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SUMMARY

Subgroup identification has always been of great interest among the many functions and

applications of statistical learning. In the pharmaceutical area, it is desirable to find a subgroup

with enhanced treatment effect so that we can efficiently lower the number of patients required

for a trail and improve the success rate of drug development projects. A more familiar name

for this application is called personalized medicine, which has drawn great attention recently.

A majority of work has been done regarding the personalized medicine with their pros and

cons. Some methods focus on the detection of subgroup effects but do not provide any way to

select patients. Some methods have a tree regression style and provide a detailed picture of

each patients performance, they are hence more optimized for prediction rather than subgroup

identification. Some methods try to maximize the effect in the training dataset but tend to be

too greedy. There are also methods trying to build a score system to stratify the patients.

In this dissertation, we propose a subgroup identification method with interaction filtering

and quantitative criteria. More specifically, the method consists of two steps. Step 1 can select

interaction covariates related to the individual treatment benefit without modeling the main

effects. Step 2 can select a desired subgroup based on some quantitative criteria without relying

on any specific model. The proposed method works for both the continuous and the survival

response, and is shown to have a better performance than some popular existing methods.

x



CHAPTER 1

INTRODUCTION

1.1 Introduction to Subgroup Identification

With the era of big data coming, mining data through statistical learning algorithms for

information that cannot be observed or understood directly has become more and more popular.

Among the many functions and applications of statistical learning, subgroup identification has

always been of great interest.

Subgroup identification can be broadly defined as a procedure that distinguishes a group

of subjects from the rest of the population based on certain goals. For example, insurance

companies may want to identify the people who are less likely to have an accident; shop owners

may want to find out the customers that like coupons; universities may wish to identify the

students that will succeed in the future. There could be numerous such goals and subgroups

in different areas, and finding these subgroups will have a great impact in both industry and

personal life.

Although it is relatively easy to specify the desired subgroup, how to actually find those

subjects is often not obvious. In most situations, whether a subject belongs to the desired group

is not observable at all or only observable in the collected datasets. For example, in ordinary

clinical trials, it is usually not directly observable whether a specific patient can benefit much

more from taking the treatment than taking the control, since patients can only be assigned to

1
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one arm. Adverse events are only observable in the collected datasets, and what will happen

to a new patient is not obvious. There are also cases that the grouping of a subject depends on

others, such as the insurance company example in the previous paragraph. All these situations

require statistical learning algorithms to construct some identification rule according to the goal

so that whether a subject belongs to the desired subgroup can be decided. And of course, a

training dataset is needed to perform this learning procedure.

The constructed identification rule that can be practically used to select subjects for a

subgroup usually consist of part of the covariates or predictors in the training dataset, and

the goal of the subgroup identification procedure is generally related to the response variable.

The identification rule is constructed based on the relationship between the covariates and

the response. Depending on the algorithms used, the identification rule could have different

forms, such as a classification tree (1) or a polynomial. A tree-styled rule is essentially a

series of yes/no questions that leads to a final subgroup, where the question is mostly about

whether the value of a covariate is beyond a certain threshold. A polynomial usually produces

a value that needs to be further associated with the final subgroup. But no matter what the

identification rule looks like, one important problem is that not every covariate in the dataset

is needed. Actually, only a small proportion of covariates are important in most situations.

This is especially true when datasets have a large number of covariates, such as genomic data

(2). Variable selection or dimension reduction methods are needed to handle the problem, and

there are many such methods readily available. Traditionally for regression, we have naive

ways like selecting variables based on p values of coefficients and best-subset selection (3),
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neither of which performs well when there are more than a few covariates. Modern methods

like forward/backward selection (4), principal component regression, LASSO (5) and other

shrinkage methods are widely used.

Subgroup identification rule construction can lead to two possible results, the rule can be

constructed and the rule cannot be constructed. There could be several reasons why the rule

cannot be constructed. It is most likely that the method used is not powerful enough to detect

the subgroup. Or it could be because none of the available covariates are relevant. In some cases,

it is also possible that the desired subgroup does not exist, especially when the subjects’ groups

are not directly observable. Unfortunately, it is difficult to know which is the actual reason.

When the rule can be constructed, it is still not the happy ending. It is entirely possible that

the identified subgroup is a false discovery. A separate testing set or some validation procedure

such as 5-fold cross-validation (6) are usually needed to validate the performance.

1.2 Subgroup Identification in the Pharmaceutical Area

One of the areas in which subgroup identification plays an important role is the pharma-

ceutical drug development. Inclusion and exclusion criteria commonly seen in a clinical trial is

one basic form of subgroup selection, which helps increase the likelihood of producing reliable

results. By selecting and examining a tailored subgroup, not only will the attrition rate of drug

development projects be reduced, but we can also have a better understanding of the underlying

relationship between the baseline covariates and the outcome of interest.

