie (2014)) was proposed

to analyze the extraordinarily large data which a single machine could not handle. The main idea

of this approach is to split the full dataset into many different sub dataset and analyze each sub

dataset individually. The final estimator is obtained through aggregating the estimators from

each sub dataset. While split-and-conquer does save the computation time through parallel
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computation on multiple threads or clusters, it does not save the computation cost. We will not

pursue further in this direction.

In this paper, we will focus on data reduction for large n and large p. The goal is, for given

computation cost, to select a subdata such that it maintain as much information as possible.

We consider the case when response and covariates are linearly associated, but assume data are

highly sparse – only a few variables truly associated with response. Sparsity comes frequently

with high dimensional data, which is a growing feature in many areas of contemporary statistics

(Fan and Lv (2008)).

This paper is organized as follows. Section 2 provides a short introduction to LASSO problem

and algorithm. Section 3 discusses IBOSS approach in detail and shows its theoretical support.

In Section 4 we show theoretical computation cost of methods. Section 5 discusses numerical

experiment result and comparison between IBOSS and other approaches. Section 6 presents

some limitations and open questions.

2.2 The Framework

2.2.1 Linear Model and LASSO Estimator

Denote the whole data set as (x1, y1), ..., (xn, yn) and assume the linear model:

E(yi) = x
T
i β, i = 1, 2, ..., n, (2.1)

where xi = (1, xi1, ..., xip)
T is covariates for i-th observation, yi the i-th response, β = (β0, β1, ..., βp)

is a (p+ 1)-dimensional vector of parameters.
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We consider the situation when both number of observations n and variables p are large,

which is challenge in both estimators computation and model explanation. A common assump-

tion for data with large p is high sparsity of data – only a small proportion of p variables are

true while all others have 0 coefficients. Classical variable selection methods like comparing p-

value of Wald test are based on assumption of fixed predictors in advance while selecting them

adaptively, which turns out biased. Penalized regression are invented to provide high sparse

estimators.

Let l(β;y,X) be the log-likelihood function, then penalized regression estimator in general

form is

β̂(penalized) = arg max
β

{
l(β,y,X)

n
− ρ(β, λ)

}
,

where ρ(β, λ) is penalty function with tuning parameter λ, shrinking the original maximum

likelihood estimator. Popular choices of ρ(β, λ) include LASSO, ridge, elastic net, SCAD and

so on. λ is usually determined by minimizing cross validation error, which means value of λ

changes from data to data.

LASSO with L1 penalty term does variable selection and shrinkage simutaneously, reduces

number of variables as well as variance of estimator. When ρ(β, λ) = λ
∑p
j=1 |βj|, the LASSO

estimator for linear regression is

β̂LASSO = arg min
β

1

n

n∑
i=1

(yi − xiβ)
2 + λ

p∑
j=1

|βj|. (2.2)

This is equivalent to minimizing
∑n
i=1(yi − xiβ)

2 with constraint
∑p
j=1 |βj| < S, S > 0.
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LASSO did not receive much attention as it does now because lack of efficient and statistically

motivated algorithm. LARS algorithm (Efron et al. (2004)) made up this gap. Later, Wu and

Lange (2008) applied coordinate descent algorithm to address large data LASSO problem when

sparsity is more desired. This algorithm iteratively optimizing target function (sum of likelihood

and penalty) on one dimension at one time. The coordinate algorithm provides fast and robust

solution to LASSO and other penalized regression. In this paper we will use cyclic coordinate

descent algorithm to demonstrate numeric performance of IBOSS approach.

2.3 IBOSS-LASSO Approach

In tradtional study of optimal design, Fisher information matrix could be written as negative

Hessian matrix of log likelihood function. When there is no penalty, inverse of information matrix

is proportional to covariance of maximum likelihood estimator (MLE). This means if we could

find an optimal subset of the whole data, “maximizing" the Fisher information matrix, it will

“minimize" the the covariance matrix of MLE.

Let δi = 1 if the ith data point is on the subdata and δi = 0 otherwise. We want to select

δ = (δ1, . . . , δn) subject to
∑n
i=1 δi = k, such that it “maximize" the information matrix. Under

Model Equation 2.1, the information matrix is

M(δ) =
1

σ2

n∑
i=1

δixix
T
i . (2.3)
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For linear regression, the covariance matrix V(β̂) is directly proportional to the information

matrix, and thus subdata selected by Algorithm 1 (in Section 2.3.3) provides an estimator

approximately minimizing determinant of covariance matrix.

However, when penalty terms get involved, this desired property of the information matrix

do not hold any more. Firstly, information is derived as expected negative second derivative of

log-likelihood function, which may not be properly defined for the L1 penalty. Secondly, penalty

term is added to the optimization function as a separate part. Even if second derivative of the

penalized likelihood function could be defined, its direct connection to estimator variance does

not hold like for MLE.

Though V
(
β̂δ

LASSO
)
is not proportion toM(δ)−1, it is still affected byM(δ) in a way similar

to OLS under mild conditions, which will be derived in the following section by asymptotic

property of LASSO. Furthermore, LASSO estimator’s bias is also influenced by the information

matrix. Thus we could show that IBOSS approach, though intended to optimize infomation

matrix of OLS estimator, is applicable and efficient for LASSO problem.

2.3.1 LASSO Asymptotics and Connection with Information Matrix

2.3.1.1 LASSO Asymptotics Property (n→∞)

Knight and Fu (2000) discusses asymptotic property of LASSO-type estimators. Assume

the following regularity conditions for the design matrix X = (x1, ..., xn)
T ,

Cn =
1

n

n∑
i=1

xix
T
i → C, (2.4)
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where C is nonnegative definite matrix and

1

n
max
1≤i≤n

xTi xi → 0. (2.5)

Then LASSO estimator has following property,

Lemma 2.3.1. If λn/
√
n→ λ0 ≥ 0 and C is nonsingular then

√
n(β̂LASSOn − β)→d arg min

u
V(u), (2.6)

where

V(u) = −2uTW + uTCu+ λ0

p∑
j=1

[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)] (2.7)

and W ∼ N(0, σ2C).

If we further assuming λn = o(
√
n), i.e., λn/

√
n→ λ0 = 0, then

V(u) = −2uTW + uTCu

arg min
u
V(u) = C−1W,

and
√
n(β̂LASSOn − β)→d C

−1W ∼ N(0, σ2C−1).

(2.8)

Under this situation, the asymptotic behavior of β̂LASSOn is similar to that of OLS estimator.

Remark. From (Equation 2.8) we could conclude that as long as λn = o(
√
n), β̂LASSOn is

consistent estimator and its estimation variance is asymptotically proportion to C−1, which is
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the limit of the inverse of information matrix. This conclusion builds a connection between the

variance matrix of the LASSO estimator and information matrix when n→∞.

2.3.1.2 Comprehensive Results for n <∞
LASSO estimator is consistent but not unbiased. For each specific n, the information matrix

affects both bias and variance of LASSO estimator. Consider the full dataset of size n, we have

√
n(β̂LASSOn − β) = arg min

u
Vn(u),

and Vn(u) =
n∑
i=1

[(εi − u
Txi/
√
n)2 − ε2i ] + λn

p∑
j=1

[|βj + uj/
√
n|− |βj|],

(2.9)

where u = (u1, ...up)
T and Vn(u) →d V(u) as defined in (Equation 2.7). Vn(u) could also be

written as

Vn(u) =
uTXTXu

n
−
2uTXTε√

n
+
λn√
n

p∑
j=1

[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)]

=
uTXTXu

n
−
2uTXTε√

n
+
λn√
n

p∑
j=1

uj [sign(βj)I(βj 6= 0) + sign(uj)I(βj = 0)] .

