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SUMMARY 

Hot Flashes (HFs) occur in up to 75% of women transitioning through menopause.  

Previous research suggests objective HFs may shift the balance between the calming branch 

(parasympathetic) and the ‘fight or flight’ branch (sympathetic) of the autonomic nervous system 

(ANS) through withdrawal of calming activity.  There is limited evidence about the effect of HFs 

on the ‘fight or flight’ branch of the ANS. Independent of ANS changes, HFs are associated with 

decreased cardiovascular health (CVH). The link between CVH and the physiology of HFs is not 

understood. Here we investigate differences in ANS function between women with frequent or 

infrequent self-reported and objectively detected HFs.   

Participants included 40 midlife women (Mean age = 52.1) from a parent study 

investigating associations between menopausal symptoms and cognition: half reported frequent 

HFs (>30/ week) and half reported infrequent HFs (<7/ week).  HFs were assessed with objective 

monitoring and subjective reporting.  Parasympathetic activity was assessed with variability in 

heart rate (HRV), and sympathetic activity was measured using salivary alpha-amylase (sAA).   

Results: HRV changed across body position (p<0.05) but not between self-reported or objective 

HF group (p’s>0.40). At thirty minutes after wake, women with objective HFs had an attenuated 

awakening response of sAA compared to women without objective HFs (β=0.71, SE= 0.32, 

p=0.03, d=0.73). 

Our findings support a state shift in autonomic balance towards increased ‘fight or flight’ 

activation with objective, but not self-reported, HFs.  Understanding the link between ANS 

activity and the physiology of HFs may give insight for reducing cardiovascular disease risk and 

treating HFs. 
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I. INTRODUCTION 

The primary aim of this project is to investigate potential differences in autonomic nervous 

system (ANS) function (sympathetic and parasympathetic) between women who are 

experiencing subjective and objective hot flashes (HFs).  A secondary aim of this study is to 

investigate if psychological outcomes such as memory functioning and sleep quality are related 

to any observed differences in ANS function.   

There is limited evidence about the effect of HFs on the ‘fight or flight’ branch of the 

ANS. Previous research suggests objective HFs may shift the balance between the calming 

branch (parasympathetic) and the ‘fight or flight’ branch (sympathetic) of the ANS through 

withdrawal of calming activity, causing heightened activity within the sympathetic branch 

(Matsukawa, Sugiyama, Watanabe, Kobayashi, & Mano, 1998; Narkiewicz et al., 2005; 

Simonian, Delaleu, Caraty, & Herbison, 1998).  HFs have been linked with transient increases in 

one of the main neurotransmitters of the ANS, norepinephrine (Cignarelli et al., 1989; Freedman, 

1998; Kronenberg, Cote, Linkie, Dyrenfurth, & Downey, 1984; Kronenberg & Downey, 1987). 

The shift in the balance between sympathetic and parasympathetic drive may be contributing to 

an increased risk for cardiovascular disease and may also be the link between vasomotor 

symptoms and cognitive dysfunction and other psychological outcomes in menopausal women.  

Compared to subjective HFs, objective HFs show a stronger relationship with physiological and 

cognitive outcomes. Specifically, only objective HFs, but not subjective HFs, are associated with 

altered heart rate variability (HRV) and memory dysfunction in midlife women (Maki et al., 

2008; Freedman et al., 2011; Thurston et al., 2010, 2012). The link between increased risk for 

cardiovascular disease and cognitive dysfunction and the physiology of HFs is not well 
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understood. Here we investigate differences in ANS function between women with frequent or 

infrequent self-reported and objectively detected HFs. 

This investigation aims to compare markers of ANS function in women with infrequent 

versus frequent HFs; specifically, utilizing HRV as a marker for parasympathetic nervous system 

activity and salivary alpha-amylase (sAA) as a marker of sympathetic nervous system activity.  

HRV has been used within research as a marker of parasympathetic activity; however, it is also 

associated with clinical outcomes of cardiovascular disease and mortality (Bigger et al., 1992; 

Hillebrand et al., 2013; La Rovere, Bigger, Marcus, Mortara, & Schwartz, 1998; Wolf, Varigos, 

Hunt, & Sloman, 1978). The use of sAA as a marker of sympathetic activity is a developing 

research technique, but sympathetic nervous system activity is integral in the understanding of 

the etiology of HFs (Freedman, Kruger, & Wasson, 2011; Thurston, Christie, & Matthews, 2010, 

2012) and their potential effects on health and well-being.  Additional exploratory analyses 

focused on the extent to which vasomotor-associated changes in ANS activity account for 

differences in psychological outcomes between these groups of midlife women.   
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II. SCIENTIFIC BACKGROUND 

HFs occur in up to 75% of women transitioning through menopause (Kronenberg, 1990).  

HFs decrease quality of life (Woods & Mitchell, 2011), and are associated with negative health 

outcomes such as poorer cardiovascular health, (Ozkaya et al., 2011; Thurston et al., 2011), 

depressive and anxiety symptoms (Freeman, Sammel, & Lin, 2009), and sleep disturbances 

(Brown, Gallicchio, Flaws, & Tracy, 2009; Kravitz et al., 2008; Sowers et al., 2008).  We 

recently reported that frequent physiological HFs, or HFs detected using an objective monitor, 

predict poorer memory in menopausal women, but subjective HFs did not. Specifically, 

physiological HFs during sleeping hours was the best predictor of memory dysfunction. These 

findings point to the utility of objective measurement of HFs when understanding the 

relationship between HFs and other symptoms. I extended this area of inquiry to understand the 

relationship between HFs and ANS function in women transitioning through the menopause. 

It has long been thought that the ANS is involved in vasomotor symptom physiology 

(Ginsburg, Swinhoe, & O'Reilly, 1981).  Women with vasomotor symptoms show evidence of an 

imbalance between sympathetic and parasympathetic nervous system activity.  Specifically, 

symptomatic midlife women have elevated basal blood pressure, suggestive of increased 

sympathetic drive (Gallicchio, Miller, Zacur, & Flaws, 2010; Tuomikoski, Haapalahti, Sarna, 

Ylikorkala, & Mikkola, 2010; Tuomikoski, Haapalahti, Ylikorkala, & Mikkola, 2010); however, 

each HF is associated with a transient decrease in heart rate and blood pressure (Germaine & 

Freedman, 1984).  Measures of HRV also suggest an imbalance between the sympathetic and 

parasympathetic nervous system during a HF (Ford, Slade, & Butler, 2004; Freedman et al., 

2011; Thurston et al., 2010, 2012). Finally, there are transient increases in serum epinephrine and 
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decreases in serum norepinephrine following a HF (Cignarelli et al., 1989; Kronenberg et al., 

1984; Swartzman, Edelberg, & Kemmann, 1990).   

i. Menopause 

The menopausal transition is characterized by the gradual cessation of ovarian functioning.  

Currently in the United States the average age of menopause is 51 (te Velde & Pearson, 2002).  

Decline in ovarian function results in an erratic pattern of circulating sex steroid hormones, 

including estrogen and progesterone, during the perimenopausal stage and consistently low 

levels during the postmenopausal stage. During the reproductive years in a woman’s life, the 

menstrual cycle is characterized by cyclical changes in hormones which control ovulation.  The 

menstrual cycle can be divided into three distinct phases: the follicular phase, ovulation and the 

luteal phase.  The follicular phase begins on the first day of menstruation and is characterized by 

relatively low levels of both estrogen and progesterone. During the late part of the follicular 

phase, levels of follicular stimulating hormone (FSH) rise and cause maturation of follicles 

within the ovary.  These follicles begin to produce increasing amounts of estradiol which 

eventually results in a surge of luteinizing hormone (LH).  This surge in LH causes the most 

developed follicle to mature into an oocyte.  During ovulation, levels of both FSH and LH drop 

as the corpus luteum begins to produce increasing levels of progesterone and moderate levels of 

estradiol.  During the luteal phase, if fertilization of the oocyte does not occur, levels of FSH and 

LH will drop below what is required to maintain the corpus luteum. This disintegration will 

cause levels of progesterone and estrogen to decline, prompting the onset of menstruation.  

During the menopausal transition, the disruption of this normal feedback loop within the 

hypothalamic-pituitary-gonadal (HPG) axis causes variable levels of both FSH and estrogen 

(Burger, 1994).  During the transition the number of follicles in reserve within the ovary 
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dwindles.  This decrease in follicles disrupts the normal feedback cycle which normally 

decreases FSH levels.  The result is high levels of FSH in women as they become 

postmenopausal, as increasing levels of FSH are required to cause the pre-ovulatory surge in 

estrogen levels from the remaining follicles.  

The Stages of Reproductive Aging Workshop (STRAW) categorized the criteria for staging 

reproductive aging (Soules et al., 2001).  The continued development of these categories is based 

upon research on the cessation of the menstrual cycle, fertility, and the associated changes in the 

hypothalamus, ovaries, and consequent bleeding patterns. Both workshops concluded that 

patterns of menstruation are the best predictors of menopausal status (Harlow et al., 2012; Soules 

et al., 2001).  The most recent workshop has segmented the menopausal transition into three 

broad categories: reproductive, menopausal transition, and postmenopause (Harlow et al., 2012).  

The reproductive stage is the time between menarche through midlife when ovarian function 

begins to decline.  This stage is characterized by women having regular menstrual cycles.  In the 

late reproductive stage there are declines in fertility accompanied by changes in menstrual flow.  

Specifically, menstrual flow can become heavier, or lighter and last for more or less time when 

compared to menstrual flow during the reproductive stage.  The menopausal transition includes 

three subcategories: early perimenopause, late perimenopause and the first year of 

postmenopause.  Early perimenopause is defined as a persistent change in cycle length by at least 

seven days, across two or more consecutive cycles.  Late perimenopause is defined by 

amenorrhea, or lack of menstruation, for at least sixty days.  Amenorrhea of twelve consecutive 

months is the transition point into the early postmenopausal stage.  The distinction of being post-

menopausal can only be made after the transition has passed; thus it is included within the 

menopausal transition category.  Early postmenopause includes the first six years following the 
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final menstrual period, with late postmenopause including the rest of the lifespan (Harlow et al., 

2012).   

The menopausal transition manifests in different symptoms, which are often attributed to the 

decline in ovarian hormones.  In the Study of Women’s Health Across the Nation (SWAN), the 

most common menopausal symptoms were vasomotor in nature, including HFs and night sweats 

(Gold et al., 2000; Kronenberg, 1990). Other common menopausal complaints of women include 

changes in cognitive functioning (Woods, Mitchell, & Adams, 2000), sleep disturbances (Baker, 

Simpson, & Dawson, 1997; Brown et al., 2009; Kravitz et al., 2008; Sowers et al., 2008), and 

mood changes (Freeman et al., 2009; Freeman et al., 2005).  

ii. HFs 

HFs are the most frequently reported and recognizable symptom of the menopausal transition 

(Gold et al., 2000).  As many as 75% of women experience HFs during the menopause transition, 

and 15% of symptomatic women report severe HFs (Gold et al., 2000; Kronenberg, 1990). HFs 

are described as intense sensations of heat though the neck, chest, and face often accompanied by 

sweating.  Vasomotor symptoms include both HFs and night sweats, intense sweating episodes 

that occur during sleep.  In addition to physical sensations, HFs are also associated with 

psychological symptoms, such as feelings of anxiety and distress (Freedman, 2000).  The 

physical and mental symptoms can range in frequency, intensity and duration (Kronenberg, 

1994).  HFs have been associated with decreased quality of life (Woods & Mitchell, 2011), and 

are linked with negative health outcomes such as poorer cardiovascular health, (Ozkaya et al., 

2011; Thurston et al., 2011), increased depressive and anxiety symptoms (Freeman et al., 2009), 

and sleep disturbances (Brown et al., 2009; Erlik et al., 1981; Kravitz et al., 2008; Sowers et al., 

2008).   
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The frequency of HFs peaks during the perimenopause into the early postmenopausal period; 

however, some women may experience HFs into their eighties (Kronenberg, 1990).  Women also 

under-report the number of HFs they are having by as much as 60% (Maki et al., 2008a).  A 

recent report from the Seattle Midlife Women’s Health Study has linked subjective HFs to 

reported workplace interference (Woods & Mitchell, 2011).  This may be particularly relevant 

due to increasing career and personal life demands that are concurrent with the peak of 

vasomotor symptoms (Woods & Mitchell, 2011).  In addition to changes in physical health, 

perception of health is one of the largest predictors of workplace interference in midlife women 

(Woods & Mitchell, 2011).   

 The Food and Drug Administration currently considers self-reported HFs the gold 

standard for clinical trials; however, recent advances in vasomotor symptom research have 

developed an objective way to measure HFs using ambulatory skin conductance monitors.  These 

monitors have high consistency within monitoring sessions, show few false negatives and only 

detect HFs in symptomatic women (Carpenter, Andrykowski, Freedman, & Munn, 1999; 

Freedman, Norton, Woodward, & Cornelissen, 1995).  Moreover, they show high correlation 

with subjective HFs in laboratory settings.  Sternal skin conductance HF monitors are highly 

reliable with up to 95% sensitivity in a laboratory setting (Freedman, 1989).  In ambulatory 

settings, women detect between 57% and 64% of daytime physiological HFs, and 22% to 50% of 

nighttime HFs (Carpenter, Monahan, & Azzouz, 2004; Maki et al., 2008a).  Objective HF 

monitors record skin conductance on the sternum of symptomatic women (Freedman, 1989).  