There are generally two types of subgroup identification in the pharmaceutical area. One

is called the prognostic case, and the other is the predictive case. In the prognostic case, a



4

patients response irrespective of the treatment is of direct interest. For example, researchers

may want to identify a subgroup of patients who will have a survival time less than three years.

Or they may want to identify the subjects who will develop a certain symptom in the near

future. In the predictive case, however, the focus is on the difference between outcome before

and after the treatment. In other words, unlike the prognostic case, how long a patient can

survive does not matter in a predictive case, but how much longer the patient can survive after

taking the new treatment is of direct interest.

Use X to denote the patient’s available covariates including an intercept covariate 1, Y to

denote the patient’s response, T = ±1 to denote the patient’s receiving the treatment and the

control respectively. If we assume that the available covariates could well represent the patient,

then what the prognostic case focuses on is E
(
Y | X

)
, while the predictive case focuses on

E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
. In a linear regression setup, the following two models can

be used to handle the two cases:

Y = β ′X+ ε (1.1)

Y = β ′X+ γ ′X · T + ε (1.2)

where β and γ are the coefficients of the covariate terms and the interaction terms respec-

tively, and ε is the random noise. Note that interaction terms here also include the population

treatment effect, which is expressed by the interaction between the treatment and the inter-

cept covariate 1. Clearly, Model (1.1) can be used to handle the prognostic case, in which

the treatment is not involved, and the direct relationship between the response and the covari-
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ates is examined. In Model (1.2), it is easy to see that the interaction terms correspond to

E (Y | X, T = 1) − E (Y | X, T = −1), and thus the predictive case can be studied through esti-

mating the interaction terms. Models (1.1) and (1.2) have a continuous response, but they can

be easily extended to the binary and survival response by simply replacing Y with logit (Y)and

log hazard ratio respectively.

The covariates X in the above two models can be a wide variety of measurements, such as de-

mographic information, clinical information or even genomic information. The term biomarker

is frequently used in the literature in a very general sense to denote these measurements. In

the prognostic case, the measurements that are relevant to the outcome of interest are called

the prognostic markers. Similarly, in the predictive case, those measurements are called the

predictive markers (7). The derived subgroup identification rule is sometimes called a signa-

ture. The population that satisfies the rule is called the signature-positive group, while the

population that does not satisfy the rule is called the signature-negative group (8). A signature

is also referred to as a predictive signature or a prognostic signature depending on the type of

the subgroup identification procedure.

1.3 Personalized Medicine

A more familiar name for the predictive case of subgroup identification in the pharmaceutical

area is personalized medicine, which has drawn a great deal of attention recently. President

Obama mentioned in his State of the Union speech that his administration would launch ”a

new precision medicine initiative to bring us closer to curing diseases like cancer and diabetes”.

And it is widely believed that personalized medicine is the future of drug development.
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The term personalized medicine is a little misleading, since it gives people the impression

that the drug will soon be developed and customized at individual level. This might become

true one day in the distant future. At present, however, personalized medicine mainly focuses

on selecting patients for a treatment or selecting a treatment for a patient.

Productivity is currently one of the biggest problems in the pharmaceutical industry. Sub-

mission rate of new medicines and the success rate in clinical phases are decreasing, although

the pharmaceutical research and development investment has increased significantly (9). The

primary goal of a traditional clinical trial is usually to determine whether a new treatment is

effective at the population level. However, people are heterogeneous in many ways. Finding a

new therapy that works on average for the entire population is becoming more and more dif-

ficult, especially in the oncology area, where the same cancer can result from different reasons

. For example, in a Phase III clinical trial comparing gefitinib with carboplatin plus paclitaxel

as a first-line treatment for pulmonary adenocarcinoma, it was found out that only patients

with epidermal growth factor receptor mutation had significantly longer progression-free sur-

vival time after receiving gefitinib (hazard ratio, 0.48; p < 0.001). But for patients lacking this

mutation, progression free survival was significantly shorter in the gefitinib arm compared with

the carboplatin plus paclitaxel arm (10). In cases like this, if the effectiveness is compared on

the population level, it will not be surprising to see the trial fail. By finding a subgroup that

is more likely to benefit from the treatment, we can efficiently reduce the variance, lower the

number of patients required for a trail, improve the success rate of drug development projects
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and finally control the ever-rising costs. The subgroup identification procedure designed for the

above purpose can be considered as selecting patients for drugs.