(2.10)

When fitting LASSO model with subset of size k, let η = diag(η1, ...ηn) where ηi is number

of times data point i is selected, and β̂LASSOη the estimator. Then we have

Vk(u) =
uTXTηXu

k
−
2uTXTηε√

k
+

λk√
k

p∑
j=1

[ujsign(βj)I(βj 6= 0) + |uj|I(βj = 0)] .

(2.11)
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Consider the extreme case when all βj 6= 0, ∀j = 1, ..., p, then

arg min
u
Vk(u) =

√
k
(
XTηX

)−1
XTηε−

√
kλk
2

(
XTηX

)−1
sign(β),

β̂LASSOk − β =
(
XTηX

)−1
XTηε−

λk
2

(
XTηX

)−1
sign(β),

Eε(β̂
LASSO
k − β) = −

λk
2

(
XTηX

)−1
sign(β),

and Vε(β̂LASSOk − β) =
(
XTηX

)−1 (
XTη2X

)(
XTηX

)−1
σ2

(2.12)

When there exists βj = 0 for some j ∈ 1, ...p, arg minu V(u) does not have close form due to

the fact that Vk(u) may not be differentiable as function of u. It is challenging to derive general

conclusion for β as a whole vector.

2.3.2 Uniform Random Sampling is Bounded

In this section, We shall study the property of estimator when the subdata is selected through

random sampling approach. We first start with a lemma.

Lemma 2.3.2. For any positive definite matrices B1 and B2 of same dimension,

{αB1 + (1− α)B2}
−1 ≤ αB−1

1 + (1− α)B−1
2 (2.13)

Suppose a subsample of size k is taken using a random subsampling procedure with prob-

abiilties proportional to πi, i = 1, ..., n, such that
∑n
i=1 πi = 1. Sampling result indicated by

η = diag(η1, ..., ηn), where ηi is the number of times data point i is selected. Consider the set
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∆ =
{
ηL :
∑n
i=1 ηLixix

T
i is non-singular

}
, I∆(ηL) = 1 if and only if ηL ∈ ∆. Given I∆(ηL) = 1,

β is estimable and by Lemma 2.3.2 we have

Eη

(1
k

n∑
i=1

ηLixix
T
i

)−1
 ≥ [E( n∑

i=1

ηixix
T
i /k

)]−1

=

(
n∑
i=1

πixix
T
i

)−1

.

(2.14)

Take simple random sampling with replacement as example, when covariates has a distribu-

tion with finite second moment E(xxT ),

(
n∑
i=1

1

n
xix

T
i

)−1 → E(xxT )−1 (2.15)

as n→∞. By (Equation 2.14), expectation of
1

k

∑
s∈ηL xsx

T
s has the lower bound E(xxT )−1, this

remains lower bound of C−1 with respect to Lowener Ordering as k→∞, when the conditions

of (Equation 2.4) and (Equation 2.5) hold.

Theorem 2.3.3. Suppose that a subsample of size k is taken using a random subsampling

procedure with probability proportional to πi, i = 1, ..n such that
∑n
i=1 πi = 1.Consider the set

∆ =
{
ηL :
∑n
i=1 ηLixix

T
i is non-singular

}
, I∆(ηL) = 1 if and only if ηL ∈ ∆. Given I∆(ηL) = 1,

β is estimable with sample η, we have

Eη

[(
XTηX

)−1]
≥
(

n∑
i=1

πixix
T
i

)−1

(2.16)
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by Lemma 2.3.2, and

(
XTηX

)−1 (
XTη2X

)(
XTηX

)−1
≥ 1

k
P(I∆(ηL) = 1|X)

(
n∑
i=1

πixix
T
i

)−1

(2.17)

Combined with (Equation 2.12), Theorem 2.3.3 gives lower bound of estimation bias and

variance under the extreme case when all βj 6= 0, ∀j = 1, ..p.

2.3.3 IBOSS Algorithm

Under linear model, D-opt IBOSS approach is to find δ which "maximize" determinant of

information matrix:

δoptD = arg max
δ

∣∣∣∣∣
n∑
i=1

δixix
T
i

∣∣∣∣∣ , subject to
n∑
i=1

δi = k. (2.18)

A D-opt IBOSS subdata could minimize the volume of confidence ellipsoid of the estimators.

However, obtaining an exact solution to (1.4.3) could be computationally infeasible. Alterna-

tively approach is to characterize the corresponding D−optimal design. Such characterization

may provide a guidance on selecting an informative subdata.

Wang (2016) derives upper bound of
∣∣XTηX∣∣ = |

∑n
i=1 δixix

T
i | as showed in Lemma 2.3.4.

This lemma characterizes the D−optimal design over the design space.

Lemma 2.3.4. For subdata of size k represented by δ,

|

n∑
i=1

δixix
T
i | ≤

kp+1

4p

p∏
j=1

(x(n)j − x(1)j)
2 (2.19)



40

where x(i)j is i-th order statistic of (xi1, ...xin). The equality holds if and only if the subdata

consists of 2p points {1, a1...ap} where aj = x(n)j or x(1)j , j = 1, ...p, and each occurring equally

often.

Lemma 2.3.4 indicates that data points with extreme values at some dimension j could push

the determinant to upper bound, which is consistent the common statistical knowledge that

larger variation in covariates turns out small standard error in linear coefficients’ estimator.

Under LASSO model, p is usually large. D-optimal IBOSS approach is applicable if we have

large enough sub-sample – k ≥ 2p.

2.3.3.1 IBOSS Algorithm and Asymptotic Property

Algorithm 1. (D-optimal IBOSS), assume r = k/2p is positive integer.

1. Start from xi1,1 ≤ i ≤ n. In the full data pool, select r points with smallest xi1 and r

with largest xi1 values.

2. For j = 2, ...p, exclude selected points from the pool and from the remainder, select r with

smallest xij and r with largest xij values.

3. After p iterations get theD-optimality motivated subdata δD. Compute LASSO estimator

β̂LASSOD from the subdata, where β̂LASSOD = arg minβ
∑
i∈δD(yi−xiβ)

2+λD
∑p
j=1 |βj|. Here

choice of λD is by 10-fold cross validation on the subdata δD.
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Consider the D-optimal subset selected by Algorithm 1, specifically
{
(X∗
D)
TX∗

D

}−1, we could
borrow the following conclusions from Wang (2016).

Lemma 2.3.5. Assume that covariate distributions are in the domain of attraction of the gener-

arlized extreme value distribution. Let x(i)j be the i-th order statistic for x1j, ...xnj, sample corre-

lation of X∗
D be R. If lim

n→∞ λmin(R) > 0, then for large enough n (n >> p), the following results

hold for
{
(X∗
D)
TX∗

D

}−1.
{
(X∗
D)
TX∗

D

}−1
11
�P 1,{

(X∗
D)
TX∗

D

}−1
jj
�P

1

(x(n)j − x(1)j)2
, j = 1, ..., p,

(2.20)

where A �P B means A = OP(B) and B = OP(A).

Lemma 2.3.5 indicate that subdata selected by Algorithm 1 provides an estimator with

decreasing variation as n increases even with fixed k. If the sample range converges to ∞ as

n → ∞, then the asymptotic variance of any slope estimator (j = 1, ..p) converges to 0, with

same computation cost since k does not change.

Lemma 2.3.6. Let µ = (µ1, ...µp)
T and Σ = ΦρΦ be a full rank covariance matrix where

Φ = diag(σ1, ...σp) is a diagonal matrix of standard deviations and ρ the correlation matrix.

Assume that x ′is, i = 1, ...n are i.i.d, with distributions specified below then the following results

hold for
{
(X∗
D)
TX∗

D

}−1
, where X∗D is result from Algorithm 1.