Skin conductance during HFs has a very distinct waveform that can be easily distinguished from 

sweating due to heat or activity (Figure 1).  The standard waveform for a HF is a rapid rise in 

skin conductance followed by a gradual taper.  Conversely, waveforms caused by sweating from 
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heat or exertion have very rapid transitions between high and low levels of skin conductance, 

which appear as a jagged line. This distinction in the waveform between HFs and sweating 

through visual inspection allows for more precision in identifying HFs from unrelated sweating.  

While large epidemiological studies have not yet adopted this technology, their findings have 

directed the research looking into mechanisms by which HFs can affect quality of life and 

general health.  Research utilizing the objective HF monitors may have higher sensitivity at 

detecting events which are correlated with physiological changes, such as changes in mental 

abilities (Maki et al., 2008a) or cardiovascular health (Freedman et al., 2011; Thurston et al., 

2010, 2012). 
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Figure 1. Graphical Output from the Biolog Hot Flash Monitor Showing the Distinction between 

Representative Hot Flashes in the Left Panel and Sweating in the Right Panel. 

Hot Flashes                                              Sweating 

  
Note: The green lines represent detection of the 2.0 mmho threshold by the computer software.  

Black lines topped with “EM6” are even markers where the subject demarcated that they were 

experiencing a hot flash. 
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1. The Neurophysiology of HFs 

The hypothalamus, and specifically the preoptic area, are the main brain regions tasked 

with regulating body temperature (Dimicco & Zaretsky, 2007).  Humans are homeothermic, 

meaning they regulate body temperature at a fairly constant level through both changes in 

metabolism and behavioral modification (Dimicco & Zaretsky, 2007; Romanovsky, 2007).  The 

control of heat dissipation is mainly modulated by warm-sensitive receptors in the medial 

preoptic area.  These receptors signal that vasodilation and sweating are needed to cool the body.  

Subsequently, the signal is transduced through the ventral tegmental area and periaqueductal 

grey and the peripheral vascular response is modulated though cholinergic projections via the 

sympathetic nervous system, specifically the stellate ganglion (Nagashima, Nakai, Tanaka, & 

Kanosue, 2000).  Acetylcholine acts at the level of sweat glands to rapidly cool the body 

(Kazuyuki, Hosono, Zhang, & Chen, 1998).   

Perception of temperature is regulated mainly through the insular cortex.  Classically, the 

insula is cited as a sensory perception area of the brain.  It also has a large number of inputs from 

the thalamus (Nieuwenhuys, 2012).  Recent neuroimaging data has suggested the insula may 

play a role in detection and awareness of thermoregulatory events, including HFs.  Bilateral 

insula fMRI activity was negatively correlated with subjective temperature ratings to 

increasingly cold stimuli in a group of ten adults (Craig, Chen, Bandy & Reiman, 2000). 

Measurement of galvanic skin conductance, a proxy of sympathetic nervous system arousal, in 

healthy adults has also been linked with increased insular cortex activity during a decision 

making task.  During a HF, women have increases in blood oxygen level dependent (BOLD) 

signal in the insula (Freedman, Benton, Genik, & Graydon, 2006).  Furthermore, baseline 

metabolism in the insula and hypothalamus has been shown to be useful in predicting which 
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women may develop HFs.  Specifically, baseline levels of glucose metabolism in the 

hypothalamus and insula were lower in women who developed HFs after pharmacological 

suppression of ovarian hormones with leuprolide acetate therapy (Joffe et al., 2012).  These data 

suggest that the insula activity may differ in women who do and do not develop HFs as they 

transition through menopause.   

Many hormones and neurotransmitters have been implicated in the physiology of HFs.  

The onset of HFs occur at times of estrogen withdrawal, caused by natural or surgical menopause 

and pharmacological suppression of HPG axis function; however HFs are not correlated with 

estrogen levels.  Estrogen has been shown to modulate the catecholamine levels within the 

hypothalamus, with the largest effect at the level of receptors (Etgen, Ansonoff, & Quesada, 

2001).  Specifically, estrogen induces down regulation of the presynaptic norepinephrine α2A/D 

autoreceptor and upregulation of the α1B postsynaptic receptor. Together, these alterations 

increase norepinephrine signaling by reducing negative feedback, and increasing postsynaptic 

availability of receptor biding sites (Karkanias, Ansonoff, & Etgen, 1996; Karkanias & Etgen, 

1993).  Further, catecholamines appear to be integral to the etiology of vasomotor symptoms.  

Before the onset of a HF, serum levels of epinephrine increase, while norepinephrine levels 

decreases (Cignarelli et al., 1989; Kronenberg et al., 1984; Kronenberg & Downey, 1987).  

Norepinephrine metabolites also become transiently elevated in plasma during HFs (Freedman, 

1998).   

Vasomotor symptoms are potentiated through activation of α2-adrenergic receptors and 

attenuated through blocking the same receptors.  Administration of the α2-adrenergic antagonist, 

yohimbine, significantly increased the number of HFs recorded in symptomatic midlife 

compared to placebo administration (Freedman, Woodward, & Sabharwal, 1990).   In addition, 
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administration of the α2-adrenergic agonist clonidine significantly increased the ambient 

temperature at which a HF would occur in symptomatic women (Freedman et al., 1990; Laufer, 

Erlik, Meldrum, & Judd, 1982; Tulandi, Lal, & Kinch, 1983).  Notably, HFs were not induced in 

a group of midlife asymptomatic women with the administration or either yohimbine or 

clonidine (Freedman, 1998).  The data suggest an underlying difference in α2-adrenergic 

signaling in women who experience vasomotor symptoms. There is additional evidence that the 

sympathetic nervous system is involved in HF etiology as indirect manipulation of the 

sympathetic nervous system through unilateral stellate ganglion block has been shown to reduce 

vasomotor frequency (Haest et al., 2012; Lipov & Kelzenberg, 2011; Lipov, Lipov, & Stark, 

2005; Lipov et al., 2007; Pachman et al., 2011; Pachman, Jones, & Loprinzi, 2010).   

iii. Menopause, HFs and Psychological Outcomes 

HFs are associated with many negative health outcomes; however, women often present to 

their physician with complaints of vasomotor symptoms, sleep problems and memory 

dysfunction during menopause (Woods et al., 2000).  Throughout the course of the menopausal 

transition, circulating levels of estrogens decrease dramatically, which has been implicated as a 

possible cause of changes in cognition, in particular memory (Maki & Hogervorst, 2003).  

Findings from the SWAN revealed a significant increase in complaints of “forgetfulness” when 

comparing women in the premenopausal stage (31%) to the perimenopausal (41%) and 

postmenopausal (44%) stages (Gold et al., 2000).  In the Seattle Midlife Women’s Health Study 

(SWMHS), 62% of women noted an undesirable change in memory functioning across the 

menopausal transition, and they most often attributed the decline in memory to stress, health 

issues, and aging (Woods et al., 2000).  A follow-up study from this cohort revealed that 

forgetfulness related to difficulty concentrating, increases in follicle stimulating hormone (FSH), 
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and HFs (Woods et al., 2008).  Rates of memory complaints in midlife women are high cross-

culturally; in the Decisions at Menopause Study, over 45% of a sample of women living in 

Massachusetts, Madrid, and Beirut complained of memory loss, in addition to 34% of women 

living in Rabat, Morocco (Obermeyer & Sievert, 2007).   

There is also evidence that subjective memory complaints relate to objective cognitive 

dysfunction in midlife women.  A recent study in midlife women (n = 68) with frequent HFs 

found a link between current subjective memory complaints, measured by the Memory 

Functioning Questionnaire (MFQ)and memory performance on a list learning task (Drogos et al., 

2013).  Generally, mood and attention are related to memory complaints in midlife women 

(Drogos et al., 2013; Schaafsma, Homewood, & Taylor, 2009; Weber & Mapstone, 2009; 

Weber, Mapstone, Staskiewicz, & Maki, 2012); however there is conflicting evidence if 

objective memory performance is related to subjective complaints. Taken together, these data 

suggest that women can accurately predict changes in their memory abilities; however mood and 

menopausal symptoms may cause women to overestimate their cognitive dysfunction. 

A relationship between cognitive performance and HFs was not demonstrated until objective 

measurement of HFs was incorporated into cognitive studies.  Initial studies did not find any 

correlation between subjective HFs and cognitive performance (Ford et al., 2004; LeBlanc, 

Neiss, Carello, Samuels, & Janowsky, 2007; Polo-Kantola & Erkkola, 2004).  A small 

observational study of 29 midlife women investigated the effects of objective and subjective HFs 

on cognition (Maki et al., 2008a).  Objective HFs, but not subjective HFs, had a significant and 

negative relationship with verbal memory performance.  Additionally, objective HFs during 

sleep were the strongest predictor of verbal memory performance when controlling for subjective 

sleep complaints.  There was a significant and positive relationship between daytime objective 
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HFs and verbal fluency, and a trend for a positive relationship between measures of attention and 

objective HFs (Maki et al., 2008a).  

Sleep complaints are common during the menopausal transition.  Our previous research has 

suggested that physiological HFs during sleeping hours were the best predictor of memory 

dysfunction.  Furthermore, subjective sleep quality did not change the relationship between 

nighttime HFs and memory.  Sleep disruptions are commonly associated with decreases in 

memory performance (Backhaus et al., 2006), however our data suggests that objective HFs, not 

subjective sleep disturbance, was the cause of memory dysfunction in midlife women with 

moderate to severe vasomotor symptoms.   

There is some evidence that self-reported HFs are associated with decreases in subjective 

sleep quality.  Large epidemiological studies report that sleep disruption caused by HFs may be a 

contributing factor to sleep difficulties during the menopausal transition.  Specifically, the 

frequency and severity of vasomotor symptoms were positively associated with subjective 

reports of the amount of time to fall asleep, ability to stay asleep, and the number of nighttime or 

early morning awakenings (Woods & Mitchell, 2010).  In the SWAN, women with more 

frequent vasomotor symptoms were 4-5 times more likely to experience sleep problems 

compared with women without vasomotor symptoms (Kravitz et al., 2008).  The largest sleep 

study in menopausal women to date, the Wisconsin Sleep Cohort Study (n = 589) found similar 

results.  The presence of subjective HFs was associated with more dissatisfaction with sleep 

quality and daytime sleepiness; however, no differences were seen on PSG outcomes between 

the women who were and were not reporting HFs (Young, Rabago, Zgierska, Austin, & Laurel, 

2003).  Despite the lack of evidence linking objective sleep disruptions to vasomotor symptoms, 

there is a large body of evidence suggesting HFs may disrupt sleep structure.  Disruptions in 
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sleep structure, or objective sleep quality may potentially be the mechanism of memory 

dysfunction in women experiencing frequent objective vasomotor symptoms.   

Some of the earliest evidence that HFs were related to sleep came from a small 

observational study (n=19) which utilized polysomnography (PSG) and concurrently measured 

objective HFs.  HFs during the night disrupted the normal progression of the sleep stages with 

each vasomotor event.  This resulted in lower sleep efficiency and more time spent in slow wave 

sleep, but less time in REM sleep (Woodward & Freedman, 1994).  Similarly, studies using PSG 

and objective HF monitoring found that awakenings are occurring before the onset of a HF 

(Freedman & Roehrs, 2004, 2006).  The initial study (n= 19) investigated if HFs and awakenings 

were occurring simultaneously – or at different parts of the night.  Most awakenings were 

occurring within the two 2 minutes before the onset of a HF and within lighter stages of non-

REM sleep (Freedman & Roehrs, 2004).  The follow-up to this study investigated if sleep 

disturbances of nighttime HFs were affected by ambient temperature and time of night (first 

versus second half of sleep).  It was found that during the first half of the night, awakenings and 

changes in sleep stage occurred in the five minutes before a HF.  During the second half of the 

night, when REM sleep is more prominent, awakenings were more frequently occurring within 

the five minutes after the HF.  These data were taken as evidence that the suppression of 

thermoregulation during REM sleep may cause a reduction of HFs during the latter half of the 

night (Freedman & Roehrs, 2006).  Furthermore, this was taken as evidence that the awakenings 

(and potentially the flashes themselves) were being caused though sympathetic arousal 

(Freedman, 1998; Freedman & Roehrs, 2006). 
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b. ANS 

There is a scarcity of research focusing on the effect of menopause on the ANS; however, it 

has long been thought that the ANS is involved in vasomotor symptom physiology (Ginsburg et 

al., 1981).  The transient increases in norepinephrine and epinephrine that occur after a HF may 

be a mechanism by which cognitive dysfunction or sleep disturbances are occurring in women 

who are experiencing vasomotor symptoms.  In addition, the changes in ANS function associated 

with menopause and HFs can increase risk of cardiovascular disease.  Recent research has shown 

a positive relationship between cardiovascular risk factors and cognitive impairment [Reviewed 

in: (Nash & Fillit, 2006)]. There is limited research directly investigating the effects of 

menopause and HFs on ANS function; however, there is a small body of research linking 

vasomotor symptoms to disrupted HRV (Hoikkala et al., 2010; Thurston et al., 2010, 2012).  To 

our knowledge, there is no research investigating the effects of menopause or vasomotor 

symptoms on sAA activity.  There is some evidence that crude, but clinically relevant, 

cardiovascular markers of sympathetic nervous system activity, like heart rate and blood 

pressure, show changes associated with menopause and vasomotor symptoms (Matsukawa et al., 

1998; Owens, Stoney, & Matthews, 1993; Staessen, Bulpitt, Fagard, Lijnen, & Amery, 1989; 

Tuomikoski, Haapalahti, Sarna, et al., 2010; Tuomikoski, Haapalahti, Ylikorkala, et al., 2010; 

Zanchetti et al., 2005).   

i. Effects of Menopause on the ANS: Focus on the Cardiovascular System  

The ANS controls cardiovascular function through a balance between the excitatory 

sympathetic nervous system and the calming parasympathetic nervous system. Often, 

cardiovascular measurements like blood pressure, heart rate and HRV are used as a proxy 

measurement for sympathetic and parasympathetic activity.  HRV, specifically high frequency 
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HRV, is a measure of parasympathetic input to the heart.   Decreases in HRV parameters have 

been associated with increased risk of mortality associated with cardiovascular disease, 

confirming the validity of the measure (Bigger et al., 1992; Hillebrand et al., 2013; La Rovere et 

al., 1998; Wolf et al., 1978).  A shift in the balance between sympathetic and parasympathetic 

drive may be contributing to an increased risk for cardiovascular disease and may also be the link 

between vasomotor symptoms and cognitive dysfunction.    