On the other hand, even if the medicine can be shown effective on the population level, it

does not mean that everyone in the population should take it. There almost always exists a

subgroup of patients who cannot benefit from the treatment. Moreover, drug A being effective

for the patient does not rule out the possibility that there could be a better drug B which has

either a better efficacy or a lower toxicity for this patient. It is desirable to improve the quality

of prescribing so that patients can take the medicine that is truly effective for them, and a

more appropriate one if multiple options are available. The subgroup identification procedure

designed for this purpose can be considered as selecting drugs for patients.

Though there are several successful examples of personalized medicine (11) (12) (13), the

data-driven subgroup identification procedure, like any statistical learning activity, is only ex-

ploratory and suffers from false discovery. Subsequent confirmatory analysis that evaluates a

small number of completely specified subgroups in clinical trials is often required (14) (15).

When the discovered biomarkers do not work as expected, they will have a negative impact

on the clinical trials, such as increasing the cost and prolonging the duration. Thus, having a

good strategy of integrating biomarkers into clinical trials is very important (16), and FDA has

released a draft guidance document (17).

1.4 Literatures on Methods for Personalized Medicine

The heterogeneity of treatment effects among patients can be explained by the interaction

between the treatment and the covariates. Model (1.1) and (1.2) are two examples under the
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linear regression setting. Hence studying the interactions is crucial to personalized medicine

and is the main focus of many methods.

Traditionally, when performing exploratory subgroup analysis for the predictive case, treat-

ment effects are often evaluated in several simple pre-specified subgroups based on some di-

chotomized covariates after the main analysis. This kind of approach can only handle simple

interaction terms which are readily at hand, and often suffers from false discovery due to mul-

tiplicity issue. Many new methods are derived to better cope with the problem.

Bonetti and Gelber (18) invented a graphical technique called subpopulation treatment

effect pattern plot (STEPP) to explore the existence of interaction effects among continuous

covariates. Sauerbrei et al. (19) proposed an algorithm for multivariate model building with

fractional polynomial interaction (MFPI) and compared it with STEPP. Bayman et al. (20)

suggested a Bayesian approach using a hierarchical model with exchangeable mean responses

between subgroups to detect potential qualitative interactions from a fixed number of pre-

defined subgroups. Sivaganesan et al. (21) also introduced a Bayesian method which defines a

separate class of models for every candidate predictor and uses a threshold on posterior model

probabilities to determine the existence of subgroup effects. These methods mainly focus on the

detection of interaction effects. But how a subgroup should be selected is not clear. Besides,

they all lack the ability to handle the dataset with a large number of covariates.

Many subgroup identification methods for personalized medicine have a tree-style. Loh

(22) developed an algorithm for regression tree construction, which has the ability of detecting

interaction and eliminating variable selection bias. Foster et al. (23) introduced a two-step
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method which first predicts the response difference between treatment and control for every

patient and then uses this difference as the outcome in a regression or classification tree. These

methods try to provide a detailed picture of how subjects perform in different terminal nodes of

the tree. Hence the procedures are more optimized for response prediction rather than subgroup

selection. They require a further strategy to combine multiple terminal nodes into subgroups,

and have trouble in interpretation when terminal nodes consist of very different covariates.

Su et al. (24) proposed an interaction tree procedure for censored survival data. The

method recursively divides the data into two subsets that have the largest interaction with the

treatment, and a merging scheme is provided to combine terminal nodes into subgroups. Su

et al. (25) later extended the algorithm to the continuous response. Lipkovich et al. (26)

developed a subgroup identification method based on differential effect search (SIDES), which

adopts the splitting idea from the interaction tree method, but with a different search strategy,

and produces a list of promising candidate subgroups rather than merging different nodes.

Chen et al. (8) modified the Patient Rule Induction Method (PRIM) (27) to perform subgroup

identification. The method conducts a step-wise searching procedure through maximizing the

treatment effect in the positive group while maintaining the interaction effect restriction. These

methods aim at identifying subgroups with some maximized effect, which are more suitable for

the purpose than those focusing on the prediction, but tend to be greedy sometimes. The

interaction tree method also suffers from the interpretation problem when nodes with very

different covariates are combined. SIZES and PRIM method have a fast decreasing sample

size of the selected subgroup when more binary rules are added. Moreover, all the tree-style
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methods that have been mentioned above lack the ability of handling the dataset with a large

number of covariates.

Some methods try to identify patients based on some score or index. Zhao et al. (28)

proposed to create a parametric scoring system using available covariates and associate the

score with the treatment difference. Patients with scores above a pre-specified threshold will

be in the desired group. Tian and Tibshirani (29) introduced an efficient algorithm to quickly

select and dichotomize important covariates, and use the sum of the dichotomized covariates

as an index score to stratify the population according to the individual treatment effect. The

success of these methods relies on the quality of the score system.