42

(i) For multivariate normal covariates, i.e. xi ∼ N(µ,Σ),

{
(X∗
D)
TX∗

D

}−1
=

 1
k +OP(

1
logn) OP(

1
logn)

OP(
1

logn)
1

4r logn(Φρ
2Φ)−1 +OP(

1
logn)

 . (2.21)

(ii) For multivariate lognormal covariates, i.e.,xi ∼ LN(µ,Σ),

An

{
(X∗
D)
TX∗

D

}−1
An =

1

k

 1 −uT

u pΛ+ uuT

+ oP(1), (2.22)

where An = diag
{
1, expσ1

√
logn, ... expσp

√
logn

}
,u = (e−µ1 , ...e−µp), and Λ = diag(e−2µ1 , ...e−2µp)

For the distributions in Lemma 2.3.6, when n → ∞,
{
(X∗
D)
TX∗

D

}−1
jj
→ 0, j > 1 at different

rate for different distributions even k is fixed. On the other hand, for random sampling estimator

expectation of
1

k

∑
s∈ηL xsx

T
s is always bounded.

If we consider specific sample size k instead of when n → ∞. For a subdata selected by

Algorithm 1, we have XTηX = (X∗D)
TX∗D in (Equation 2.12). Combining Lemma 2.3.5 with 2.3.6,

we can conclude that the estimators based on Algorithm 1 have decreasing bias and variance as

n increases.

Remark. Intuitively, the D-optimality motivated IBOSS algorithm will select points close to

boundary so that more information available at all the p dimensions. This will result in more

accurate estimation of all β̂j, including both true and not ture variables, and thus more likely to

provide good performance in variable selection as well.



43

Remark. This approach is suitable for parallel compuating since the partial sorting is done

separately on each column of the dataset. One can simutaneously process each column and

combine the indices to form the sub data δD.

2.3.4 Correlated-IBOSS approach

IBOSS approach is applicable only when k ≥ 2p. For an ultra-high dimension problem,

it may be impossible to include extreme values of all variables like Algorithm 1 does. One

reasonable solution under this case is implementing IBOSS algorithm with only part of the

variables.

On the other hand, considering only part of the variables may also improve performance of

the IBOSS procedure. Given the sparse assumption of LASSO model, selecting observations

with extreme values in false variables Xj may not reduce bias or variance of β̂LASSO, because

β̂LASSOj has large chance to be enforced to 0 under L1 penalty. The process will be more efficient

if we only consider variables with non-zero coefficients.

Since response and independent variables are assumed linearly associated, it is intuitive to

calculate Pearson’s correlation coefficient ρ̂, and select variables with largest ρ̂ to apply IBOSS

algorithm.

Algorithm 2. (Correlated-IBOSS), assume r =
k

2p̃
is integer, where 0 < p̃ ≤ p is the number

of variables selected in step of SIS.

1. Calculate corr(Xj,y), j = 1, ...p, select X(1), ...X(p̃) with largest corr(Xj,y). Xj is (j+1)-th

column of X.



44

2. Start from xi(1),1 ≤ i ≤ n. In the full data pool, select r points with smallest xi(1) and r

with largest xi(1) values.

3. For j = 2, ...p̃, exclude selected points from the pool and from the remainder, select r with

smallest xi(j) and r with largest xi(j) values.

4. After ã iterations get the D-optimality motivated subdata δSD based on X(1)...X(p̃). Com-

pute LASSO estimator β̂LASSOSD = arg minβ
∑
i∈δSD(yi − xiβ)

2 + λSD
∑p
j=1 |βj| from the

subdata. Here choice of λSD is by 10-fold cross validation on the subdata δSD.

Fan and Lv (2008) proposed a sure independence screening approach, they sort the variables

by their sample correlation with y and define a sub-model Mγ with only the first p̃ variables

(p̃ = [γn] < n). Under the setting of n << p, they identified conditions under which the sure

screening property:

P(M∗ ⊂Mγ) = 1−O(exp(−Cn1−2κ/ logn))

holds for LASSO problem, where M∗ is true model. That is, the sub-model highly correlated

with the response has a large probability to contain the true model with large enough n.

Under our setting with n >> p, the probability that subset of top correlated variables

excluding a true variable is even smaller.

Remark. Correlated-IBOSS approach only considers informative points of important variables,

trying to minimize bias or variance for only β̂j’s with large |β̂j| instead of all β̂j’s. D−optimal
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IBOSS treats all βj’s equally, but affects only β̂LASSOj with large absolute value. Thus, Correlated-

IBOSS approach could reduce V(βLASSOj ) more efficiently.

Remark. Intuitively, we know that when p̃ is too small, performance of Algorithm 2 may be

compromised because some true variables is not ignored in the step of observation selection.

Thus, choosing an appropriate p̃ is important when using Algorithm 2.

2.4 IBOSS-LASSO Computation Complexity

In this section, we will discuss the computation performance of IBOSS.

Wu and Lange (2008) and Friedman et al. (2010) in their simulation studies both show

that coordinate descent algorithm "considerably faster and more robust" than LARS on L1

and L2 penalized regressions. In each cycle, the algorithm requires O(n) operations to update

each coordinate, O(np) operations in total to update p coordinates. If number of iterations

before convergence is Riter, computation complexity to fit LASSO on a subset of size k will be

O(kpRiter), much smaller than O(npRiter) for full data. Consider LARS algorithm with time

complexity O(p3+np2) (Efron et al. (2004)), subset approach could save even more operations.

In all numeric studies of this paper, LASSO will be computed with coordinate descent algorithm.

Unlike simple random sampling, subset data with IBOSS approach requires sorting, which

involves some extra computations. IBOSS approach selects the top r and bottom r from a non-

ordered sequence of size n in each variable. A partial sort algorithm with average computation

complexity of O(n + r log(r)) (Martınez (2004)) is used to complete this step. And this turns

out np + pr log(r) in total for p variables for D-optimal IBOSS, and γnp + γpk log(k) for

Correlated-IBOSS.
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Computation complexity forD-optimal IBOSS LASSO approach isO(np+k log(r)+kpRiter),

for Correlated-IBOSS LASSO O(γnp + γkpRiter + k log(r)), both considerably smaller than

O(npRiter). Furthermore, some data may be too large to be loaded into RAM as a whole

object, where subset may be the only way to perform regression analysis. Time difference will

be further enlarged when cross-validation is used.

2.4.1 Subset Approaches

Exist subset methods are mainly balanced or weighted sampling. Other approaches like

little bootstrap is also based on random sampling with re-scaled result. Furthermore, bootstrap

requires multiple times of LASSO on samples drawn from same population, which is not very

efficient.

Balanced sampling – simple random sample(SRS) is a simple method. Compare to the whole

data set, SRS is just a smaller sample from same population where computation cost is saved

by sacrificing estimation accuracy.

Ma and Sun (2015) proposed a leveraging approach for big data linear regression, which uses

statistical leverage score – xTi (X
TX)−1xi for observation i– as sampling probability. Computation

cost is O(np2) for exact leverage score, less for approximate leverage score (Drineas et al.

(2012)). The approximate leveraging approach calculates Moore-Penrose pseudoinverse of a

random sketch of X – a random subset of rows of transformed X– instead of inverse of the large

matrix XTX, takes only O(np logn/ε2). Though leveraging method is not specifically designed

for LASSO, it could still work well on LASSO by assigning informative points larger sampling

weights.
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As showed in Section 2.3, both SRS and weighted sampling methods provide less accu-

rate estimators compare to IBOSS. Numeric studies presented in the section 5 is consistent to

theoretical conclusion.