The high frequency component of HRV represents the parasympathetic input into the 

heart.  One component, respiratory sinus arrhythmia (RSA) specifically measures cardiac vagal 

tone.  This projection originates from the nucleus ambiguous, and projects to the ventricles.  

Generally, there is strong evidence that RSA and high frequency HRV represent parasympathetic 

input to the heart.  Specifically, vagal denervation in dogs results in a complete elimination of 

RSA, suggesting a primary role of vagal input (Chiou & Zipes, 1998).  Blockade of the 

parasympathetic input to the heart using glycopyrrolate, a muscarinic agonist, resulted in 

elimination of the high frequency spectrum of HRV (Akselrod et al., 1985). Injection of both 

glycopyrrolate and propranolol, a β-adrenergic agonist, resulted in a flattening of all HRV 

spectrums.  Individuals who undergo heart transplant surgery often maintain their atrial sinus 

node, while the ventricles of the donor heart are denervated.  This results in a high resting heart 

rate, as there is no parasympathetic input to the donor heart.  Moreover, there is a flattening of 

the HRV spectrum with an dramatic attenuation of high frequency HRV (Sands et al., 1989). 

Overall, data from drug trials and heart transplant data strongly suggest that high frequency HRV 

represents parasympathetic input to the heart.    

Changes in sympathetic nervous system activity after menopause, are mediated though α-

adrenergic peripheral vasoconstriction (Freedman, Sabharwal, & Desai, 1987; Mercuro et al., 
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2000; Vongpatanasin, 2009; Weitz, Elam, Born, Fehm, & Dodt, 2001), and are associated with 

increased blood pressure (Vongpatanasin, 2009).  There is evidence that estrogen levels may 

affect sympathetic activity in women.  After menopause women are at higher risk for increased 

blood pressure irrespective of age or body mass index (BMI) (Owens et al., 1993; Staessen et al., 

1989; Zanchetti et al., 2005).   In addition, women with premature ovarian failure due to Turner 

syndrome, a chromosomal abnormality in which all or part of one of the sex chromosomes is 

absent, have increased blood pressure, when compared to age matched premenopausal controls 

(Gravholt et al., 1998).  Sympathetic nervous system activity increases with age; however, the 

rate of change is much faster in women compared to men (Matsukawa et al., 1998; Narkiewicz et 

al., 2005).  This is thought to be due to the gradual loss of circulating estrogens across the 

menopausal transition.  There is some evidence that menopausal status has an effect on the 

increased rate of change in sympathetic activity in women as they transition through menopause 

(Matsukawa et al., 1998).  Measures of sympathetic nerve activity (i.e. blood pressure and 

norepinephrine spillover) were decreased in perimenopausal women (n = 12) after estrogen 

therapy (oral estradiol valerate, 2 mg daily) but not after receiving placebo treatment 

(Komesaroff, Esler, & Sudhir, 1999).    

 Changes in ANS activity associated with menopause may be mediated through changes in 

estrogen signaling in the brain.  The ANS controls heart rate and blood pressure through afferent 

and efferent input to the nucleus of the solitary tract through the vagus nerve.  During 

menopause, decreased signaling from the vagus nerve to the nucleus of the solitary tract may 

result in decreased control of vascular dilation (Simonian et al., 1998).  There is a high density of 

estrogen receptors in the nucleus of the solitary tract (Simonian et al., 1998) and these receptors 

affect adrenergic activity (Wang et al., 2006).  Systemic administration of estrogen to 
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ovariectomized rodents can decrease blood pressure and heart rate (He, Wang, Crofton, & Share, 

1998; Pamidimukkala, Taylor, Welshons, Lubahn, & Hay, 2003; Saleh & Connell, 2000).   

Orthostatic stress is the stress associated with changes to the upright or standing body 

position.  Upon standing there is an initial drop in blood pressure caused by gravity pooling 

blood into the lower limbs and this change in blood pressure is detected by to baroreceptors in 

large arteries such as the aortic arch, resulting in increased heart rate.  The adrenergic system 

controls the initial increase in heart rate associated with an orthostatic challenge, such as moving 

from a seated to standing position.  In addition, increases in sympathetic output cause 

vasoconstriction in skeletal muscle (Wallin & Sundlof, 1982).  Increased sympathetic control of 

the heart can be achieved by either an increase in sympathetic tone, or through a decrease in 

parasympathetic tone.  Decreased parasympathetic drive (the calming input to the heart) has been 

cited as one mechanism for increased cardiovascular risk after menopause.   

It is important to note that increasing age has been associated with decreases in HRV 

parameters (O'Brien, O'Hare, & Corrall, 1986).  Beyond studies of aging, there are few studies 

investigating the effects of menopause or hormone therapy on HRV in women; however, these 

few studies suggest that HRV decreases with menopause regardless of age.  In addition, there is 

evidence that estrogen therapy can ameliorate those effects. In a small study (n = 20) of 

sedentary pre- and postmenopausal women in Brazil, postmenopausal women had significantly 

lower HRV parameters compared to premenopausal women during a supine and sitting 

orthostatic challenge (Ribeiro et al., 2001).  These data suggest that being in the postmenopausal 

stage is associated with decreased parasympathetic input to the heart; however conclusions from 

these data are limited as age was confounded with menopausal status within this design.   
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The first study to investigate the effects of estrogen therapy on HRV, was a non-randomized 

trial of estrogen therapy (Epiestrol 50 mg patches; n = 18) versus a control group (n = 12) 

(Rosano et al., 1997).  All subjects underwent a 24-hour heart rate monitoring session at 

baseline, one month after treatment, and four months after treatment.  There were no significant 

differences in HRV at baseline, however at both one and four months after treatment all 

parameters of HRV showed a significant improvement (increase) in women on estrogen therapy 

(Rosano et al., 1997).  Women in the control group maintained consistently lower h HRV (high 

and low frequency) from baseline though 4 months of treatment.  This HRV profile is suggestive 

of increased sympathetic tone. These results also support the idea that decreasing estrogen levels 

are associated with an increase in sympathetic, but not parasympathetic input to the heart; 

however, interpretation of these data is limited as a non-randomized design can be confounded 

by self-selection bias.   

 The effects of estrogen withdrawal and replacement on HRV were thoroughly addressed 

in a cohort of 28 women undergoing either hysterectomy or hysterectomy with oophorectomy 

(Mercuro et al., 2000). Ambulatory 24-hour HRV was collected before surgery, four to five 

weeks after surgery, and after 3 months of estrogen therapy (in a subset of 10 women).  After 

surgery, high and low frequency HRV were decreased only in the oophorectomy group, 

suggesting negative alterations in sympathetic and parasympathetic input to the heart associated 

with loss of circulating estrogen.  Furthermore, three months of estrogen treatment ameliorated 

the dysfunction that was seen post-surgery (Mercuro et al., 2000).  These results highlight the 

involvement of estrogen on the balance of the sympathetic and parasympathetic nervous system. 
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ii. Vasomotor Symptoms and ANS Function: HFs and Heart Rate Variability 

Dysfunction in autonomic balance during the menopausal transition may be exacerbated 

in women who experience vasomotor symptoms.  There is evidence that HFs may cause 

disturbances in autonomic balance beyond those associated with menopause alone.  Specifically, 

HF may further shift the balance of the ANS toward more sympathetic activation.  Higher 

diastolic blood pressure is associated with increased sympathetic activation (Louis, Doyle, & 

Anavekar, 1973; Louis, Doyle, Anavekar, & Chua, 1973; Philipp, Distler, & Cordes, 1978).  

Midlife women who report HFs have higher systolic and diastolic blood pressure compared to 

women who report never experiencing HFs (Gallicchio et al., 2010).  In addition, a positive 

relationship was seen between HFs and blood pressure in a small observational study 

investigating 24-hour ambulatory blood pressure and heart rate.  Specifically, severe nighttime 

HFs were associated with a transient increase in blood pressure and heart rate (Tuomikoski, 

Haapalahti, Ylikorkala, et al., 2010).   

Previous research has shown interactions between cardiovascular health, estrogen therapy, 

blood pressure, and HFs (Hautamaki et al., 2012; Hautamaki et al., 2011; Hoikkala et al., 2010; 

Thurston et al., 2010, 2012).  Loss of estrogen due to surgical menopause is associated with 

deregulation of the sympathetic-parasympathetic balance. In addition, estrogen therapy has been 

associated with a rebound of autonomic control of the heart and blood pressure (Mercuro et al., 

2000). There is also evidence to suggest that hormone therapy may have differential effects on 

cardiovascular function depending on the presence or absence of vasomotor symptoms 

(Tuomikoski et al., 2009a, 2009b; Tuomikoski, Haapalahti, Sarna, et al., 2010; Tuomikoski, 

Haapalahti, Ylikorkala, et al., 2010).  This supports the idea that women with HFs may have 

additional imbalance between the two branches of the ANS.   
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Most, but not all, previous research suggests that HFs are associated with a shift in the 

autonomic balance towards increased sympathetic drive to the heart.  During HFs, transient 

decreases in high frequency HRV have been observed, suggestive of a withdrawal of 

parasympathetic activity rather than an increase in sympathetic activity.  The incongruent 

findings with HRV and HFs may be partially explained by the difference in methods using 

subjective HFs compared to physiologically detected HFs.  Previous studies have seen differing 

results when looking at the effects of subjective versus objective HFs (Maki et al., 2008a).  All 

studies utilizing objective reported HFs saw a negative relationship between HRV and vasomotor 

symptoms, (Freedman et al., 2011; Thurston et al., 2010, 2012) while no relationship was seen in 

studies utilizing subjective HFs (Hautamaki et al., 2012; Hautamaki et al., 2011; Hoikkala et al., 

2010; Lantto et al., 2012).  

The first study to investigate the association between HRV parameters and vasomotor 

symptoms was an observational study of 150 postmenopausal women with mild, moderate, or 

severe self-reported vasomotor symptoms (Hoikkala et al., 2010).  Overall, no relationship was 

seen between HRV outcomes and vasomotor symptom severity.  During a HF, there was a 

significant decreased variability in normalized very low frequency, low frequency and, high 

frequency HRV when compared to control periods of time.  The transient decreases in HRV 

parameters were replicated during laboratory stressors (Thurston et al., 2010) and during 24-hour 

ambulatory conditions (Thurston et al., 2012).  These data suggest that during a HF there is a 

disruption of normal autonomic control of the heart. Specifically, decreased high frequency HRV 

is indicative of vagal withdrawal, or a decrease in parasympathetic input to the heart (Porges, 

1991).  Low frequency (Baselli et al., 1986) and very low frequency (K'Itney R, 1974; Taylor, 
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Carr, Myers, & Eckberg, 1998) are less understood but have been associated with both 

sympathetic and parasympathetic responses.   

Vasomotor symptoms during the nighttime are associated with decreased memory 

functioning more than daytime HFs (Maki et al., 2008a).  Changes in autonomic tone during 

nighttime HFs can be used to predict which HFs will result in awakening from sleep.  A small 

observational study of 16 postmenopausal women investigated HRV during sleep, and utilized 

objective measures of both sleep and HFs.  They observed that HFs that did not result in 

nighttime awakening caused decreased low frequency HRV or increased sympathetic tone.  HFs 

that resulted in nighttime awakening had a slightly different HRV profile, with an initial decrease 

in low frequency HRV before the HF, but no change in low frequency HRV during or after the 

HF (Freedman et al., 2011).  These data suggest that changes in sympathetic tone may 

simultaneously cause arousal from sleep and result in vasomotor symptoms.   

Not all studies suggest that vasomotor symptoms have a negative effect on autonomic 

balance.  A recent observational study enrolled 150 postmenopausal women with and without 

HFs to complete a cardiovascular and ANS assessment. Subjects completed a controlled and 

deep breathing task, active orthostatic test, Valsalva maneuver, and the handgrip test (Hautamaki 

et al., 2011).  Women were grouped according to the severity of their subjective vasomotor 

symptoms: none, mild, moderate, and severe.  No differences on heart rate, HRV, or blood 

pressure were observed; however,  there was a significant decrease in the tachycardia ratio in 

women with vasomotor symptoms compared to those without (Hautamaki et al., 2011).  