There are two particularly interesting papers recently. Tian et al. (30) developed a simple

method of modeling the interactions in a randomized clinical trial setup. It can detect the

important interactions from a large set of biomarkers and can be flexibly coupled with different

variable selection methods. The method utilizes the randomness of the treatment assignment

and modifies the covariates so that the main effects are eliminated. A simple intuitive example

is as follows. Let T be the treatment variable with P (T = 1) = P (T = −1) = 0.5 for every

patient, where T = 1 and T = −1 correspond to the treatment and control arm respectively.

Let Y be the response and suppose

Y = β ′X+ γ ′X · T + ε (1.3)
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If we multiply Y by T , then we have

E
(
Y · T | X

)
= E

(
β ′X · T | X

)
+ E

(
γ ′X · T 2 | X

)
= γ ′X

where the main effect is canceled out. One weak point of this method is that it only applies to

the trial with balanced arms, i.e., two arms have the same number of patients. Another very

interesting paper (31) looks at subgroup identification from a different point of view. While

most other methods focus on the interaction and tries to select patients for a drug, this method

is more about selecting drugs for patients and tries to maximizes the expected reward given

that the treatment assignment rule is implemented, i.e., max
{
E
[
Y | T = D(X)

]}
, where D is

the treatment allocation rule based on the covariates. The method is called outcome weighted

learning (OWL) and can be solved under the support vector machine framework.

1.5 Primary Interest of the Dissertation

This dissertation focuses on the subgroup identification methods for the predictive case,

i.e., personalized medicine. A complete subgroup identification procedure usually includes the

following steps:

a. Specify the feature or goal of the desired subgroup.

b. Select relevant predictors from a large collection of available candidate covariates.

c. Use a statistical learning algorithm to build the identification rule or say signature for the

desired subgroup.

d. Evaluate the performance of the learning result.



12

In this dissertation, we propose a subgroup identification method consisting of step b and step

c. The proposed method works for both the continuous and the survival response.

The introduced procedure for the variable selection step is inspired by Tian’s work (30).

It extends the original method to the case of unbalanced arms, i.e., two arms have different

number of patients. The method focuses directly on the interaction terms, and the procedure

is hence called interaction filtering.

It has been discussed that some subgroup identification methods are more optimized for

prediction, which has the advantage of providing quantitative information when selecting pa-

tients, while some other methods tries to maximize the interaction effect, which focus more on

selection rather than prediction. Our proposed method for the signature construction step tries

to integrate the quantitative information into the subgroup identification procedure such that

we can ask for a subgroup with a specified quantitative feature.



CHAPTER 2

INTERACTION FILTERING

In this chapter, we introduce an interaction filtering procedure that can select relevant

interactions without modeling the main effects. The proposed method works for both the

continuous and the survival response, and it is shown to be a reasonable procedure not relying

on model specifications. We also conduct simulation to investigate the performance of the

proposed method.

2.1 Motivation

The response of a patient depends on many things, such as the average treatment (or

placebo) effect at the population level, the interaction between the treatment (or placebo) and

the covariates, and the main effects of the covariates which does not depend on the therapy

received. The average treatment (or placebo) effect at the population level can be viewed as the

interaction between the treatment (or placebo) and the constant covariate 1. For simplicity, we

use interaction to denote both the actual interaction and the average treatment (or placebo)

effect at the population level in this dissertation.

Most of the popular variable selection methods are model-based. When constructing a

model for the response, all relevant variables and terms have to be included. But in the field of

personalized medicine, interaction is the focal point. It is desirable to construct a model with

13
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only the interaction terms such that we do not have to model the main effects, and the variable

selection procedure can solely focus on filtering the interactions.

2.2 Setup and Notations

Suppose we have a randomized clinical trial with two arms, in which patients are allocated

at random to receive either the treatment or the control with some prespecified probabilities.

The control could be a placebo or some other existing treatment. Let Y ∈ R1 be the response

variable and T ∈ R1 be the binary treatment variable, where T = 1 and −1 correspond to

the treatment arm and the control arm respectively. Let X ∈ Rp be the p-dimensional random

vector of baseline covariates, including an intercept covariate 1. Since it is a randomized trial, T

and X are independent. Assume the observed dataset consists of N patients, and every patient

data in the dataset is an independent and identically distributed copy of
(
Y, T, X

)
.

2.3 Interaction Filtering for the Continuous Response

2.3.1 An Intuitive Derivation

When Y is a continuous response, the following multivariate regression model can usually

be set up

Y = β ′0X+ γ ′0XT + ε (2.1)

where β0 and γ0 are the coefficients of the main effect and the interaction effect respectively,

and ε is the random error with mean 0 and variance σ2. Note that every patient data is an

independent and identically distributed copy of
(
Y, T, X

)
.
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We want to modify the distribution of Y given X, so that the main effects can be cancelled

out on average. In order to do this, we construct a discrete random variable δ with the following

support

δ =


α or aα when T = 1;

α or bα when T = −1.

a, b > 0 and 6= 1 (2.2)

such that

E
(
TδY | X

)
= 2αcγ ′0X (2.3)

where c > 0 is a constant, and α > 0 is an integer only for illustration purpose.