2.4.2 Split and Conquer Approach

Except subdata-based methods, another important way to save computation time is parallel

computation. A split and conquer approach (Chen and Xie (2014)) randomly separates the

whole dataset into K subsets – X1, ...XK, fits penalized regression separately and gets estima-

tors β̂(1), ...β̂(K), then selects non-zero coefficients by a majority voting method – β(c)
j 6= 0 if∑K

k=1 I(β
(k)
j 6= 0) > w. Finally they calculate the combined estimator by a weighted average of

all subsets’ estimates:

β̂(c) = A

(
K∑
k=1

AT (XTkXk)A

)−1 K∑
k=1

ATXTkXkAβ̂
(k)

Âc
, where

Âc = {j : β̂
(c)
j 6= 0},

and entqs(A) = 1 if β̂(c)
q is s-th non-zero combined estimator, 0 otherwise.

(2.23)

This approach could save computation time by dimension reduction of large matrices as well

as taking advantage of parallel computation and is proved to provide estimator that asymptoti-

cally equivalent to the one obtained from analyzing the entire data„ under proper condition. In

Chen and Xie (2014), LARS algorithm is used to fit LASSO regression, where split and conquer

approach saves up to (1− 1/K(a−1))% computation time.

However, coordinate descent algorithm takes computation cost of O(npRiter), which is lower

order of n than LARS. Under this situation, subset the data by observations and fitting re-
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gression separately could not save the total cost – (time cost by each subset)× (# of subsets),

unless using parallel computation.

The split and conquer approach also takes extra computation time when combining estima-

tors, which requires computing inverse of a large matrix. This combination step will take much

more time than the partial sort of IBOSS. In section 5, simulation studies will demonstrate all

these differences.

2.5 Numeric Experiments

In this section, performance of IBOSS approach will be evaluated by simulation studies.

2.5.1 Simulation Studies

Data are generated from linear model yi = xiβ + εi, where εi, i = 1, ...n are IID N(0, 1)

errors. A series of different sample sizes, number of variables, and sample sizes are compared to

demonstrate performance of different methods.

• Full represents LASSO regression is performed on the full data.

• SPC(w/K) represents LASSO regression is performed on K subsets of data which covers

the full data, and then output a combined estimator of β. βj is set to a weighted average

from all the K estimation only when at least w of K votes it non-zero, otherwise βj is set

to 0.

• D-OPT represents LASSO regression is performed on the subset of data selected by IBOSS

approach, considering all variables, as showed in Algorithm 1.

• SIS(s) represents LASSO regression is performed on the subset of data selected by Correlated-

IBOSS approach, considering only s variables with largest correlation with y.
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• LEV represents LASSO regression is performed on the subset of data selected by leverage

sampling approach, where exact leveraging score is calculated with all variables.

• LEV(s) represents LASSO regression is performed on the subset of data selected by lever-

aging sampling approach, where leveraging score is calculated with only s variables with

largest correlation with y.

• ALEV(s) is similar to LEV(s) but leveraging score compuation is by approximate algo-

rithm by Drineas and et al.(2012)

• UNIF represent LASSO regression performed on simple random sample of data.

Estimation performance of all methods change as distribution of X changes. Thus, a series

of distributions are used to generate design matrix X (except xi0 = 1):

• xij ∼ N(0, 1), j = 1, ...p, stansdard normal distribution.

• xij ∼ log(N(0, 1)), j = 1, ...p, log standard normal distribution.

• xij ∼ t(df = 2), j = 1, ...p, student-t distribution with degree of freedom equals 2.

• xij = 0.25Z1 + 0.25Z2 + 0.25Z3 + 0.25Z4, where Z1 ∼ N(0, 1), Z2 ∼ t(2), Z3 ∼ t(3),

Z4 ∼ log(N(0, 1)), a mixed distribution.

In each simulation setting, true model and the full data set remains same across methods,

while subset of data varies by specific selection method. Each true model contains p∗ = b√pc+1

coefficients around |βj| ≈ c0
√

log(p)/k, and all other p − p∗ coefficients are set as 0. Here c0

is used to control strength of coefficient signals. c0 is fixed for each comparison over different

methods, but could change as distribution of X changes.
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TABLE VI: CPU times for various n, p, k(p < k), with X ∼ t(2) |βj| ≈ 0.04

(a) CPU Times for different p with n = 1× 105, k = 103

p p∗ Full LEV D-OPT UNIF
50 8 14.1496 4.8658 0.7844 0.3441
100 11 32.2745 11.0208 1.3930 0.4894
500 23 149.9013 83.7763 4.6486 4.0708

(b) CPU Times for different n with p = 500, k = 1× 103, p∗ = 23

n Full LEV D-OPT UNIF
1× 104 23.8785 15.2467 5.5209 5.1334
2× 104 41.9650 23.6748 4.9891 4.8876
4× 104 72.0395 39.3222 4.6527 4.5172
8× 104 122.0218 70.4733 4.8306 4.5680
1× 105 149.9013 83.7763 4.6486 4.0708

=
(c) CPU Times for different k with p = 500, n = 1× 105, p∗ = 23

k Full LEV D-OPT UNIF
1× 103 149.9013 83.7763 4.6486 4.0708
2× 103 145.0599 85.1205 6.4007 5.3895
3× 103 142.9826 85.6479 8.1086 7.2334
4× 103 142.4940 86.8168 9.6812 9.1039
5× 103 142.7946 88.5566 11.3987 10.6081

The sample size k and number of features p together determine the time cost of LASSO

regression. However, computation time as well as estimation accuracy turn out different for

p < k and p ≥ k. Based on this fact, we design simulation studies for both p < k and p ≥ k

under various true models.

All the simulation studies are replicated with 100 rounds under identical setup. Measure-

ments in the following section are calculated by averaging over the 100 runs.
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2.5.1.1 Computation Time Cost

Table VIa and VIb display CPU time of simulation studies with a fixed full data size n =

5 × 105 and subdata size k = 1000, true βj’s are generated with |βj| ≈ 0.04, covariates xij ∼

t(2). Here CPU time costs is total of subset selection and LASSO regression with 10-fold

cross-validation. This include sorting time in IBOSS and Correlated-IBOSS approach, time

of calculating leveraging score in leverage sampling, and time of sampling for leveraging and

uniform methods though short compare to other steps. As showed in Table VIa, D-optimal

IBOSS method take less computation time than leverage sampling under all settings. On the

other hand, calculating exact leveraging score could take longer time than fitting LASSO on the

full data when both n and p become large.

TABLE VII: CPU time by steps with fixed p = 500, p∗ = 23, X ∼ t(2), |βj| ≈ 0.04

(a) CPU Time of Subset Selection k = 103 from various n

n Full LEV D-OPT UNIF
1× 104 0 10.2395 1.1354 7e-04
2× 104 0 19.1324 1.3129 8e-04
4× 104 0 34.9096 1.5804 6e-04
8× 104 0 66.8099 2.2364 4e-04
1× 105 0 80.1346 2.3444 5e-04

(b) CPU Time of LASSO Regression k = 103 from various n

n Full LEV D-OPT UNIF
1× 104 23.8785 5.0072 4.3855 5.1327
2× 104 41.9650 4.5424 3.6762 4.8868
4× 104 72.0395 4.4126 3.0723 4.5166
8× 104 122.0218 3.6634 2.5942 4.5676
1× 105 149.9013 3.6417 2.3042 4.0703
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As discussed in earlier sections, all the subdata methods has two steps – first select the

subset of data, then fit LASSO regression on only the subset. If decompose the computation

time in Table VIb by steps we get Table VIIa and VIIb. From VIIb it is easy to find IBOSS

is faster in LASSO regression than a simple random sample. When n increases, IBOSS or

Correlated-IBOSS could form a more and more informative subset of data. LEV also achieves

subset of observations with larger leveraging score. This does not only reduce estimation error,

but also convergence time of coordinate descent algorithm. Under some conditions, Correlated-

IBOSS methods could take less total time than uniform sampling, as showed in Table VIIIb

when k = 4000 or k = 5000.