A randomized clinical trial investigated the effects of oral and transdermal hormone 

replacement therapy on 24-hour ambulatory HRV at baseline and after 6 month of treatment.  A 

total of 150 midlife women participated (72 symptomatic; 78 asymptomatic).  Women were 
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between six months and three years from their last menstrual period, and were randomized to 

receive one of the following treatments: transdermal estradiol, unopposed oral estradiol or oral 

estradiol combined with medroxyprogesterone acetate (MPA).  At baseline, there were no 

differences in cardiovascular health between symptomatic or asymptomatic women.  Compared 

to baseline, symptomatic women taking unopposed oral estradiol had decreased HRV during 

sleep.  Asymptomatic women taking estrogen and MPA had decreased standardized intervals and 

time domain HRV.  In addition, symptomatic women taking estradiol and MPA had more 

disruptions in their cardiac rhythm than women taking unopposed estrogen (Lantto et al., 2012).  

Overall, these data suggest that both symptomatic and asymptomatic women who were on 

hormone therapy with progesterone had a worse HRV profile after treatment.   

c. sAA 

sAA is an indirect biomarker of sympathetic nervous system activity (Nater & Rohleder, 

2009).  The sympathetic nervous system controls the body’s ability to ready itself for “fight or 

flight” response.  Among other things, activation of the sympathetic nervous system increases 

heart hate, contracts the pupils and blood vessels and increases sweating.  Furthermore, 

activation of the sympathetic nervous system causes the release of sAA mainly from the parotid 

salivary gland (Rohleder & Nater, 2009).   

It has long been thought that sympathetic activity is involved in the etiology of vasomotor 

symptom physiology (Ginsburg et al., 1981).  Women with vasomotor symptoms show evidence 

of imbalance between the sympathetic and parasympathetic nervous system activity.  

Specifically, symptomatic midlife women have elevated basal blood pressure, suggestive of 

increased sympathetic drive (Gallicchio et al., 2010; Tuomikoski, Haapalahti, Sarna, et al., 2010; 

Tuomikoski, Haapalahti, Ylikorkala, et al., 2010), yet each HF is associated with a transient 
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decrease in heart rate and blood pressure (Germaine & Freedman, 1984).  Two of the main 

neurotransmitters of the sympathetic nervous system, epinephrine and norepinephrine are altered 

following a HF (Cignarelli et al., 1989; Kronenberg, 1990; Swartzman et al., 1990). Measures of 

HRV also suggest an imbalance between the sympathetic and parasympathetic nervous system 

during a HF (Ford et al., 2004; Freedman et al., 2011; Thurston et al., 2010, 2012). High 

frequency HRV is a measure of respiratory sinus arrhythmia (RSA) or parasympathetic input to 

the heart (Akselrod et al., 1981; Katona & Jih, 1975; Porges, 2007).  Low frequency HRV is 

associated with sympathetic nervous system activity (Pagani et al., 1986; Pomeranz et al., 1985); 

however components of parasympathetic activity may also represented in this measurement 

(Saul, Rea, Eckberg, Berger, & Cohen, 1990). The ambiguity regarding the interpretation of low 

frequency HRV requires additional markers of sympathetic activity.     

The main neurotransmitters utilized by the sympathetic nervous system are acetylcholine and 

norepinephrine.  Acetylcholine is released by the central nervous system to act upon sympathetic 

ganglion; in addition it activates sweat glands.  Norepinephrine is released by postganglionic 

neurons to act on target tissues via adrenergic receptors.  Circulating levels of norepinephrine 

show a strong positive relationship with sAA (Chatterton, Vogelsong, Lu, Ellman, & Hudgens, 

1996; Thoma, Kirschbaum, Wolf, & Rohleder, 2012).   In addition manipulation of adrenergic 

receptors results in changes in sAA levels.  Activation of beta-adrenergic receptors (Chatterton et 

al., 1996) and alpha-2 adrenergic receptors cause increases in sAA (Ehlert, Erni, Hebisch, & 

Nater, 2006); likewise, blockade of beta-adrenergic receptors decrease levels of sAA (Nederfors 

& Dahlof, 1992; Speirs, Herring, Cooper, Hardy, & Hind, 1974; van Stegeren, Rohleder, 

Everaerd, & Wolf, 2006). 
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The sympathetic nervous system activity, specifically at the α-adrenergic receptors has been 

linked to the etiology of HFs. Early studies of non-hormonal treatments for HFs used clonidine, a 

centrally acting α-adrenergic antagonist.  In a double-blind crossover study of 86 midlife women 

receiving 25-75 μg of clonidine, participants experienced an approximate 15% decrease in 

subjective HFs from baseline or placebo (Clayden, Bell, & Pollard, 1974).  A follow-up dose-

response study of clonidine (0.1-0.4 mg) on objective HF frequency reported up to a 46% 

reduction in objective HFs, as measured by skin resistance and finger temperature, (Laufer et al., 

1982).  However, of the ten participants, four withdrew due to negative side effects of the 

medication.  The clonidine trial, in conjunction with the HRV studies (Freedman et al., 2011; 

Thurston et al., 2010, 2012) suggest an important involvement of sympathetic nervous system 

activity in HFs.  

Levels of sAA are sensitive to stressors associated with sympathetic nervous system activity.  

Psychosocial stressors (Ehlert et al., 2006; Nater et al., 2010; Nater et al., 2006; Nater et al., 

2005; Rohleder, Nater, Wolf, Ehlert, & Kirschbaum, 2004b) and physical exercise have been 

shown to reliably elevate sAA (Chatterton et al., 1996).  A recent study of ninety healthy (84 

women) young adults has also linked sAA with cognitive performance.  Participants were 

exposed to a cold pressor test or a blanket control at encoding, consolidation, or retrieval of a 

word list (Smeets, Otgaar, Candel, & Wolf, 2008).  Researchers found that sAA was positively 

associated with recall for those who received the stressor during consolidation.  Conversely, sAA 

was negatively correlated with memory for those who received the stressor during retrieval 

(Smeets et al., 2008).  These data suggest that increased sympathetic activity can enhance 

consolidation of information, but interfere with recall.  Specifically, stress during learning and 
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consolidation may be beneficial to memory performance, while stress during retrieval can be 

detrimental to memory performance. 

Generally, previous research supports the theory that the balance between the two branches 

of the ANS is altered in postmenopausal women compared to premenopausal women.  In 

addition, there is evidence to suggest that HFs exacerbate this imbalance. This investigation 

aimed to determine if ANS function, measured by sAA and high frequency HRV, differed 

between women with frequent and infrequent HFs.  The guiding hypothesis was that the 

relationship between HFs and ANS dysfunction would be more readily apparent when HFs are 

measured objectively than when assessed by self-report. An exploratory analysis focused on 

whether differences in ANS function may explain differences in psychological outcomes 

between the two groups of midlife women.  

 



 

29 
 

III. STATEMENT OF AIM AND HYPOTHESIS 

This project aims to evaluate ANS function in women with and without frequent HFs by 

measuring HRV during an orthostatic challenge and sAA as markers of ANS activity.  

Additional exploratory aims focused on whether HF-related alterations in ANS activity 

contribute to the impact of HFs on psychological outcomes, including memory, sleep and mood.  

General Hypothesis: The relationship between alterations in ANS function and HFs will be 

more apparent when HF are measured objectively using ambulatory skin conductance monitors 

than when measured subjectively using self-report.  

Aim 1.  To compare parasympathetic nervous system activity between women with and 

without frequent objective and subjective HFs. 

Aim 1a. To compare parasympathetic nervous system activity between women 

with and without frequent subjective HFs.   

Hypothesis 1a.  High frequency HRV, a measure of parasympathetic 

nervous system activity, will not differ between women with frequent 

subjective HFs (≥ 30 per week) and women with few or no subjective HFs 

(≤ 7 per week).  There will be a main effect of body position (supine, 

sitting and standing) on high frequency HRV such that HRV will have a 

linear decrease as stress on the heart increases, with the standing position 

having the lowest HRV and the supine position having the highest. There 

will be no interaction between body position and subjective HF group. 

Aim 1b. To compare parasympathetic nervous system activity between women 

with and without frequent objective HFs.   
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 Hypothesis 1b.  Parasympathetic nervous system activity as measured by 

high frequency HRV during orthostatic challenge will differ between 

women with frequent objective HFs (≥ 30 per week) and women with few 

or no objective HFs (≤ 7 per week).   Specifically, women with frequent 

objective HFs will show lower high frequency HRV compared to women 

with few or no objective HFs.  The relationship between body position 

(Supine, Sitting, and Standing) and HRV will differ by objective HF group 

(Low vs. High Objective HF).  Specifically, the magnitude of the group 

difference in high frequency HRV will be larger during the standing body 

position and smallest during the supine body position; indicative of 

increased vagal withdrawal in the standing position in women with High 

Objective HFs. 

Aim 2.  To compare sympathetic nervous system activity between women with and 

without frequent objective and subjective HFs. 

Aim 2a.  To compare sympathetic nervous system activity between women with 

and without frequent subjective HFs. 

Hypothesis 2a.   Sympathetic nervous system activity, as measured by 

sAA across the day, will not differ between women with frequent 

subjective HFs (≥ 30 per week) and women with few or no subjective HFs 

(≤ 7 per week).  There will be a significant effect of time, with sAA levels 

dropping shortly after awakening and increasing across the day.  There 

will be no interaction between time and subjective HF group (High vs. 

Low).   
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Aim 2b. To compare sympathetic nervous system activity between women with 

and without frequent objective HFs. 

Hypothesis 2b. Sympathetic nervous system activity, as measured by sAA 

across the day, will differ between women with frequent objective HFs (≥ 

30 per week) and women with few or no objective HFs (≤ 7 per 

week).  There will be a significant main effect of time with higher levels 

of sAA later in the day.  Finally, there will be a significant interaction 

between objective HF groups (low vs. high) and time.  Specifically, there 

will be a larger decrease in sAA after waking in women with frequent 

objective HFs compared to women with few or no objective HFs, with no 

differences seen later in the day. 

Exploratory Aim. To examine whether differences in ANS function are related to alterations in 

psychological outcomes, including memory, sleep and mood between women with frequent and 

infrequent HF.  

 



32 
 

IV. METHODS 

This was an ancillary study of a larger multidisciplinary project examining potential 

mechanisms that might explain the relationship between HFs and memory dysfunction in a study 

called Cognition and Menopausal Symptoms (CAMS; L. Rubin, PI). A primary candidate 

mechanism in CAMS was cortisol. This ancillary study focused on ANS function in women with 

and without HFs, by investigating daily time course of sAA and HRV during an orthostatic 

challenge.  The primary aim was to investigate if the number HFs (both subjective and objective) 

experienced across the day were related to changes in sympathetic or parasympathetic nervous 

system activity.  Our secondary aim was to determine if ANS dysfunction, as measured by HRV 

and sAA activity, were also accompanied by changes in memory abilities.  Inclusion and 

exclusion criteria were the same for both the parent study and the sub-study. 

a. Participants:  

Participants were recruited from the community through the use of fliers, Craigslist ads, 

and internal UIC electronic bulletin boards. Inclusion criteria were: 1) Women aged 40-65; 2) 

Women classified as perimenopausal or early postmenopausal based upon changes in cycle flow, 

cycle length and skipped periods; 3) intact uterus and at least one ovary; 4) able to give informed 

consent; English as first and primary language; and 5) moderate to severe self-reported HFs (i.e. 

defined by a standard criterion of > 30 HF per week) –OR- no to few self-reported HFs (i.e. <7 

per week).  Exclusion criteria were: 1) use of hormone therapies, selective estrogen receptor 

modulators (SERMS), phytoestrogens, or other pharmacological/botanical menopausal therapies 

within 2 months; 2) current smoking; 3) removal of uterus and ovaries; 4) use of antidepressants 

or sleep aids; 5) major systemic illness; 6) Axis I psychiatric disorder; 7) medical condition  
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affecting cognition; 8) use of prescription or over-the-counter medications affecting cognition; 9) 

first language other than English (because verbal memory is a primary outcome); 10) disorders 

or clinical conditions affecting cortisol levels; 11) diagnosis of sleep disorder; 12) cardiovascular 

disease; 13) concurrent participation in other clinical research studies; and 14) Body Mass Index 

> 33. 

A total of 412 individuals were screened, of whom 130 qualified by phone screen.  Of the 

women who qualified by phone screen, 88 completed a HF diary.  A total of 31 women who 

completed a 2-week screening diary did not qualify due to not meeting inclusion criterion.  The 

study involved a total of fifty-seven perimenopausal or postmenopausal women aged 40-60 (M = 

52.36, SD = 4.95).   A total of seventeen women are excluded from the analyses for the following 

reasons; biological data on thirteen subjects was lost due to a freezer failure, one woman only 

provided 4 hours of monitoring data, one woman did not provide saliva in her sampling tubes, 

one woman did not meet exclusion criterion when seen in person, and one woman did not 

complete a second visit. The final sample of 40 participants included 20 women who had more 

than 30 subjective HFs per week, and the other 20 had seven or fewer HFs per week as reported 

on a two-week prospective daily HF diary.  Groups are matched on age and menopausal status 

which was defined using the STRAW +10 criteria (Harlow et al., 2012).  