From (2.1) and (2.3), δ has to satisfy the following two conditions:


E
(
δ | T = 1

)
· P
(
T = 1

)
= E

(
δ | T = −1

)
· P
(
T = −1

)
E
(
δ | T = 1

)
· P (T = 1) + E (δ | T = −1) · P (T = −1) = 2cα

(2.4)

where P (T = 1) and P (T = −1) are known after a trial is designed. Hence,

E
(
δ | T = 1

)
=

cα

P (T = 1)
, E

(
δ | T = −1

)
=

cα

P (T = −1)
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Combining the above expectations with (2.2), we can then obtain the distribution of δ, which

is as follows: 

P
(
δ = α | T = 1

)
= c−aP(T=1)

(1−a)P(T=1)

P
(
δ = aα | T = 1

)
= P(T=1)−c

(1−a)P(T=1)

P
(
δ = α | T = −1

)
= c−bP(T=−1)

(1−b)P(T=−1)

P
(
δ = bα | T = −1

)
= P(T=−1)−c

(1−b)P(T=−1)

(2.5)

With a proper choice of a, b and c, δ will be a random variable, i.e. values in (2.5) are all

between 0 and 1, such that

E
(
δTY | X

)
= 2cαγ ′0X

We estimate γ0 through the ordinary least squares method. To make the new model more

extensible and user friendly, we rewrite the least squares estimation process as follows:

min
γ

{
N∑
i=1

(
δiTiYi − 2cαγ

′Xi
)2}

⇐⇒ min
γ


N∑
i=1

δ2i∑
j=1

(
TiYi − 2cαγ

′Xi/δi
)2

α is selected after a proper choice of a, b, s.t. α, aα, and bα are all integers

⇐⇒ min
γ


N∑
i=1

δ2i∑
j=1

(
Yi − 2cαγ

′XiTi/δi
)2 (2.6)

The objective function (2.6) leads to the following interaction filtering procedure for the con-

tinuous response, which consists of a working dataset and a working model.
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i. For patient i from 1 to N, replicate the corresponding observation δ2i times, where δi is

generated from the distribution of δ. The generated new dataset is called the working

dataset.

ii. Use the working dataset from step i and the working model below to perform variable

selection with an appropriate method such as LASSO under the context of the least

squares procedure. The selected variables are then the ones that potentially interact with

the treatment.

Yi = 2cαγ
′XiTi/δi + εi, where ε ∼ (0, σ∗2) (2.7)

2.3.2 Justification of the Objective Function

The objective function (2.6), which estimates γ0 using the working dataset and the working

model, can be rewritten in the following equivalent general form

min
f
Eδ,T,Y

[
δ2
(
Y − cαf (X) T/δ

)2
| X
]

(2.8)

for any given X subject to f ∈ z = {2γ
′
X | γ ∈ Rp}

where the expectation is with respect to δ, T , Y given X, and z is a functional space. Let

f0(X) and f∗(X) be the respective minimizer of (2.8) when no specific form of f(X) is assumed

and when f(X) is in the space of z. We can show that there is a direct association between

the individual treatment effect E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
and f0(X) regardless of

the actual relationship between Y and X. Hence, considering that f∗(X) is a surrogate of f0(X)
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in a functional space, it is reasonable to use f∗(X) for interaction filtering even if the model

assumption in (2.1) is not fully correct.

The association between the individual treatment effect and f0(X) can be derived as follows.

Eδ,T,Y

[
δ2
(
Y − cαf (X) T/δ

)2
| X
]

= E
[
δ2Y2 − 2cαf (X) TδY + c2α2f2 (X) T 2 | X

]
.

Define L = δ2Y2−2cαfTδY+c2α2f2T 2. Since δ and Y are independent when T is given, we have

E
(
L | X, T = 1

)
=E
(
δ2 | T = 1

)
E
(
Y2 | X, T = 1

)
− 2cαf (X)

cα

P (T = 1)
E
(
Y | X, T = 1

)
+ c2α2f2 (X)

E (L | X, T = −1) =E
(
δ2 | T = −1

)
E
(
Y2 | X, T = −1

)
+ 2cαf (X)

cα

P (T = −1)
E
(
Y | X, T = −1

)
+ c2α2f2 (X) .