TABLE VIII: CPU time for different settings of n, k with a fixed p = 5000 (k ≤ p), |βj| ≈ 0.046.

(a) CPU Time for various n with p = 5000, p∗ = 71, k = 103, X ∼ t(2)

n Full LEV(250) ALEV(250) SIS(250) UNIF
1× 104 208.55 16.2168 14.4367 13.6195 13.8187
2× 104 284.19 17.6549 14.7977 13.8387 13.7551
4× 104 467.60 23.5983 16.7835 14.4863 12.8861
8× 104 798.21 31.1590 18.0643 14.9887 10.4271
1× 105 1167.33 36.3083 20.5351 16.5090 10.3943
(b) CPU Time for various k with p = 5000, p∗ = 71, n = 105, X ∼ t(2)

k Full LEV(250) ALEV(250) SIS(250) UNIF
1× 103 1167.33 36.3083 20.5351 16.5090 10.3943
2× 103 1154.58 69.1249 47.7578 38.0766 39.6638
3× 103 1158.22 87.6556 68.3982 56.1743 72.7373
4× 103 1148.87 121.3356 106.8118 91.5698 133.3515
5× 103 1146.25 170.0717 154.3360 145.8259 231.9527
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TABLE IX: CPU Time for Correlated-IBOSS with different δ,p = 5000, p∗ = 71, X ∼ t(2), |βj| ≈
0.046

(a) CPU Time for various k with fixed n = 105

k SIS(50) SIS(100) SIS(500)
1000 19.0043 19.5293 22.4619
2000 36.5566 36.0942 40.4671
3000 53.4856 54.2523 58.0976
4000 87.6361 87.1344 92.1289
5000 138.8667 143.2321 147.4062

(b) CPU Time for various n with fixed k = 103

n SIS(50) SIS(100) SIS(500)
1× 104 18.1241 18.1698 20.0508
2× 104 21.6211 22.4950 23.7975
4× 104 20.6223 20.8579 23.1811
8× 104 18.5796 19.1627 21.8485
1× 105 19.0043 19.5293 22.4619

When it comes to k ≤ p, D-optimal IBOSS approach is not applicable while Correlated-

IBOSS remains efficient. At the same time, calculating exact leveraging score with all variables

could take longer time than fitting LASSO regression on the whole data set itself for large p.

The approximate leverage sampling (Drineas et al. (2012)) reduces compuation time effectively

when n >> p. However, it is not applicable when p becomes large. To make a fair comparison

between the Correlated-IBOSS and leverage sampling approach, we only consider SIS(s), LEV(s)

and ALEV(s) for p = 5000, as displayed by Table VIIIa and VIIIb.

For Correlated-IBOSS approach, it is always important to pick a proper γ or number of

variables that need to be considered when selecting most informative observations. Consider

the fact that partial sorting actually takes a small amount of time compare to 10-fold cross

validation LASSO regression, it is expected to see little time cost increase when we increase

γ, as showed in Table IXa and IXb. Since time cost of increasing number of variables to be

considered is relatively small, choice of γ should be made based on optimize estimation accuracy

instead.
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TABLE X: CPU Time for various n with p = 5000, p∗ = 71, k = 103, X ∼ t(2)

n SPC(2/5) SPC(5/10) SPC(10/20) SIS(250) UNIF
1× 104 66.7558 39.4311 33.3666 13.6195 13.8187
2× 104 151.8053 83.0440 57.5328 13.8387 13.7551
4× 104 281.2509 165.2148 95.7990 14.4863 12.8861
8× 104 413.9332 281.5638 183.9389 14.9887 10.4271
1× 105 488.7727 296.1886 241.6676 16.5090 10.3943

In Table Table X, SPC(w/K) represents split and conquer approach performed with parallel

computation on K computer cores, while SIS(s) and UNIF do not use multi-cores. Here for split

and conquer approach, CPU time counts both the maximum of time cost by the K cores as well

as cost of combining the coefficients. All settings of Split and conquer approach take significant

longer time than Correlated-IBOSS or UNIF methods though they are calculated on K cores.

2.5.1.2 Estimation/Prediction Accuracy

To evaluate estimation accuracy we use mean square error (MSE) as an important measure-

ment. As is known, MSE is directly affected by number of observations. Thus, we calculate

MSE of a test data set with 1000 points instead of the training data set having various sample

size between different methods. MSE is calculated as

MSE =
1

ntest

ntest∑
i=1

(
Xtestβ− Xtestβ̂

LASSO
)2

(2.24)

All the test data sets are generated from same distribution to the training data sets.
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Figure Figure 1 and Figure Figure 2 display plots of log10(MSE) against various size of full

data n or subdata of size k respectively. D-optimal IBOSS approach has smaller MSE than

LEV and UNIF methods under all settings of n and k. This advantage is more significant

when distribution of X has heavier tails. As displayed in Figure Figure 1, MSE from D-optimal

IBOSS approach decreases when the full data size n increases though sample size k is always 103,

this is consistent to result of Lemma 2.3.5 and 2.3.6. UNIF approach on the other hand shows

little change as n increases. For LASSO regression, estimation performance is also influenced by

strength of coefficient signals, but relative difference of MSE across methods turns out consistent

no matter how large |βj| values are.

When fitting LASSO on the full data set, MSE decreases as n increases as expected. It is

noteworthy that performance of D-optimal IBOSS is commparable to some full data estimation.

For example, in Figure 1b a D-optiml IBOSS subset of size k = 103 from full data of size 105

outperforms estimator by a full data of size 104, using only around 1/10 of time (see Table VIb).

In Figure 2b, D-optimal IBOSS estimator’s MSE is only 1/10 of LEV estimator’s when k = 103.

Effect of increasing subdata size k is presented in Figure Figure 2. MSE by analyzing

full data remains the same as k changes and is plotted for comparison. It is obvious that all

subdata-based method improve as k increases, while D-optimal being the champion again.

When p >= k, relative difference of MSE is similar to p < k, as showed in Figure 3b.

Note that D-optimal approach considering all variables is not applicable anymore and LEV

takes a lot of time to compute leveraging score, here SIS(s) and LEV(s) select observations

or calculation leveraging score only with s variables having largest correlation with response
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Figure 1: Test MSE for increasing n with fixed k = 1000, p = 500, p∗ = 23

(a) X ∼ N(0, 1) (b) X ∼ t(2)

(c) X ∼ lognormal(0, 1) (d) X ∼Mixture
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Figure 2: Test MSE for increasing k with fixed n = 105, p = 500, p∗ = 23

(a) X ∼ N(0, 1) (b) X ∼ t(2)

(c) X ∼ lognormal(0, 1) (d) X ∼Mixture
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variable y. An experiment with s = 5% ∗ p = 250 is displayed in Figure 3a and 3b. Under the

same condition that considering the top correlated 250 variables, Correlated-IBOSS approach

outperforms leveraging, approximate leverage and uniform sampling methods. As k increases

to 5000 which is only 5% of the full data, takes around 1/10 of time, testing MSE of Correlated-

IBOSS is very close to the full data estimation result in Figure 3b.

As seen in Table IXa and IXa, change of γ has only tiny effect on total computation time.