Demographics for the 40 study participants are presented in Table I. as a function of 

subjective HF group (Low or High) and in Table II. as a function of objective HF group (None or 

Any). Groups did not differ on age, race or menopausal stage. There were no significant 

differences between subjective HF groups (low frequency, high frequency) on any hormone or 

lipid variable.  When splitting the data by objective HFs (none, any), no significant differences 

were observed between the objective HF groups.  Seventy-eight percent of participants were not 
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taking any prescribed medication.  The most common prescription medications were 

hydrochlorothiazide (n = 5), statin medication (n = 2), and omeprazole (n = 2).  None of the 

participants were taking a beta-blocker medication.  
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Table I. Demographics for participants as a function of subjective hot flash group (Low 

Subjective Hot Flash and High Subjective Hot Flash).  

Variables 

Hot Flash Diary Group 

Low Flash (n = 20) High Flash (n=20) 

M SD M SD 

Age 51.79 4.86 52.60 5.28 

Education 16.63 1.83 16.35 2.35 

Months since LMP 13.70 24.21 19.65 18.56 

Cardiovascular Health Markers     

BMI 28.51 4.83 27.00 4.34 

Systolic Blood Pressure† 129.10 16.76 119.55 16.29 

Diastolic Blood Pressure 82.45 10.78 77.40 11.40 

Triglycerides (mg/dL) 81.06 43.00 77.89 32.10 

Total Cholesterol 189.67 33.66 205.58 38.43 

LDL (mg/dL) 105.33 29.95 113.05 34.27 

HDL (mg/dL) 69.28 19.75 77.42 23.83 

KPAS Total 3.78 .69 3.75 .95 

Hormone Values     

Estradiol 65.84 111.34 45.26 102.92 

Follicular Stimulating Hormone 52.06 40.60 62.15 42.34 

Race (%)     

Caucasian 31.6 35.0 

African-American 52.6 55.0 

Hispanic 10.5 5.0 

Other 5.3 0.0 

Menopause Stage (%)     

Peri- 63.2 40.0 

Post- 36.8 60.0 

Note: ** p< .001, *p<.01, † p <.10  
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Table II. Demographics for participants as a function of objective hot flash group (No Objective 

Hot Flash and Any Objective Hot Flash).  

Variables 

Hot Flash Monitor Group 

No Flash (n = 13) Any Flash (n=27) 

M SD M SD 

Age 50.46 4.03 52.93 5.27 

Education 16.08 2.14 16.63 2.06 

Months since LMP 12.08 17.21 18.89 23.27 

Cardiovascular Health Markers     

BMI 28.45 5.45 27.52 4.15 

Systolic Blood Pressure 124.77 16.53 124.11 17.55 

Diastolic Blood Pressure 80.38 12.82 79.70 10.66 

Triglycerides (mg/dL) 80.31 41.81 78.24 34.98 

Total Cholesterol 189.62 33.91 202.80 37.19 

LDL (mg/dL) 108.54 34.72 109.52 30.17 

HDL (mg/dL) † 65.08 13.29 77.56 24.20 

KPAS Total 4.04 0.81 3.63 0.81 

Hormone Values     

Estradiol 73.71 132.49 49.86 42.11 

Follicular Stimulating Hormone 45.11 41.13 60.66 91.68 

Race (%)     

Caucasian 30.8 33.3 

African-American 53.8 55.6 

Hispanic 15.4 3.7 

Other 0 7.4 

Menopause Stage (%)     

Peri- 61.5 48.1 

Post- 38.5 51.9 

Note: ** p< .001, *p<.01, † p <.10  
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b. General Procedures 

Participants completed two visits which were conducted at the University of Illinois at 

Chicago Women’s Mental Health Research Program. The first visit lasted about 2.5 hours and 

included a standardized neuropsychological test battery, a blood draw for estradiol and FSH 

levels, fitting and instruction with the Actiwatch and Biolog HF monitor (both devices detailed 

below) and instructions for saliva sample collection.  Women were instructed to wear the HF 

monitor and Actiwatch for 72 hours and collect saliva samples at specified times over that same 

period.  Approximately three days after the first visit, participants returned to lab for a second 

visit lasting about 1 hour.  Participants completed a series of questionnaires to assess mood, 

anxiety and menopausal symptoms (see below) and completed an orthostatic challenge (see 

below).  Participants were compensated a total of $125 for participating in both visits: $50 after 

the first visit and $75 after the second visit.   

c. Primary Psychophysiological Outcomes 

Objective HFs: For 72 hours, participants wore a validated and noninvasive ambulatory skin 

conductance monitor, the Biolog monitor (UFI, Model 3991x: Morro Bay, CA)(Carpenter et al., 

1999).  The monitor samples 12-bit skin conductance data at 1 Hz (once/second) from electrodes 

connected to the monitor by a 0.5 constant voltage circuit. Adhesive electrodes were applied 

using 0.05 M potassium chloride Unibase/glycol paste to record skin conductance. Participants 

were instructed to depress two buttons simultaneously on the monitor whenever they experienced 

a HF. This event was time-stamped and recorded with the continuous skin conductance on a 

memory card and was downloaded for analysis.  

Hormone Assays:  A venous blood sample was drawn at the beginning of the first visit by trained 

staff at the Center for Clinical and Translational Science Clinical Research Center (CCTS) at the 
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University of Illinois at Chicago.  Blood was drawn into a serum separator tube, was 

immediately spun, and sent to Alverno Laboratories in Hammond, Indiana.  Blood serum 

enzyme linked immunoassays of FSH and estradiol were run on all but one subject, due to 

laboratory error.  The lower detection level for estradiol is 5 pg/mL and for FSH is 0.100 

mIU/mL. Intra- and inter-assay coefficients of variance were less than 5% on both FSH and 

estradiol.  These hormone levels were used to help validate menopausal stage.  

Salivary Alpha-amylase:  Salivary measures of sAA were obtained using a passive drool method.  

During a 24-hour period participants provided eight samples across the day into sterile Nalgene 

containers (Waking, +30 min, +3 hours, +6 hours & +12 hours after waking).  We analyzed the 

SAA content in five of the eight samples (Waking, +30 min, +3 hours, +6 hours & +12 hours 

after waking). sAA was quantified at Salimetrics using a kinetic reaction assay (State College, 

PA).  Area under the curve (AUC) with respect to ground (i.e. zero) was computed for each 

participant.  We did not use the AUC with respect to baseline, as we were expecting a drop in 

sAA compared to the initial sAA.  Awakening response of sAA was calculated with the 

following formula [(sAA +30 mins) – (sAA Wake)]. 

Heart Rate Variability: HRV was measured using a 3991x Biolog monitor (UFI, Morro Bay, 

CA) that was configured specifically to record millisecond inter-beat interval (IBI) from an ECG 

signal. Three ECG electrodes were placed on the participant’s torso and connected to the Biolog 

through a Fetrode input assembly. Each participant wore the monitor for the duration of the 

orthostatic challenge.  The data were downloaded via 3991 DPS software (UFI) to a computer 

for quantification of vagal regulation of the heart (i.e., the amplitude of RSA) and heart period. 

Data were segmented into separate conditions using data markers placed at the beginning and 

end of each condition. Heart period data for each condition were visually examined and outliers 
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were edited with CardioEdit software (Brain-Body Center, UIC). Heart rate, high frequency and 

low frequency HRV were calculated for each condition with CardioBatch software (Brain-Body 

Center, UIC) in accordance with standard procedures (Porges, 1985).  

High Frequency HRV – Respiratory sinus arrhythmia (HF, 0.12-0.4 Hz) represents the 

parasympathetic input to the heart by the vagus nerve (Akselrod et al., 1981; Katona & 

Jih, 1975; Pomeranz et al., 1985; Porges, 2007), which is responsible for slowing the 

heart. 

Low Frequency HRV– (LF, 0.06-0.10 Hz) The exact role of low frequency is unclear; 

however, previous research suggests it is related to sympathetic activity (Pagani et al., 

1986; Pomeranz et al., 1985), baroreceptor activity (Akselrod et al., 1981; Sleight et al., 

1995), and thermoregulation (Fleisher et al., 1996; K'Itney R, 1974). Low frequency 

HRV may also contain some information about parasympathetic nervous system activity 

(Saul et al., 1990).  

Orthostatic Challenge Protocol: Participants were asked to stay in three different body positions 

for 5 minutes each during the second visit.  The first position was a supine posture, with ankles 

uncrossed.  Next participants were instructed to slowly move into a comfortable, but upright, 

seated position, with feet flat on the floor.  Finally, participants were asked to remain standing.  

At the end of each position, blood pressure was taken.  HRV outcomes were collected 

continuously throughout the challenge.  The beginning and end of each body position data were 

demarcated within the data stream for editing as HRV data from each body position was edited 

and analyzed separately. 

Cardiovascular Health Markers:  Various predictors of cardiovascular disease risk were 

collected at the beginning of the first visit.  Waist, hip and neck girth were measured using a 
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standard pliable tape measure.  These three measurements in inches were used to estimate body 

fat percentage using a U.S. Navy algorithm [% body fat = 163.205 x log10(waist + hip - neck) - 

97.684 x log10(height) - 78.387] (Defense, 2002). Height and weight were collected to compute 

the measure of Body Mass Index (BMI).  Blood pressure was measured after participants had 

been seated in a relaxed position for 5 minutes.   

d. Primary Psychological Outcomes 

i. Neuropsychological Test Battery 

The standardized neuropsychological battery took approximately one hour to complete.  

The primary outcome of paragraph recall was chosen based upon our previously published study 

which found a negative relationship between objective but not subjective HFs and memory 

performance.  Moreover, tests of verbal fluency were selected as a positive trend between 

objective HFs and  executive function was previously reported (Maki et al., 2008a).  The Finding 

A’s task was included because there was a trend toward a significant negative relationship 

between objective HFs and this measure in midlife women (unpublished data). Tests of 

visuospatial abilities were included as our previous research has shown a negatively relationship 

between HFs and visuospatial ability in men undergoing androgen deprivation therapy for 

prostate cancer (Jamadar et al., 2014).  The Digit Span and the Brief Test of Attention were 

chosen, as they related to poorer sleep quality in our previous publication (Maki et al., 2008a) .     

ii. Cognitive Outcomes 

1. Logical Memory Subtest of the Wechsler Memory Scale-Revised (WMS-R/LM-R) 

(Wechsler, 1981):  This is a test of both immediate and delayed recall of a short story.  

Participants are read a brief story which contains 25 discreet chunks of information.  

Participants are instructed that they would have to recall this story immediately, and 
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again at a later time (30-minute delay).  Outcome measures included standardized scores 

of story recall accuracy both immediately after presentation and after a 30-minute delay, 

where the total scores range from 0 to 25. 

2. Modified Card Rotations Test (Wilson et al., 1975):  This is a timed test of visuospatial 

performance.  Participants are given three minutes to view a series of twenty-eight line 

drawing geometric figures, followed by 8 alternatives which are either a 2- or 3-

dimensional rotation of the target.  Participants are instructed to choose and mark on the 

paper in the box beside and “S” for same which representations of the target are a rotation 

and mark on the paper in the box beside and “D” for different for those which are mirror-

image representations of the target image.  The outcome is the total number of correctly 

identified responses minus the number of incorrect responses across two series of 28 

figures, with a maximum possible score of 160. 

3. Letter Fluency (Benton, 1968) (Benton, 1968):  This is a test of verbal fluency.  

Participants are given one minute to generate as many words as possible which begin 

with a particular letter.  Participants are instructed to avoid saying proper nouns or to use 

the same word with multiple endings (e.g., dance, danced and dancing).  The outcome is 

the total number of words produced across three trials. 

4. Digit Span Forward and Backward (Wechsler, 1981): This is a test of both attention and 

working memory.  During the Digit Span Forward test, the examiner reads a series of 

number strings to the participant, who is instructed to repeat the series back to the 

examiner.  In Digit Span Backwards, the participant is read a string of numbers, and is 

asked to say the string back in reverse order.  The outcome measures are the number of 

trials correctly completed for the forward and backward trials, respectively.   
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5. Finding A’s Test (Ekstrom, French, & Harman, 1976): This is a test of visuoperceptual 

speed and attention.  Participants are given a set of four papers containing five columns 

of words on each page.  Participants are instructed to cross out the five words in each 

column that contain the letter ‘A’ as quickly and accurately as possible within 2 minutes.  

The outcome is the total number of correct responses.  

6. Brief Test of Attention (Schretlen, Bobholz, & Brandt, 1996):  This is a test of auditory 

attention.  Participants are presented with a series of twenty trials, where participants hear 

a series of letters and numbers (e.g. 5-H-T).  For one block of 10 trials, participants are 

told to track and report the number of letters presented, and in the other block of trials 

they are told to track and report the number of numbers presented. Difficulty increases as 

the series of numbers and letters increases from 4 to 18 items across the 10 trials. The 

outcome is the total number of correct responses.  Lower performance on this test was 

associated with poorer subjective sleep in our previous study (Maki et al., 2008b). 

iii. Other Psychological Outcomes 

1. Greene Climacteric Scale (GCS)(Greene, 1998):  This is a self-report questionnaire that 

measures four categories of menopausal symptoms, including psychological symptoms, 

somatic symptoms, vasomotor symptoms and sexual dysfunction.  The questionnaire 

contains 21 items that are scored on a 4-point Likert scale (0 = “not at all” to 3 = 

“extremely”).  Scores for each sub-scale was computed by summing the responses for 

each category. 