Hence,

min
f
E
(
L | X

)
⇔ min

f

{
− 2c2α2f (X)E

(
Y | X, T = 1

)
+ 2c2α2f (X)E

(
Y | X, T = −1

)
+ c2α2f2 (X)

}
⇔ min

f

{
− 2f (X)E

(
Y | X, T = 1

)
+ 2f (X)E

(
Y | X, T = −1

)
+ f2 (X)

}

and we have the minimizer f0 (X) = E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
. The minimizer f0 (X)

equals the individual treatment effect regardless of the actual relationship between Y and X.
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2.3.3 Choice of Parameter a, b and c in general

It is sensible to use the working dataset, the working model and the least squares method

to estimate γ0 whether the assumed model is fully correct or not. Note that the least squares

estimation procedure can also be written as

min
r

N∑
i=1

(
δiTiYi
cα

− 2γ ′Xi

)2

thus one reasonable criterion for choosing a, b and c is to minimize the variance of δTYcα for any

given X. The variance can be derived as follows:

Var
(
δTY/cα | X

)
=

1

c2

[
E
(
δ2T 2Y2/α2 | X

)
− E2

(
δTY/α | X

)]
=

1

c2

[
E
(
δ2Y2/α2 | X

)
− E2

(
δTY/α | X

)]
δ ⊥⊥ Y | X, T

=
1

c2

{
ET

[
E
(
δ2/α2 | T

)
· E
(
Y2 | X, T

)]
− E2T

[
T · E (δ/α | T) · E (Y | X, T)

]}
.

Note that

E
(
δ2/α2 | T = 1

)
=

c− aP (T = 1)

(1− a)P (T = 1)
+ a2

P (T = 1) − c

(1− a)P (T = 1)
=
c+ ca− aP (T = 1)

P (T = 1)
,

E
(
δ2/α2 | T = −1

)
=

c− bP (T = −1)

(1− b)P (T = −1)
+ b2

P (T = −1) − c

(1− b)P (T = −1)
=
c+ cb− bP (T = −1)

P (T = −1)
,
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T · E
(
δ/α | T = 1

)
· E
(
Y | X, T = 1

)
=

c

P (T = 1)
E
(
Y | X, T = 1

)
,

T · E
(
δ/α | T = −1

)
· E
(
Y | X, T = −1

)
= −

c

P (T = −1)
E
(
Y | X, T = −1

)
.

Hence, we have

Var
(
δTY/cα | X

)
=

c+ ca− aP (T = 1)

c2
E
(
Y2 | X, T = 1

)
+
c+ cb− bP (T = −1)

c2
E
(
Y2 | X, T = −1

)
−
[
E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)]2
. (2.9)

Next, we find the optimal a, b and c such that (2.9) is minimized for any given X. After

taking derivative with respect to a and b, we have

∂Var
(
δTY/cα | X

)
∂a

=
E
(
Y2 | X, T = 1

)
c2

·
[
c− P (T = 1)

]
,

∂Var
(
δTY/cα | X

)
∂b

=
E
(
Y2 | X, T = −1

)
c2

·
[
c− P (T = −1)

]
.

Clearly, the sign of the derivatives depend on the value of c, and there are four possible cases.

Case 1

c > max
{
P (T = 1) , P (T = −1)

}
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We have ∂Var(δTY/cα|X)
∂a > 0,∂Var(δTY/cα|X)∂b > 0. Hence, a and b should be as small as

possible. Meanwhile, a and b have to be within a certain range such that δ is still a

random variable, i.e., values in (2.5) are all between 0 and 1. Note that

P
(
δ = aα | T = 1

)
=

P (T = 1) − c

(1− a)P (T = 1)
,

∂P
(
δ = aα | T = 1

)
∂a

=
P (T = 1) − c

P (T = 1)
· 1

(1− a)2
< 0.

So a achieves the smallest value when P
(
δ = aα | T = 1

)
= 1. Similarly, b achieves the

smallest value when P
(
δ = bα | T = −1

)
= 1.

Thus, Var
(
δTY/cα | X

)
is minimized when

a =
c

P (T = 1)
and b =

c

P (T = −1)
.

Case 2 and Case 3

min
{
P (T = 1) , P (T = −1)

}
< c < max

{
P (T = 1) , P (T = −1)

}
or c < min

{
P (T = 1) , P (T = −1)

}
.

Following the same discussion as in Case 1, Var
(
δTY/cα | X

)
is minimized when

a =
c

P (T = 1)
and b =

c

P (T = −1)
.
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Case 4

c = P (T = 1) or c = P (T = −1) .

If c = P (T = 1), following the same discussion as in Case 1, we have Var
(
δTY/cα | X

)
is

minimized when b = c
P(T=−1) , but a can be an arbitrary positive number (of course, 1 is

not included by definition). Similarly, if c = P (T = −1), we need a = c
P(T=1) , but b can

be an arbitrary positive number except 1.