Thus we only need to find a good choice of γ value to minimize estimation error. Intuitively,

performance should get to the optimal point when γp approaching p∗ from a larger value,

so that the variables to be considered in D-optimization step could cover the true variables

without wasting limited observations on false variables. Consistently, a comparison among

SIS(50), SIS(100), SIS(250), SIS(500) shows SIS(100) the winner when p∗ = 71 in Figure IXa

and IXb. SIS(50) turns out the worst one among the four choices of s = γp though still better

than UNIF. This simulation result suggests us that picking a conservative δ that could cover

most true variables is better choice than the other way.

As one important existed method dealing with big LASSO problem, a split and conquer

approach is also included in comparison. In the p = 5000, p∗ = 71 study, three different

settings of split and conquer approach are compared to Correlated-IBOSS method, which include

SPC(3/5) –letting K = 5,w = 3, SPC(5/10) for K = 10,w = 5, and SPC(10/20) for K = 20,w =

10. Split and conquer approach does not always beat other methods though it takes long time

even with parallel computation on K cores. For example, when k = 5000, it takes 145.8 seconds

on everage for SIS(250) to complete computation on a single core, 488.8 seconds for SPC(3/5)
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Figure 3: Test MSE for p = 5000 for various n and k, |βj| ≈ 0.046

(a) X ∼ t(2), k = 1000 (b) X ∼ t(2), n = 105

Figure 4: Test MSE for Correlated-IBOSS with different s = γp, p = 5000,|βj| ≈ 0.046

(a) X ∼ t(2), k = 1000 (b) X ∼ t(2), n = 105
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to complete computation on 5 cores. SIS(250) has slight smaller MSE as showed in (5b). On

the other hand, performance of split and conquer approach will also rely on size of each subset.

Take n = 104, K = 20 for example, size of each subset becomes 500 in this setting, where split

and conquer approach estimator has larger testing MSE than a UNIF estimation with 1000

points.

(a) Split and Conquer X ∼ t(2) (b) Split and Conquer X ∼ t(2)

In summary,

1. D-optimal and Correlated-IBOSS has decreasing prediction error with increasing n but

fixed sample size k. Which means, IBOSS approach could achieve more accurate result

with larger data even without increasing size of sub-sample. This is consistent to theoret-

ical conclusions derived in Section 2.3.
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2. Increasing sample size of all subdata appraoches could reduce prediction error.

3. Comparing between D-optimal and Correlated-IBOSS approach with various γ, we could

find larger γ showing advantage as n or k increases, which indicate choice of larger γ when

there are bigger data available or more computation resource available.

4. When data is large enough, Correlated-IBOSS approach could provide more accurate

estimation than a split and conquer which takes twice more time and 4 more cores to

finish computation.

2.5.1.3 Variable Selection Performance

Except prediction error, model selection is also important perspective for LASSO model.

We evalutate performanc of model selection by sensitivity(true postitive rate), specificity(false

negative rate) from simulation studies in this section.

From Table Table XI and Table Table XII, we could find:

1. Sensitivity compaison shows similar trend to estimation error. IBOSS approach with γp

close to true number p∗ (when γp > p∗) has largest sensitivity compare to others.

2. IBOSS approach has compromised performance when γp < p∗.

3. In terms of specificity, IBOSS approach is not as good as simple random sampling. This

is because D-optimal subset tend to select more variables with same number of points, as

showed in Table Table XIII.

4. All approaches have specificity on a high level because large p but small p∗.
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TABLE XI: p = 5000, Xj ∼ t(df = 2), εi ∼ N(0, 1), p∗ = 71, βj ≈ 0.046

(a) Sensitivity for increasing n with a fixed k = 1000

n FULL SIS(50) SIS(100) SIS(500) SIS(250) LEV(250) UNIF
1× 104 0.9997 0.8441 0.9872 0.9782 0.9831 0.9072 0.6194
2× 104 1.0000 0.8559 0.9990 0.9932 0.9973 0.9215 0.5873
4× 104 1.0000 0.8609 0.9999 0.9984 0.9997 0.9447 0.5981
8× 104 1.0000 0.8674 0.9999 0.9997 0.9997 0.9277 0.6071
1× 105 1.0000 0.8675 0.9999 0.9999 0.9999 0.9255 0.5833

(b) Specificity for increasing n with a fixed k = 1000

n FULL SIS(50) SIS(100) SIS(500) SIS(250) LEV(250) UNIF
1× 104 0.9860 0.9806 0.9739 0.9707 0.9709 0.9741 0.9895
2× 104 0.9887 0.9775 0.9719 0.9672 0.9708 0.9744 0.9880
4× 104 0.9925 0.9783 0.9728 0.9693 0.9643 0.9712 0.9898
8× 104 0.9955 0.9792 0.9734 0.9668 0.9703 0.9726 0.9876
1× 105 0.9945 0.9785 0.9711 0.9705 0.9673 0.9700 0.9886

TABLE XII: p = 5000, Xj ∼ t(df = 2), εi ∼ N(0, 1), p∗ = 71, βj ≈ 0.046

(a) Sensitivity for increasing k with a fixed n = 105 and p = 5000

k FULL SIS(50) SIS(100) SIS(500) SIS(250) LEV(250) UNIF
1× 103 1.0000 0.8675 0.9999 0.9999 0.9999 0.9255 0.5833
2× 103 1.0000 0.9735 0.9999 0.9999 0.9999 0.9987 0.9579
3× 103 1.0000 0.9937 1.0000 1.0000 1.0000 1.0000 0.9829
4× 103 1.0000 0.9984 1.0000 1.0000 1.0000 1.0000 0.9987
5× 103 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 0.9989

(b) Specificity for increasing k with a fixed n = 105 and p = 5000

k FULL SIS(50) SIS(100) SIS(500) SIS(250) LEV(250) UNIF
1× 103 0.9945 0.9785 0.9711 0.9673 0.9705 0.9700 0.9886
2× 103 0.9941 0.9785 0.9768 0.9681 0.9697 0.9528 0.9773
3× 103 0.9939 0.9773 0.9766 0.9680 0.9733 0.9536 0.9782
4× 103 0.9945 0.9782 0.9780 0.9691 0.9747 0.9554 0.9802
5× 103 0.9945 0.9808 0.9797 0.9709 0.9746 0.9626 0.9823
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TABLE XIII: Number of selected variables for increasing n with a fixed k = 1000

n FULL SIS(50) SIS(100) SIS(500) SIS(250) LEV(250) UNIF
1× 104 139.16 154.70 197.59 213.08 211.69 191.33 97.76
2× 104 125.84 170.51 208.31 231.36 213.45 190.77 99.70
4× 104 106.86 167.25 204.18 221.39 245.69 208.26 96.80
8× 104 92.15 163.34 201.22 233.86 216.23 199.95 103.01
1× 105 97.00 166.59 212.25 215.20 231.21 212.81 96.85

2.5.1.4 Simulation Tools and Other Settings

R package glmnet is used to complete LASSO regression. glmnet implement LASSO, ridge

and elastic net penalties for linear or generalized linear models. 10-fold cross validation is used

to select best λ.

In glmnet, LASSO regression will be fit for a sequence of λ values. λ’s are generated by

the following scheme (Friedman et al. (2010)). Start from the smallest value λmax for which

entire β̂ = 0. Select a minimum value λmin = ελmax and construct a sequence of C values of λ

decreasing from λmax to λmin on the log scale. Typical values are ε = 0.001 and C = 100. That

means no matter what data is like, ’cv.glmnet’ always implement LASSO regression based on

the random 10-folds with all the 100 λ values.