2. Pittsburgh Sleep Quality Index (PSQI) (Buysse, Reynolds, Monk, Berman, & Kupfer, 

1989): This is a self-report questionnaire that measures sleep quality, including the 

latency to fall asleep, sleep duration and sleep disturbances.  Higher numbers indicate 
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greater sleep disturbance.  A total sleep score was calculated using a previously published 

scoring scheme, with higher scores indicating greater sleep disturbance (Buysse et al., 

1989). 

3. Positive and Negative Affect Scale (PANAS) (Watson, Clark, & Tellegen, 1988): This is a 

20-item self-report questionnaire measuring positive and negative mood states.  

Participants rate each mood state using a 5-point Likert scale based on the amount they 

experienced each state during the previous 7 days.  Ratings for each item range from 1 to 

5, with 1 indicating “very slightly” and 5 indicating “extremely.”  The outcomes are the 

total score for positive and negative mood states which are calculated separately.  There 

is a maximum score of 50 for each scale.  

4. Perceived Stress Scale (PSS)(Cohen, Kamarck, & Mermelstein, 1983): The PSS is a 10-

item questionnaire developed for measuring the degree to which situations in one’s life 

are perceived as stressful. Items were chosen to determine how “unpredictable, 

uncontrollable, and overloading” respondents found their lives to be and are rated on a 0 

to 7-point Likert scale ranging from “Never” to “Very Often.”  A total score is obtained 

by reversing the scoring on five items, and then summing all of the responses.  The 

outcome from this scale was used as a potential covariate. 

5. Beck Anxiety Inventory (BAI): This self-report measure consists of 21 items measuring 

common anxiety symptoms (i.e., nervous, shaky). The respondent is asked to rate how 

much she has been bothered by each symptom over the past week on a 4-point scale 

ranging from 0 to 3.  The outcome is a total sum of all items.  

6. Center for Epidemiological Studies, Depression Scale (CES-D)(Radloff, 1977):  The 

CES-D is a self-administered 20-item questionnaire which asks respondents how often 
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they have experienced certain depressive symptoms (e.g., feeling sad, lonely) in the past 

seven days.  The questionnaire is administered on a Likert-like scale with participants 

endorsing each symptom occurring “never or rarely” (score of 0) to “most or all of the 

time” (score of 3).    

7. Kaiser Physical Fitness Questionnaire: Sports and Exercise subscale (Ainsworth, 

Sternfeld, Richardson, & Jackson, 2000): This questionnaire asks participants to answer 

15 questions regarding how often they exercise, how much exertion they give and what 

types of activities they participate in.  A total activity score was computed using 

previously published scoring parameters (Sternfeld, Ainsworth, & Quesenberry, 1999). 

The outcome from this scale was used as a potential covariate for HRV outcomes as it is 

known that exercise affects HRV outcomes (Gregoire, Tuck, Yamamoto, & Hughson, 

1996; Jurca, Church, Morss, Jordan, & Earnest, 2004).  
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V. STATISTICAL ANALYSIS 

Prior to analyses, we examined the distribution of each outcome to ensure normality and 

check for statistical outliers (i.e., values >3SD above or below the mean). Raw values of sAA 

had a non-normal distribution; therefore data was transformed using natural logarithm of each 

value.  For statistical outliers, we substituted the outlier value with the next most extreme non-

outlier value in the variable distribution (Tabachnick & Fidell, 2001). There were 10 statistical 

outliers within measures of sAA (5% of the data).  After the substitution, all sAA variables were 

normally distributed.  There were no statistical outliers within measures of HRV, however 8% of 

the data were missing and we used a mean substitution, by subjective HF group, for missing 

data.  

To reduce the number of comparisons, two z-scores were created for memory and attention 

domains, as done in previous studies (Hampson, 1990; Maki, Rich, & Rosenbaum, 2002; 

Mordecai, Rubin, & Maki, 2008).  For each domain score, z-scores were calculated for each 

individual test across groups, and then averaged.The domain score for attention included the total 

scores for the Brieft Test of Attention, Digit Span Forward and Finding A’s.  The memory 

domain score included Logical Memory Immediate Recall and Logical Memory Delay Recall 

scores.  Area under the curve (AUC) for the natural logged values of sAA was calculated for 

each subject based on the trapezoidal method(Pruessner, Kirschbaum, Meinlschmid, & 

Hellhammer, 2003).  Sensitivity was calculated for the HF data collected during the 72-hour 

monitoring session, with the following formula [True Positive HF/ (True Positive HF + False 

Negative HF))*100].  Demographic characteristics were compared between groups using  
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chi-square analyses for categorical variables or t-tests.  All statistical comparisons were run using 

SPSS version 20, unless otherwise noted (IBM, Chicago, IL). 

The first aim of this investigation was to compare parasympathetic nervous system 

activity, as measured by high frequency HRV, between women with frequent and infrequent 

subjective and objective HFs.  To examine group differences on HF frequency group on HRV 

measures, we conducted a series of mixed-effects regression (MRM) analyses. Independent 

predictors included in the analysis were HF group (Subjective: none-to-mild vs. moderate-to-

severe; Objective: none vs. any) and dummy variables for Body Position (Supine, Sitting and 

Standing), as well as all two-way interactions (i.e. group differences at each body position). We 

focused on group differences at each time point. MRM analysis was chosen as it has a flexible 

covariance structure, allowing for differential correlation among the repeated measures.    

Separate analyses were run for objective monitor group and subjective diary group.  BMI, self-

reported physical activity and waist to hip ratio were considered as a potential covariate for HRV 

outcomes.  Only BMI was significantly correlated with the high frequency HRV outcomes, 

however inclusion of BMI in the model did not alter the results, therefore it was excluded in the 

final model.  Given the small sample sizes, Cohen’s d effect sizes are also reported (small effect 

= 0.2; medium effect = 0.5; large effect = 0.8) (Cohen, 1992). SAS statistical software version 

9.2 (SAS Institute Inc, Cary, NC) was used for MRM analyses. Significance was set at p < 0.05.   

We predicted a main effect of body position, such that there would be a decrease in HRV 

as stress level on the heart increases, with the greatest difference between supine and standing. 

We did not predict a main effect of diary group but did predict a main effect of objective HF 

group, such that women with frequent objective HFs would show lower high frequency HRV 

compared to women with low objective HFs. This pattern would be indicative of more vagal 
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withdrawal in women with frequent objective HF.  We also predicted a main effect of body 

position, such that there would be a linear decrease in HRV as the body position becomes more 

strenuous on the heart and baroreflex (supine, sitting and standing).  Finally, we predicted an 

interaction between body position and group.  Specifically, we predicted that the difference 

between groups would be most prominent for HRV during the standing condition of the 

orthostatic challenge, as it is the most stressful on the heart.   

The second aim was to measure the impact of HFs on sympathetic nervous system 

activity by comparing sAA across the day in women with frequent and infrequent subjective and 

objective HFs.  The statistical approach which was used in the first aim was also taken for the 

second aim.   A series of MRM analyses was conducted to examine differences on the 

independent predictors including HF group (Subjective: none-to-mild vs. moderate-to-severe; 

Objective: none vs. any) and the dummy-coded variables for Time (wake, +30min, +180min, 

+360min, and +720min).  Again, Cohen’s d effect sizes are also reported (Cohen, 1992).  

We predicted a main effect of time, such that the levels of sAA would be higher in the 

later samples compared to the samples at wake. We also predicted a main effect of time such that 

levels of SAA would be higher in the afternoon and evening samples compared to the morning 

samples.  We did not predict a main effect of subjective HF group, but did predict a main effect 

of objective HF group such that women with objective HF would have higher sAA compared to 

women without objective HF.  We did predict an interaction between time and group, such that 

women with objective HFs would have a larger drop in sAA levels after wake compared to 

women with few or no objective HFs. 

For the exploratory aim, correlations and multivariate regressions were used to determine the 

extent to which ANS outcomes were associated with objective and subjective HF, as well as 
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cognitive (i.e., attention and memory domain scores) and psychological outcomes.  When 

warranted by correlational analysis (p <.10), autonomic variables (i.e. HRV outcomes, AUC or 

waking response of sAA) were used to predict primary psychological domains and HF 

frequency.  Each outcome was analyzed in a separate stepwise regression equation.   Further 

analysis to explore mediation models will be performed if there are significant relationships 

within the Pearson correlations (p<.05) between a series of all three outcome measures, HFs, 

ANS function and cognitive or psychological outcomes.  For example, if we see significant 

relationships between objective HFs, awakening response of sAA, and anxiety as measured by 

the BAI we would complete a series of two forced entry linear regression models.  The first 

linear regression would use objective HF frequency to predict awakening response of sAA.  The 

second forced entry model would be use both objective HF frequency and awakening response of 

sAA to predict anxiety as measured by the BAI.  Specifically, the beta-weights for each of these 

regression models will be used to determine if there is a mediational relationship, (as depicted in 

Figure 2.) using an effect decomposition model to calculate the direct and indirect effects of HF 

and ANS activity outcomes on psychological outcomes (Hafeman, 2009).     

To determine if ANS activity was related to psychological outcomes, a series of Pearson’s 

correlations and regressions were conducted between ANS outcomes (i.e. AUC or waking 

response of sAA) and memory and attention domain scores. Memory and attention domain 

scores were chosen due to previously reported relationships between these cognitive domains 

and sympathetic activity (Cahill & Alkire, 2003; Cahill & McGaugh, 1998; Eldar, Cohen, & Niv, 

2013; Luu & Posner, 2003).  PSS, BAI and CES-D outcomes were included in the correlation 

analyses because of previously reported relationships between chronic stress and mood and the 

diurnal rhythm of sAA (Nater et al., 2006).  If warranted by the correlational analysis (p >.10), a 
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stepwise linear regression model will be run with the predictors (e.g. psychological or HF 

outcomes) which were related to AUC or waking response of sAA.  
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Figure 2.  Conceptual model of the relationship between Autonomic function, Hot flashes and 

Psychological Outcomes. 
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VI. RESULTS 

a. Primary analyses  

i. Subjective and Objective HFs 

Figure 3. shows the frequency of subjective and objective HFs by subjective diary group 

(low versus high). As expected, women in the high frequency subjective HF group reported more 

HF (mean = 125.00) than women in the low frequency subjective HF group (mean = 4.35) in the 

two-week screening diary (F(1, 39)= 86.57, p < .001).  Due to an unexpected high frequency of 

women with no or few (≤ 3) objective HFs across the 72-hour monitoring session (n = 9, 45%), 

the data were negatively skewed, and therefore the objective HF groups were women with no 

objective HFs (n=13) versus women with any objective HFs (n = 27; mean objective HF in 24 

hours = 6.45). The 13 women with no objective HF included ten women in the low subjective 

HF group and three in the high subjective HF group.  In addition, a total of three women 

classified in the high frequency subjective HF group did not have any objective HFs.  The 27 

women with objective HF included six women in the low subjective HF group and 11 in the high 

subjective HF group. Of the 20 women in the low subjective HF group, 10 had no objective HFs 

during the monitoring session and nine had any HFs.  Of the 20 women in the high frequency 

subjective HF group three had no objective HFs, and 17 had at least one. Finally, nine women 

who were originally classified in the high frequency subjective HF group failed to meet the 

threshold of 4.3 HF within the 72-hour monitoring session. 
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Figure 3. Subjective and Objective Hot Flashes by Day as Function of Subjective Hot Flash 

Group (Low Subjective Hot Flash and High Subjective Hot Flash).  
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Four subjects did not have valid objective HF data for a complete 72 hours; three subjects 

had 48 valid hours of data and one subject had 24 valid hours.  To maximize the sample size, all  

analyses were completed using the data from the first 24-hours of data collection.  To ensure that 

the first day of data collection was representative of the whole 72-hour session we examined 

correlations between the frequency of objective HF on Days 1, 2, and 3 of the monitoring period, 

and also compared the mean frequencies and sensitivity (number of objective HFs subjectively 

detected) across the three days.  There was a significant positive correlation between all days of 

data collection (p < .001); coefficients ranged from .71 to .92 and are shown in Table III. 

Average frequencies of subjective and objective HFs, by diary group, are depicted in Figure 3.  

Frequency of both objective and subjective HFs were significantly higher in the high frequency 

HF diary group compared to the low frequency HF diary group across all three days of 

monitoring (p’s < .02).  Sensitivity did not significantly differ between subjective HF groups 

across the three days of data collection (p >.05).  Mean sensitivity data is presented in Figure 4.  
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Figure 4. Sensitivity by Day as Function of Subjective Hot Flash Group (Low Subjective Hot 

Flash and High Subjective Hot Flash). 
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Table III.  Correlation Coefficients for Subjective and Objective Hot Flash Data across the 72 

Hours of Data Collection. 

 Day 1 Day 2 Day 3 

Objective Hot Flashes  

Day 2 .92**   

Day 3 .73** .85**  

Subjective Hot Flashes  

Day 2 .83**   

Day 3 .71** .88**  

Note: ** p< .001, *p<.05, † p <.10 
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ii. Cognitive Outcomes 

Table IV shows the cognitive outcomes for each subjective HF group.  Cognitive 

performance did not vary as a function of subjective HF group (p’s > .08).  Table V shows the 

cognitive outcomes as a function of objective HF group.  No significant differences in cognitive 

test performance were seen between women with or without objective HFs (p’s > .16).   
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Table IV. Summary of Cognitive Outcomes as a Function of Subjective Hot Flash Group (Low 

Subjective Hot Flash and High Subjective Hot Flash). 