In all of the above four cases, the minimized variance for a given X is

Var
(
δTY/cα | X

)
=
E
(
Y2 | X, T = 1

)
P (T = 1)

+
E
(
Y2 | X, T = −1

)
P (T = −1)

−
[
E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)]2
.

(2.10)

Clearly, the minimum variance does not depend on c, and we may let c = 1 for simplicity.

Hence, a typical choice of a, b and c that minimize the variance of δYTcα for any given X is

a =
c

P (T = 1)
, b =

c

P (T = −1)
, and c = 1

Remark Whether the variance of δYTcα for a given X is affected by the value of c depends on the

value of a and b.
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2.3.4 Special Choices of Parameter a, b and c

Just as the weighted least squares method may assign different weights to different obser-

vations, the number of replications of each observation in the working dataset may also be

modified when needed. For example, we may want to have a balanced working dataset, mean-

ing that the number of patients in the treatment arm is the same as that in the control arm.

Or we may want to keep the proportion between the two arms in the working dataset the same

as that of the original dataset. Meanwhile, we also want Var (δTY/cα | X) as small as possible,

and δ still has to be a random variable.

2.3.4.1 Choice of Parameters for a Balanced Working Dataset

When the number of patients in the treatment arm and the control arm are the same in the

working dataset, the following condition has to be satisfied

α2P
(
T = 1, δ = α

)
+ a2α2P

(
T = 1, δ = aα

)
= α2P

(
T = −1, δ = α

)
+ b2α2P

(
T = −1, δ = bα

)
(2.11)

Based on the distribution of δ, Equation (2.11) leads to the following

α2 · c− aP (T = 1)

1− a
+ a2α2 · P (T = 1) − c

1− a
= α2 · c− bP (T = −1)

1− b
+ b2α2 · P (T = −1) − c

1− b

⇐⇒ a
(
c− P (T = 1)

)
= b

(
c− P (T = −1)

)
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Hence, to have two balanced arms, we need

a

b
=
c− P (T = −1)

c− P (T = 1)
. (2.12)

We need to minimize Var
(
δTY/cα | X

)
when (2.12) holds. From (2.12), let

a = k
(
c− P (T = −1)

)
, b = k

(
c− P (T = 1)

)
(2.13)

where k 6= 0 is a constant. Substituting a, b in (2.9) with those in (2.13), the variance of δYT
cα

for a given X becomes

Var
(
δTY/cα | X

)
=

c+ kc2 − kc+ kP (T = −1)P (T = 1)

c2
·
[
E
(
Y2 | X, T = 1

)
+E
(
Y2 | X, T = −1

)]
−
[
E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)]2
.

And its derivative with respect to k is

∂Var
(
δTY/cα | X

)
∂k

=
E
(
Y2 | X, T = 1

)
+ E

(
Y2 | X, T = −1

)
c2

·
[
c− P (T = 1)

]
·
[
c− P (T = −1)

]
.

(2.14)

The sign of (2.14) depends on c. Note that a, b > 0 and c cannot be P (T = 1) or P (T = −1)

according to (2.12). Thus, there are two possible cases.

Case 1

c > max
{
P (T = 1) , P (T = −1)

}
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We have
∂Var

(
δTY/cα|X

)
∂k > 0, so k should be as small as possible. Meanwhile, a and b have

to be within a certain range such that δ is still a random variable. Note that

P
(
δ = aα | T = 1

)
=

P (T = 1) − c[
1+ k (P (T = −1) − c)

]
P (T = 1)

,

∂P
(
δ = aα | T = 1

)
∂k

=
P (T = 1) − c

P (T = 1)
·
[
1+ k (P (T = −1) − c)

]−2 · [c− P (T = −1)
]
< 0.

Therefore, P
(
δ = aα | T = 1

)
≤ 1 ⇒ k ≥ c

cP (T = 1) − P (T = 1)P (T = −1)

Similarly, we have

P
(
δ = bα | T = −1

)
=

P (T = −1) − c[
1+ k (P (T = 1) − c)

]
P (T = −1)

,

∂P
(
δ = bα | T = −1

)
∂k

=
P (T = −1) − c

P (T = −1)
·
[
1+ k (P (T = 1) − c)

]−2 · [c− P (T = 1)
]
< 0.

Therefore, P
(
δ = bα | T = −1

)
≤ 1 ⇒ k ≥ c

cP (T = −1) − P (T = 1)P (T = −1)
.