By large amount of observed simulation study, this scheme sometimes fails to catch the λ

that minimizing the cross-validation error, because cross-validation error decreases as λ decrease,

however fail to reach its minimum even after λ reaches λmin, or say λmin is not small enough

to provide a reasonable range of λ to choose from. It is hard to find appropriate value of λmin

before observing the data. Thus, we removed the simulations where any of this case happens,
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which counts less than 5% − 10% of all simulations. All simulation results displayed here are

averaged over outputs after removing the unconverged runs. For the removed runs, it does not

mean optimal estimator is not achievable. Minimum cross validation results could be easily

obtained by manually adjusting the sequence of λ.

2.6 Discussion

2.6.1 Limitations and Possible Extension

In Section 2.3, it is proved that IBOSS provide estimator has variance converging to 0 as

n →∞ with the restriction λn/
√
n → 0. It is challenging to get solid conclusion in close form

for general situation without this condition.

In this paper we mainly consider the simple case where all variables are numeric variables.

In real data, there could exist binary variables or categorical variable with multiple levels. How

to derive optiml design as guide to select informative observations could also be challenging.

Real data, unlike values randomly generated, could have a lot of repeated values. It could be

difficult to determine which observation to be included in the subdata after sorting. Subdata

selection could also vary if we change the order of variables to be sorted in the IBOSS algorithm.

On the other hand, the IBOSS approach for linear structure model is straightforward because

information matrix is only determined by the design matrix X. Under a non-linear model with

penalty term like LASSO, the problem could become much more complex to solve.
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.1 Appendix

Proof of Theorem 1.4.5 . We only give proof for p > 0. For p = 0, the proof is exactly the same

with φp replaced by − log |M(ξ)|. In Lemma 1.3.1, we proved

M(αξ1 + (1− α)ξ2) ≥ αM(ξ1) + (1− α)M(ξ2) (.25)

By the monotonicity and convexity of Ψp(M) (Fedorov and Hackl 1997, sec. 2.2), whereΦpM) =

(v−1Tr(M−p))1/p, we have

Φp(M((1− ε)ξ1 + εξ2)) =

(
1

v
Tr(M(αξ1 + (1− α)ξ2)

−p)

)1/p
≤
(
1

v
Tr([αM(ξ1) + (1− α)M(ξ2)]

−p)

)1/p
≤ α

(
1

v
Tr(M(ξ1)

−p)

)1/p
+ (1− α)

(
1

v
Tr(M(ξ2)

−p)

)1/p
= αΦp(M(ξ1)) + (1− α)Φp(M(ξ2))

(.26)

Φp(ξ) as function of ξ is convex.

Consider iteration t in the algorithm, since

x∗t = arg min
x∈χ

η(νx, ξ)

= arg min
x∈χ

∂Φp(M((1− α)ξ+ ανx))

∂α

∣∣∣∣
α=0

(.27)

and by (Equation .26) we have

Φp(ξ̃α,t) ≤ Φp(ξS(t)), ∀α ∈ [0, 1] (.28)
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where ξ̃α,t = (1 − α)ξS(t) + ανx∗t , then Φp(ξS(t+1)) ≤ Φp(ξ̃α,t) since ξS(t+1) is optimal with

support set S(t) ∪ x∗t .

Thus,

Φp(ξS(t+1)) ≤ Φp(ξS(t)) ≤ Φp(ξS(0)), ∀t ∈ N (.29)

Φp is a decreasing non-negative function of t, its convergence follows. Then we prove Φp(ξS(t))

actually converge to Φp(ξ∗).

Define Θ1 = {Φp(ξ) ≤ 2Φp(ξS(0))}. It is obvious that ξS(t) ∈ Θ1, ∀t, since Φp is decreasing

in t. For any α ∈ [0, 1/2],M(ξ̃t,α) ≥ (1−α)M(ξS(t))+αM(νx∗t ) ≥ 0.5M(ξS(t)), thus Φp(ξα,t) ≤

2Φp(ξS(t)) ≤ 2Φp(ξS(0)), ξα,t ∈ Θ1. Mξ is nonsingular for any ξ ∈ Θ1, thus Φp(αξ1+(1−α)ξ2)

is infinitely differentiable with respect to α for any α ∈ [0, 1/2]. So there exist K < ∞, such

that

sup

{
∂2Φp(αξ1 + (1− α)ξ2)

∂α2
: ξ1, ξ2 ∈ Θ1, α ∈ [0, 1/2]

}
= K (.30)

We shall show that

lim
t→∞Φp(ξS(t)) = Φp(ξ∗), (.31)
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where ξ∗ is optimal design. Otherwise, by Φp’s monotocity, ∃δ > 0 such that Φp(ξS(t)) −

Φp(ξ
∗) > δ,∀t. By (Equation .26), ∀ε ∈ [0, 1], we haveΦp((1−ε)ξS(t)+εξ

∗) ≤ (1−ε)Φp(ξS(t))+

εΦp(ξ
∗)

dΦp(ξS(t) , α, ξ
∗) =

∂Φp((1− α)ξS(t) + αξ
∗)

∂α

∣∣∣∣
α=0

= lim
ε→0 1ε(Φp(εξ∗ + (1− ε)ξS(t)) −Φp(ξS(t)))

≤ Φp(ξ∗) −Φp(ξS(t)) < −δ

(.32)

By definition of x∗t , we have η(νx∗t , ξS(t)) >
∫
η(x, ξS(t))ξ

∗dx and thus

dΦp(ξS(t) , α, νx∗t ) =
∂Φp((1− α)ξS(t) + ανx∗t )

∂α

∣∣∣∣
α=0

≥ δ (.33)

Expand Φp(ξ̃α,t) to a Taylor series in α and apply (Equation .30) and (Equation .33), we can

show that

Φp(ξ̃α,t)

=Φp(ξS(t)) − dΦp(ξS(t) , α, νx∗t )α

+
1

2
α2
∂2Φp(αξ1 + (1− α)ξ2)

∂α2

∣∣∣∣
α=α ′

≤ Φp(ξS(t)) − δα+
1

2
Kα2

(.34)

Let α = δ
K , by Φp(ξS(t+1)) ≤ Φp(ξ̃α,t) we can derive that for all t ≥ 0 we have

Φp(ξS(t+1)) −Φp(ξS(t)) ≤ −δ2/2K (.35)
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which is contrary to Φp ≥ 0 if let t → ∞. Similar arguments can be applied to the case when

K ≤ δ, in which we let α = 1.

Proof of Theorem 1.4.4. Under Model (Equation 1.5), the information matrix under within-

group design ξ can be written as

Mξ =Mξ(θ) =

(
∂F

∂θ

)T
V−1 ∂F

∂θ

where V−1 = c1W − c2WJnW, with W = diag (w1, ...wn). The covariance matrix for the

maximum likelihood estimator of θ can be written as M−1
ξ . Here we consider all designs such

that Mξ is nonsingular.

Let Ωi be a matrix whose (i, i)th element is 1 and (n,n)th element is -1, and 0 otherwise.

We have

Vi− =
∂V−1

∂wi
= c1Ωi − c2ΩiJnW − c2WJnΩi,

Vij− =
∂2V−1

∂wi∂wj
= −c2ΩiJnΩj − c2ΩjJnΩi,

Mi
ξ =

∂Mξ(θ)

∂wi
=

(
∂F

∂θ

)T
∂V−1

∂wi

∂F

∂θ
=

(
∂F

∂θ

)T
Vi−

∂F

∂θ
, and

M
ij
ξ =

∂2Mξ(θ)

∂wi∂wj
=

(
∂F

∂θ

)T
∂2V−1

∂wi∂wj

∂F

∂θ
=

(
∂F

∂θ

)T
Vij−

∂F

∂θ
.
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Thus by Lemma 15.10.5 of Harville (1997), for i = 1, ..., n− 1, we have

∂Σξ(θ)

∂wi
=
∂M−1

ξ (θ)

∂wi
= −M−1

ξ

∂Mξ(θ)

∂wi
M−1
ξ = −M−1

ξ M
i
ξM

−1
ξ and

∂2Σξ(θ)

∂wi∂wj
=M−1

ξ (Mj
ξM

−1
ξ M

i
ξ −M

ij
ξ +Mi

ξM
−1
ξ M

j
ξ)M

−1
ξ .