Variables 

Hot Flash Diary Group 

Low Flash (n = 20) High Flash (n=20) 

M SD M SD 

Memory     

Logical Memory 

Immediate 

10.37 2.22 10.40 3.28 

Logical Memory Delayed 9.47 3.04 8.95 3.78 

Digit Span Forward 8.58 1.77 8.30 2.23 

Digit Span Backward 6.84 2.48 6.35 2.23 

Brief Visual Retention 

Test 

7.0 1.86 6.40 2.16 

Visuospatial     

Card Rotations 65.89 41.11 57.80 33.44 

Attention     

Finding A’s 31.26 8.75 27.95 6.65 

Brief Test of Attention 14.74 3.16 14.20 2.88 

Fluency     

Verbal Fluency
†

 48.37 10.60 41.80 10.54 

Semantic Fluency 48.32 11.15 47.30 9.10 

Note: ** p< .001, *p<.05, † p <.10  
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Table V. Cognitive Outcomes for as a Function of Objective Hot Flash Group (No Objective Hot 

Flash and Any Objective Hot Flash). 

Variables 

Hot Flash Diary Group 

No Flash (n = 13) Any Flash (n=27) 

M SD M SD 

Memory     

Logical Memory 

Immediate 

9.54 1.81 10.63 3.18 

Logical Memory Delayed 8.38 2.22 9.52 3.83 

Digit Span Forward 8.31 1.80 8.52 2.08 

Digit Span Backward 6.62 2.26 6.52 2.39 

Brief Visual Retention 

Test 

6.15 1.82 6.89 1.97 

Visuospatial     

Card Rotations 66.31 40.69 57.81 36.16 

Attention     

Finding A’s 30.85 9.15 28.81 7.06 

Brief Test of Attention 13.62 3.48 15.04 2.75 

Fluency     

Verbal Fluency† 47.92 8.71 43.26 11.67 

Semantic Fluency 48.00 7.96 47.70 10.84 

Note: ** p< .001, *p<.05, † p <.10  
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iii. Psychological Outcomes 

Table VI shows the psychological outcomes by subjective HF group.  Compared to women 

in the low frequency subjective HF group, those in the high frequency subjective HF group had 

significantly greater levels of anxiety symptoms as measured by the BAI (F(1, 39)= 5.94, p= .02, 

d = -0.78) , reported more menopausal symptoms as reported by the Greene Climacteric Scale 

(GCS; F(1, 39)= 10.05, p= .003, d= -1.02), and reported significantly worse sleep quality, as 

measured by the PSQI (F (1, 39)= 12.64, p= .001, d= -1.15).  Table VII shows the psychological 

outcomes by objective HF group. In contrast to the analyses of subjective HF group, analyses of 

psychological outcomes by objective HF frequency, there were no significant differences 

between women who experienced objective HFs and those who did not.   
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Table VI. Psychological Outcomes as a Function of Subjective Hot Flash Group (Low Subjective 

Hot Flash and High Subjective Hot Flash). 

Variables 

Hot Flash Diary Group 

Low Flash (n = 20) High Flash (n=20) 

M SD M SD 

Quality of Life     

Greene Climacteric Scale* 8.06 6.88 16.85 10.30 

Psychological* 4.97 3.95 9.0 5.86 

Somatic† 2.20 2.78 4.20 3.76 

Vasomotor** 0.90 1.25 3.65 1.81 

Utian Quality of Life 82.60 13.10 88.45 8.34 

Hot Flush Beliefs Scale 32.20 18.72 41.66 20.78 

Mood     

Beck Anxiety Index* 7.95 6.49 14.20 9.45 

Anxiety Sensitivity Scale 18.05 11.70 21.10 11.87 

Perceived Stress Scale 15.30 5.92 14.30 8.06 

CES-D† 11.80 7.49 16.45 9.83 

Affect     

PANAS Positive Affect 35.85 8.58 36.30 9.35 

PANAS Negative Affect† 16.15 5.58 19.90 7.28 

Sleep     

Pittsburg Sleep Quality Index** 6.00 2.71 9.95 4.16 

Note: ** p< .001, *p<.05, † p <.10  
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Table VII. Psychological outcomes as a Function of Objective Hot Flash Group (No Objective 

Hot Flash and Any Objective Hot Flash). 

Variables 

Hot Flash Diary Group 

Low Flash (n = 13) High Flash (n=27) 

M SD M SD 

Quality of Life     

Greene Climacteric Scale 12.30 9.41 12.53 10.05 

Psychological 7.45 5.27 6.76 5.46 

Somatic 3.38 3.69 3.11 3.36 

Vasomotor† 1.46 1.56 2.67 2.20 

Utian Quality of Life† 80.69 11.60 87.85 10.49 

Hot Flush Beliefs Scale 34.50 16.29 36.24 22.09 

Mood     

Beck Anxiety Index 10.15 7.46 11.52 9.21 

Anxiety Sensitivity Scale† 15.15 10.40 21.70 11.92 

Perceived Stress Scale 15.54 6.41 14.44 7.36 

CES-D† 13.08 8.884 14.63 9.09 

Affect     

PANAS Positive Affect 36.08 8.76 36.07 9.08 

PANAS Negative Affect 17.46 6.36 18.30 6.92 

Sleep     

Pittsburg Sleep Quality Index† 6.31 3.12 8.78 4.18 

Note: ** p< .001, *p<.05, † p <.10  
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iv. HRV 

Consistent with our predictions, when examining the effect of subjective HF and body 

position on HRV, there was a significant main effect of body position on high frequency HRV.  

High frequency HRV was significantly lower in the standing body position when compared to 

both supine (β= 0.38, SE= 0.14, p= .007, d= 1.20) and sitting (β= 0.59, SE= 0.14, p< .0001, d= 

1.86.) positions.  This overall effect of body position confirms that our orthostatic challenge 

manipulation was successful.   As predicted, there was no overall difference in high frequency 

HRV by subjective HF group (β= 0.23, SE= 0.27, p= .41, d= -0.41).  Additionally, there were no 

significant differences in HRV between subjective HF groups at any of the three individual body 

positions (p’s> .36) (see Figure 5).   

When the data were analyzed by objective HF group, a significant effect of body position 

was again observed. , Specifically, high frequency HRV was significantly lower in the standing 

compared to supine (β= 0.43, SE= 0.14, p= .004, d= 0.58) and sitting body positions (β= 0.57, 

SE= 0.14, p< .001, d= 0.77).  Contrary to our hypothesis, we did not observe a main effect of 

objective HF group on high frequency HRV, or any significant differences in HRV between 

objective HF group at any of the three individual body positions (p’s> .22) (see Figure 6).       
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Figure 5. Average High Frequency HRV across Orthostatic Challenge Body Positions by 

Subjective Hot Flash Group (Low Frequency vs. High Frequency). 
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Figure 6. Average High Frequency HRV across Orthostatic Challenge Body Positions by 

Objective Hot Flash Group (No Hot Flashes vs. Any Hot Flashes). 
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v. sAA 

As hypothesized, levels of sAA changed across the day, with a significant decrease in sAA 

from wake to thirty minutes after wake (β= 0.50, SE= 0.16, p= .002, d= 0.73), indicative of a 

significant sAA awakening response.  This expected downward inflection in the levels of sAA 

30-minutes after wake are expected and validate our measurements.  Levels of sAA then 

increased between thirty minutes and three hours after wake (β= -0.80, SE= 0.16, p< .001, d= -

1.16).   Levels of sAA did not differ between the last three time points (p’s> .23).  Changes in 

sAA across the day by subjective HF group are shown in Figure 7.  As predicted, in a MRM 

model examining the effects of subjective HFs on sAA there was no main effect of diary group 

on sAA across the day (β= 0.20, SE= 0.22, p= .37, d=-0.44).  Furthermore, levels of sAA did not 

differ as a function of subjective HF group at any one time point (p’s> .23).  

When comparing objective HF groups, it was again observed that levels of sAA changed 

across the day.  In addition, as predicted, across groups there was a significant decrease in sAA 

from wake to thirty minutes after wake (β= 0.50, SE= 0.16, p= .002, d= -0.18), again indicative 

of a sAA awakening response.  Levels of sAA then increased between thirty minutes and three 

hours (180 min) after wake (β= -0.80, SE= 0.16, p< .0001, d= -0.58).  As predicted, levels of 

sAA did not differ between groups at any of the last three time points (p’s> .22).  Contrary to 

predictions, when the data were compared between objective HF groups, there was no main 

effect of HF group on sAA across the day (β= 0.19, SE= 0.24, p= .42, d= -0.55).  As expected, 

when examining differences at each time point, we observed a significant difference in levels of 

sAA at thirty minutes after wake (β= 0.71, SE= 0.32, p= .03, d= -0.73).  However, the direction 

of the effect was contrary to predictions; women who had any objective HFs during the 

monitoring session had significantly higher sAA levels at 30 minutes than women who had no 
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objective HF. This analysis suggests a significantly attenuated sAA awakening response in 

women with objective HF compared to women with no objective HFs.  Women with and without 

objective HFs did not have significantly different sAA levels at any other time point (p’s>.13). 

Changes in sAA across the day by objective HF group are shown in Figure 8.   
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Figure 7. Natural log of Salivary Alpha-amylase across the Day by Subjective Hot Flash Group 

(Low Frequency vs. High Frequency). 
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Figure 8.  Natural log of Salivary Alpha-amylase across the Day by Objective Hot Flash Group 

(No Hot Flashes vs. Any Hot Flashes). 
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b. Exploratory sAA Analysis   

The previous analyses compared sAA in groups of women who differed in HF frequency but 

did not evaluate individual differences in sAA as a function of HF frequency (e.g., a dose 

response analyses).  We therefore conducted a series of planned exploratory correlation and 

regression analyses to determine if individual differences in sAA outcomes – specifically AUC 

and awakening response -  were associated with individual differences objective and subjective 

HF as well as cognitive (i.e., attention and memory domain scores) and psychological outcomes. 

Results based on Pearson correlational analyses showed that sAA awakening response was 

significantly and negatively correlated with frequency of objective (r(38) = -.45, p= .004), but 

not subjective (p>.05) HFs.  Specifically, increasing numbers of objective HF were associated 

with lower sAA awakening responses.  These results parallel our findings from the MRM 

models, and additionally suggest that there is a dose-dependent relationship between sAA 

awakening response and objective HF frequency.   

Similarly, AUC sAA was significantly and positively related to objective (r(38) = .35, p= 

.03), but not subjective (p >.05) HFs. To further explore the observed relationship between sAA 

AUC and HFs (objective, subjective) a stepwise linear regression analyses was run.  The total 

number of objective HFs was the only potential predictor that met threshold (p ≤.10) for entry 

into the regression equation with AUC of sAA.  The total number of objective HFs was a 

significant predictor of AUC of sAA (R
2 

= .12, F(1, 39)= 5.19, p =.03).   

In order to determine if there were any relationships between sAA outcomes (AUC and 

awakening response), psychological outcomes and cognitive domain scores (i.e., memory and 

attention), another set of correlations were conducted.  Potential predictors  which met threshold 

(p ≤.10) for entry into the stepwise regression equation included: total score on the GCS, total 
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number of objective HFs and the attention domain score.  Both the total number of objective HFs 

and the attention domain score were significantly associated the sAA awakening response (R
2 

= 

.33, F(1, 39)= 9.30, p =.001). For attention, the direction of the effect was such that the greater 

the magnitude of the awakening response, the lower the score on the attention composite (β= 

0.37, SE= 31.38, p= .009).  This relationship can be seen in Figure 9.  There was also a 

significant negative relationship between sAA awakening response and the total number of 

objective HFs (β= -0.46, SE= 2.78, p= .002).  These data suggest that women who had frequent 

objectives HFs were more likely to have a blunted awakening response of sAA. Again, these 

results suggest that there is a dose-dependent relationship between objective HF frequency and 

sAA awakening response. 
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Figure 9. Salivary Alpha-amylase Awakening Response is positively associated with the 

Attention Domain Score. 
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VII. DISCUSSION 

a) Summary. 