Notice that

∂2Tr(Σξ(θ))

∂wi∂wj
= Tr

(
∂2Σξ(θ)

∂wi∂wj

)
, ∀i, j = 1, ...n− 1.

Thus the (i, j)th element of H(w), the Hessian matrix of TrΣξ(θ), can be written as

H(w)[i, j] =Tr(M−1
ξ (Mj

ξM
−1
ξ M

i
ξ −M

ij
ξ +Mi

ξM
−1
ξ M

j
ξ)M

−1
ξ )

=2Tr(M−1
ξ M

i
ξM

−1
ξ M

j
ξM

−1
ξ ) + Tr(−M−1

ξ M
ij
ξM

−1
ξ )

=2Tr(M−1
ξ M

i
ξM

−1
ξ M

j
ξM

−1
ξ )

+ Tr(−M−1
ξ

(
∂F

∂θ

)T
(−c2ΩiJnΩj − c2ΩjJnΩi)

∂F

∂θ
M−1
ξ )

=2Tr(M−1
ξ M

i
ξM

−1
ξ M

j
ξM

−1
ξ ) + 2c2Tr(M

−1
ξ

(
∂F

∂θ

)T
ΩiJnΩj

∂F

∂θ
M−1
ξ ).

H(w) can be written as H(w) = H1(w) + c2H2(w), where c2 =
ρ

[1+ (k− 1)ρ](1− ρ)
> 0. This

means as long as both H1(w) and H2(w) are both nonnegative definite, H(w) will be nonnegative

definite.



71

SinceMξ is nonnegative definite, its inverseM−1
ξ is also nonnegative definite. ThusM−1

ξ can

be written asM−1
ξ = (M−1

ξ )1/2(M−1
ξ )1/2, and similarly Jn = J

1/2
n J

1/2
n . Let Ai =M−1

ξ M
i
ξ(M

−1
ξ )1/2.

By Proposition 1 in the appendix of Stufken and Yang (2012), it follows that H1(w) is non-

negative definite. H2(w) can be proved to be nonnegative definite by the similar way. Thus

H(w) = H1(w) + c2H2(w) is nonnegative definite.

Therefore, Tr(Σξ(θ)) attains its minimum at any of the critical points or at the boundary.

Proof of Theorem 1.4.3. The covariance matrix for the maximum likelihood estimator of θ has

the same format as that of Theorem 1.4.4. Here we also consider all designs such that Mξ is

nonsingular. It is equivalent to show that log |Σξ(θ)| is minimized at the critical points or at a

point on the boundary. It suffices to show that the Hessian matrix of log |Σξ(θ)| is nonnegative

definite. The (i, j)th entry of the Hessian matrix can be written as

H(w)D[i, j] =
∂2 log |Σξ(θ)|

∂wi∂wj

= Tr

(
Σ−1
ξ (θ)

∂2Σξ(θ)

∂wi∂wj
− Σ−1

ξ (θ)
∂Σξ(θ)

∂wi
Σ−1
ξ (θ)

∂Σξ(θ)

∂wj

)
.
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Similar to the proof of Theorem 1.4.4, we have

Tr

(
Σ−1
ξ (θ)

∂2Σξ(θ)

∂wi∂wj

)
=Tr(Σ

−1/2
ξ (θ)M−1

ξ M
j
ξM

−1
ξ M

i
ξM

−1
ξ Σ

−1/2
ξ (θ)

+ Σ
−1/2
ξ (θ)M−1

ξ M
i
ξM

−1
ξ M

j
ξM

−1
ξ Σ

−1/2
ξ (θ)

+ 2c2Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ))

=2Tr
(
Σ
−1/2
ξ (θ)M−1

ξ M
j
ξM

−1
ξ M

i
ξM

−1
ξ Σ

−1/2
ξ (θ)

)
+ 2c2Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)

and

Tr(Σ−1
ξ (θ)

∂Σξ(θ)

∂wi
Σ−1
ξ (θ)

∂Σξ(θ)

∂wj
) =Tr(Σ−1

ξ (θ)M−1
ξ M

i
ξM

−1
ξ Σ

−1
ξ (θ)M−1

ξ M
j
ξM

−1
ξ

=Tr(Σ
−1/2
ξ (θ)M−1

ξ M
j
ξM

−1
ξ M

i
ξM

−1
ξ Σ

−1/2
ξ (θ)).

Therefore

∂2 (log |Σξ(θ)|)

∂wi∂wj

=Tr
(
Σ
−1/2
ξ (θ)M−1

ξ M
i
ξM

−1
ξ M

j
ξM

−1
ξ Σ

−1/2
ξ (θ)

)
+ 2c2Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)
.
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Let H(w)D = H(w)D1 + 2c2H(w)D2, where

H(w)D1[i, j] = Tr
(
Σ
−1/2
ξ (θ)M−1

ξ M
i
ξM

−1
ξ M

j
ξM

−1
ξ Σ

−1/2
ξ (θ)

)
and

H(w)D2[i, j] = Tr

(
Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJnΩj

(
∂F

∂θ

)
M−1
ξ Σ

−1/2
ξ (θ)

)
.

(.36)

Let Ai = Σ
−1/2
ξ (θ)M−1

ξ M
i
ξ(M

−1
ξ )1/2, by Proposition 1 in the appendix of Stufken and Yang

(2012), it follows that H(w)D1 is nonnegative definite. Similarly, let Ai =

Σ
−1/2
ξ (θ)M−1

ξ

(
∂F

∂θ

)T
ΩiJ

1/2
n , we can show thatH(w)D2 is also nonnegative definite. ThusH(w)D

is nonnegative definite. Consequently, |Σξ(θ)| is minimized at any of the critical points or at a

point on the boundary.

Proof of Theorem 1.4.3 Remark. The (i, j)th entry of the corresponding Hessian matrix can be

written as

∂2 (log |Σξ(η(θ))|)

∂wi∂wj

=Tr

(
Σ−1/2

(
∂η

∂θ

)
M−
ξ

{
Mi
ξ(M

−
ξ )
1/2P⊥

(
(∂η/∂θ)(M−

ξ )
1/2
)
(M−

ξ )
1/2M

j
ξ

}
M−
ξ

(
∂η

∂θ

)T
Σ−1/2

)

+ Tr

(
Σ−1/2

(
∂η

∂θ

)
M−
ξM

i
ξM

−
ξM

j
ξMξ

(
∂η

∂θ

)T
Σ−1/2

)

where P⊥
(
(∂η/∂θ)(M−

ξ )
1/2
)
= In−(M−

ξ )
1/2

(
∂η

∂θ

)T
Σ−1
ξ (η(θ))

(
∂η

∂θ

)
(M−

ξ )
1/2 is projection ma-

trix onto the complement of column space of
∂η

∂θ
(M−

ξ )
1/2.

Let

Ai = Σξ(θ)
−1/2

(
∂η

∂θ

)
M−
ξM

i
ξ(M

−
ξ )
1/2
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and

Ai = Σξ(θ)
−1/2

(
∂η

∂θ

)
M−
ξM

i
ξ(M

−
ξ )
1/2P⊥

(
(∂η/∂θ)(M−

ξ )
1/2
)

respectively, by Proposition 1 in the appendix of Stufken and Yang (2012), it follows that the

first part and the second part of the Hessian matrix are nonnegative definite respectively. Thus

the conclusion follows.
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