The primary aim of this study was to investigate potential differences between ANS activity 

in women with and without frequent HFs by measuring HRV during an orthostatic challenge and 

sAA across the day.  We predicted that objective HF would show a stronger relationship with 

ANS outcomes than subjective HF.  Our first aim was to compare parasympathetic nervous 

system activity, as measured by high frequency HRV,  between both women with low and high 

frequency subjective HFs, and between women with and without objective HF. Our prediction 

that objective, but not subjective HFs would be associated with decreased HRV was not 

supported.  Our second aim was to compare sympathetic nervous system activity as measured by 

sAA across the day. We predicted that objective, but not subjective HFs would be associated 

with an exaggerated awakening response in sAA. That prediction was not supported. Instead, we 

observed a significant difference in levels of sAA at thirty minutes after wake but in a direction 

contrary to predictions. Specifically, women who had any objective HFs during the monitoring 

session had a significantly higher levels of sAA at 30 minutes after awakening compared to 

women with no HFs.  In regression analyses, which examined HF frequency continuously rather 

than by group, both AUC of sAA and sAA awakening responses were significantly associated 

with the daily frequency of objective HF. This pattern of effects suggests that midlife women 

with objective HFs have an imbalance in ANS activity, with an increase towards sympathetic 

drive, as indexed by an increase in AUC with respect to ground (Gallicchio et al., 2010; 

Tuomikoski, Haapalahti, Sarna, et al., 2010; Tuomikoski, Haapalahti, Ylikorkala, et al., 2010).   
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b) Objective HF and ANS Outcomes 

There is increasing evidence that measuring both objective and subjective HFs is important 

to understand the effect of HFs on women’s health during the menopausal transition.  There are 

distinct physiological and psychological symptom clusters which are differentially  related to 

objective and subjective HFs.  The advent of physiological monitoring of HFs has allowed our 

lab, and others, to demonstrate relationships between objective, but not subjective, HFs and 

cognition (Jamadar et al., 2014; Maki et al., 2008a) and cardiovascular risk factors (Thurston et 

al., 2011; Tuomikoski et al., 2009a; Tuomikoski, Mikkola, Tikkanen, & Ylikorkala).  When only 

using self-reported HFs the relationship between cognition and HFs is not evident. Within our 

study population, this pattern of effects was demonstrated once again.  Specifically, we found a 

dose/response relationship between AUC of sAA and objective HFs, and not subjective HFs, as 

well as an association between sAA awakening response and objective HF, but not subjective 

HF. These findings, in combination with previous research, underscore the importance of 

investigating both objective and subjective HFs.  

c) sAA and HFs 

Previous research studies have demonstrated a reliable time course of sAA across the day, 

with a downward inflection in sAA thirty minutes after awakening (Nater, Hoppmann, & Scott, 

2013; Nater & Rohleder, 2009; Nater, Rohleder, Schlotz, Ehlert, & Kirschbaum, 2007; Rohleder 

et al., 2004b; Strahler, Berndt, Kirschbaum, & Rohleder, 2010). We also found evidence of the 

previously reported pattern in sAA; however, in our sample women with any objective HFs 

showed less of a downward inflection in sAA 30 minutes after awakening. Furthermore, a higher 

frequency of objective HFs, when examined continuously, was associated with a blunted sAA 

awakening response.  These data are suggestive of a dose-response relationship between the sAA 
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awakening response and objective HFs.  Additionally, blunted sAA awakening response was 

related to both experiencing any objective HFs and better attention performance.  Despite being a 

reliable effect, the mechanisms underlying the sAA are unknown and the clinical significance 

has yet to be determined; however the sAA awakening response appears to be unrelated to age 

(Nater et al., 2013).  There is also evidence that individuals with generalized social anxiety 

disorder have a blunted awakening response in sAA (van Veen et al., 2008).  Within our study 

population, anxiety symptoms were somewhat related to the sAA awakening response, but the 

effect did not reach significance (r = -0.26, p = .11); furthermore, anxiety symptoms were not 

related to the frequency of objective HFs (r = .09, p = .60). 

Although the mechanism underlying the awakening response in sAA is still unknown, the 

cortisol awakening response is a well-established metric to investigate basal stress reactivity 

(Clow, Hucklebridge, Stalder, Evans, & Thorn, 2010; Clow, Thorn, Evans, & Hucklebridge, 

2004; Schmidt-Reinwald et al., 1999).  The diurnal rhythm of cortisol is opposite of sAA such 

that, cortisol reliably increases shortly after wake, and steadily decreases across the afternoon 

hours (Clow et al., 2010; Clow et al., 2004; Pruessner et al., 1997).  The awakening response of 

cortisol is under the control of the hippocampus, and may be distinct from the normal rhythm of 

cortisol secretion across the day (Bruehl, Wolf, & Convit, 2009; Buchanan, Kern, Allen, Tranel, 

& Kirschbaum, 2004; Fries, Dettenborn, & Kirschbaum, 2009; Pruessner, Pruessner, 

Hellhammer, Bruce Pike, & Lupien, 2007; Schmidt-Reinwald et al., 1999; Wolf, Fujiwara, 

Luwinski, Kirschbaum, & Markowitsch, 2005).  There is a possibility that the awakening 

response of sAA and the overall diurnal rhythm of sAA are also under the control of distinct 

mechanisms.  
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Previously, increased sympathetic activity, as measured by blood pressure, was reported in 

women with a history of self-reported HFs. To investigate whether individual differences in 

sympathetic drive across the day (and not just following awakening) were related to objective 

HF, we used a linear regression to evaluate the relationship between individual differences in the 

frequency of objective HFs and AUC of sAA.  AUC with respect to ground is a measurement of 

total output, or exposure to sAA across the timeframe of monitoring (Fekedulegn et al., 2007; 

Pruessner et al., 2003).  AUC is also used to evaluate dose/response relationships (Maes, 

Calabrese, & Meltzer, 1994).  Here we found a dose-dependent positive relationship between 

objective, but not subjective HF, and increased basal sympathetic drive.  Most (Gallicchio et al., 

2010; Gerber, Sievert, Warren, Pickering, & Schwartz, 2007; Tuomikoski, Haapalahti, 

Ylikorkala, et al., 2010), but not all (Hautamaki et al., 2011), previous studies have suggested 

that HFs are associated with a shift in the autonomic balance towards increased sympathetic 

drive to the heart.  To our knowledge this is the first investigation of the relationship between 

vasomotor symptoms and sympathetic nervous system activity as measured by sAA activity.  

Within our study sample, we found additional evidence for a relationship between sympathetic 

nervous system activity and HFs.  Specifically, our results suggest a dose-dependent relationship 

between the frequency of objective HFs and AUC of sAA.   

Our study used limited samples across the day, specifically at awakening and, 30 minutes, 

180 minutes, 450 minutes and 720 minutes after awakening.  Future research should explore the 

relationship between objective HFs and a more inclusive time course of sAA across the day.  It 

would be informative to know if sympathetic activity was heightened across the entire morning, 

or only 30 minutes after awakening.  Finally, more research should be conducted to determine if 
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the awakening response of sAA is both independent from the diurnal rhythm of sAA secretion 

and driven by the hippocampus. 

d) HRV and HFs 

Although we failed to see a difference in HRV by subjective or objective HF frequency, our 

data provide new insight in the relationship between objective HFs and HRV, and extend the 

interpretations of the previous investigations. Previous research has suggested that objective HFs 

are associated with withdrawal of vagal input to the heart (Freedman et al., 2011; Thurston et al., 

2010, 2012).  Initially, the most notable differentiation between previous studies was the use of 

objective or subjective HFs as the comparison group.  Among such studies, only those which 

utilized objectively measured HFs found a negative relationship between HRV and vasomotor 

symptoms (Freedman et al., 2011; Thurston et al., 2010, 2012).  In contrast, studies that 

measured subjective HFs failed to see an association between HFs and HRV (Hautamaki et al., 

2012; Hautamaki et al., 2011; Hoikkala et al., 2010; Lantto et al., 2012).   

Another factor that seemed to influence the relationship between HFs and HRV was the time 

course across which HRV was analyzed.  Studies that utilized designs which focused only on 

HRV during the period immediately surrounding each objective HF event saw an acute effect of 

the HF on HRV, such that there is a transient withdrawal of the parasympathetic tone during 

objective HFs  (Freedman et al., 2011; Hoikkala et al., 2010; Thurston et al., 2010, 2012). 

Furthermore, studies that investigated HRV across a longer time period (i.e. 24-hour period or 

during cardiovascular ANS testing), did not see any relationship between HRV and HFs 

(Hautamaki et al., 2012; Hautamaki et al., 2011; Hoikkala et al., 2010).  

The one investigation, which had a design similar to ours, did not observe any differences in 

measures of HRV across an active orthostatic challenge in women with and without a history of 
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self-reported HFs (Hautamaki et al., 2012).  Initially, we interpreted this as evidence that only 

objective HF would be related to decreases in HRV; however, our results paralleled their 

findings of no differences in HRV across a supine and standing orthostatic challenge in women 

with and without frequent subjective and objective HFs.  Our investigation is the first to examine 

HRV in women with and without objective HFs across an orthostatic challenge and we found no 

differences.  Overall, studies of HRV and HFs may suggest that HFs are associated with acute 

changes in the parasympathetic branch of the ANS at the time of the HF but are not associated 

with generalized state changes (i.e., changes not time-locked to an individual HF) in 

parasympathetic function.  In this way, HFs might not affect overall daily (i.e., chronic) 

parasympathetic activity, but may transiently decrease parasympathetic output during each HF.  

Furthermore, our findings indicate that it is not possible to unmask alterations in parasympathetic 

tone in women with HF using a validated orthostatic challenge. Such differences might be 

evident only in the time period immediately surrounding a HF. 

e) Psychological Outcomes, ANS activity and HFs 

i) Mood Outcomes 

 Our data are consistent with previous research suggesting that women with frequent 

subjective HFs are more likely to have increases in subjective mood and sleep complaints (Fu, 

Matthews, & Thurston, 2014).   Furthermore, these results complement a large body of previous 

research that has suggested patient reported and physiological HFs are related to distinct 

symptom clusters (Bromberger et al., 2007; Bromberger et al., 2010; Freeman, Sammel, 

Boorman, & Zhang, 2014; Freeman et al., 2009; Freeman et al., 2005; Freeman, Sammel, Lin, & 

Nelson, 2006; Fu et al., 2014).  Specifically, our data suggest that women with frequent 

subjective HFs, but not frequent objective HFs, are more likely to have increased complaints of 
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sleep disturbances, anxiety and depressive symptoms.  Our findings replicate previous studies 

suggesting that negative mood, subjective vasomotor symptoms and sleep complaints are 

interrelated (Shaver, 2009).  Previous research has suggested that women with subjective HFs 

are more likely to develop a mood disorder (Cohen, Soares, Vitonis, Otto, & Harlow, 2006) and 

that HFs and mood disturbances are causally related (Freeman et al., 2009). Additionally, 

anxious women are more likely to overestimate their symptoms, and this effect is exacerbated 

when women had poor sleep quality the previous night (Fu et al., 2014).  In clinical practice, it 

may be helpful to screen women for mood disruptions if their primary complaint is vasomotor 

symptoms.   

ii) Cognitive Outcomes 

Previous research has suggested sympathetic activity was positively related to attention and 

memory performance (Cahill & Alkire, 2003; Cahill & McGaugh, 1998; Eldar et al., 2013); 

however we did not see a relationship between memory performance and sAA.  Exploratory 

analyses revealed that women with larger magnitude of an awakening response of sAA were 

performing significantly worse on the attention composite score.  These data suggest that women 

with state elevated sympathetic activity perform better on measures of attention.  An exaggerated 

awakening response in sAA would suggest decreased exposure to sympathetic arousal across the 

morning.  One potential explanation that the preclinical literature has suggested is that 

epinephrine has an inverted-U dose response curve (Gold & Van Buskirk, 1976a, 1976b).  

Women who had an exaggerated decrease in sAA within the first thirty minutes after wake may 

have been pushed too low on the curve for optimal performance on attention tasks.  While these 

data suggest a possible role of sAA awakening response in attention, these data should be 
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replicated in a larger sample, as there is the potential this relationship was seen due to type 1 

error.    

f) Study Limitations 

The primary aim of this study was to investigate potential differences in ANS activity 

associated with both objective and subjective HFs.  One main limitation of this cross-sectional 

design is that we cannot explore a causal relationship between HFs and our outcome measures 

(HRV and sAA) because we cannot determine temporal direction.  Future research should aim to 

determine the time course of ANS alterations in relation to the development of HFs across the 

menopausal transition.  Changes in ANS function should also be examined in the context of 

potential treatments for HFs.  A second limitation of this study is the small sample size.  All 

findings should be replicated in a larger sample size.  One final limitation is that we were unable 

to measure flow rate of the saliva samples as they were collected outside of the laboratory.  Some 

(Anderson et al., 1984; Asking & Gjorstrup, 1987), but not all (Rohleder, Nater, Wolf, Ehlert, & 

Kirschbaum, 2004a), previous studies have suggested that concentrations of sAA may be 

mediated by ANS control of salivary flow rate.  One strength of this design was the collection of 

both subjective and objective measures of HFs in the same cohort of participants, which allowed 

for the comparison of the two measures on outcomes of interest, and which again underscored 

the importance of objectively measuring HFs.  

g) Conclusions 

The purpose of this study was to examine potential difference in ANS activity between 

women with and without frequent subjective and objective HFs.  We found that women with 

objective HFs have a significantly attenuated awakening response in sAA.  Furthermore, there 

was a dose-dependent association with the frequency of objective HFs predicting both AUC of 
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sAA and sAA awakening response.  These data provide support that there is a state increase in 

sympathetic nervous system activity in women who have objective HFs.  Additionally, our data 

provide new insight in the relationship between objective HFs and HRV.  Previous research has 

suggested that objective HFs are associated with withdrawal of vagal input to the heart.  Our data 

extend these findings to suggest that changes to the parasympathetic branch of the ANS 

associated with HFs may be transient.  The decrease in parasympathetic activity may be only 

associated with each acute objective HF, not to a state decrease in parasympathetic tone, or 

reactive to an orthostatic challenge.  We failed to find evidence to support ANS involvement in 

psychological outcomes between women with and without HFs; however, we found that sAA 

awakening response was independently associated with a composite measure of attention.  These 

data provide interesting insight into the etiology of HFs, providing further support for the 

involvement of the ANS.  Additional research is needed to replicate these findings in a larger 

cohort of women, specifically including a broader range of subjective HFs.    
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