Hence, to minimize Var
(
δTY/cα | X

)
, we need

k =


c

cP (T = 1) − P (T = 1)P (T = −1)
if P (T = 1) < P (T = −1)

c

cP (T = −1) − P (T = 1)P (T = −1)
if P (T = 1) > P (T = −1)

Case 2

c < min
{
P (T = 1) , P (T = −1)

}
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Following the same discussion as in Case 1, Var
(
δTY/cα | X

)
is minimized when

k =


c

cP (T = 1) − P (T = 1)P (T = −1)
if P (T = 1) < P (T = −1)

c

cP (T = −1) − P (T = 1)P (T = −1)
if P (T = 1) > P (T = −1)

In both Case 1 and Case 2, the minimized variance for a given X after simplification is

min Var

(
δTY

cα
| X

)
=



1

P (T = 1)
·
[
E
(
Y2 | T = 1, X

)
+ E

(
Y2 | T = −1, X

) ]
−
[
E (Y | T = 1, X) − E (Y | T = −1, X)

]2
,

when P (T = 1) < P (T = −1)

1

P (T = −1)
·
[
E
(
Y2 | T = 1, X

)
+ E

(
Y2 | T = −1, X

) ]
−
[
E (Y | T = 1, X) − E (Y | T = −1, X)

]2
,

when P (T = 1) > P (T = −1) .

(2.15)

The minimized variance in (2.15) are not dependent on c. So, we may let c = 1 for simplicity.

Comparing (2.15) with (2.10), the two minimized variances have very similar form, and the

actual difference between the two depends on how unbalanced the original dataset is. Based on
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the above discussion, a typical choice of a, b and c that minimize the variance of δTY
cα for any

given X while providing a balanced working dataset is

a = kP (T = 1) , b = kP (T = −1) , c = 1

where k =


1

P2 (T = 1)
, if P (T = 1) < P (T = −1)

1

P2 (T = −1)
, if P (T = 1) > P (T = −1)

2.3.4.2 Choice of Parameters for a Proportional Working Dataset

When the proportion between the two arms in the working dataset is the same as that of

the original dataset, the following condition has to be satisfied

α2P (T = 1)P
(
δ = α | T = 1

)
+ a2α2P (T = 1)P

(
δ = aα | T = 1

)
α2P (T = −1)P

(
δ = α | T = −1

)
+ b2α2P (T = −1)P

(
δ = bα | T = −1

) =
P (T = 1)

P (T = −1)
. (2.16)

Based on the distribution of δ, Equation (2.16) leads to

c+ ca− aP (T = 1)

c+ cb− bP (T = −1)
=

P (T = 1)

P (T = −1)
(2.17)

We need to minimize Var
(
δTY
cα | X

)
when (2.17) holds. Suppose

c+ ca− aP (T = 1) = kP (T = 1) , c+ cb− bP (T = −1) = kP (T = −1) for some k
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Then we have

a =
kP (T = 1) − c

c− P (T = 1)
, b =

kP (T = −1) − c

c− P (T = −1)

The variance of δTYcα for a given X becomes

Var

(
δTY

cα
| X

)
=

kP (T = 1)

c2
E
(
Y2 | T = 1, X

)
+
kP (T = −1)

c2
E
(
Y2 | T = −1, X

)
−
[
E (Y | T = 1, X) − E (Y | T = −1, X)

]2

and its derivative with respect to k is

∂Var
(
δTY
cα | X

)
∂k

=
1

c2
E
(
Y2 | X

)
> 0.

Thus, k should be as small as possible. Note that δ has to be a random variable.

P
(
δ = aα | T = 1

)
=

[
P (T = 1) − c

]2[
kP (T = 1) + P (T = 1) − 2c

]
· P (T = 1)

P
(
δ = bα | T = −1

)
=

[
P (T = −1) − c

]2[
kP (T = −1) + P (T = −1) − 2c

]
· P (T = −1)

∂P
(
δ = aα | T = 1

)
∂k

< 0

∂P
(
δ = bα | T = −1

)
∂k

< 0
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Hence, to minimize Var
(
δTY
cα | X

)
, we need

k = max

{
c2[

P (T = 1)
]2 , c2[

P (T = −1)
]2
}

The minimized variance is thus

min Var

(
δTY

cα
| X

)
=



1

P (T = 1)
E
(
Y2 | X, T = 1

)
+
P (T = −1)[
P (T = 1)

]2E(Y2 | X, T = −1
)

−
[
E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)]2
,

when P (T = 1) < P (T = −1)

P (T = 1)[
P (T = −1)

]2E(Y2 | X, T = 1
)
+

1

P (T = −1)
E
(
Y2 | X, T = −1

)
−
[
E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)]2
,

when P (T = 1) > P (T = −1)

(2.18)

The minimized variance does not depend on c, and we let c = 1 for simplicity. Note that (2.18)

also has a similar form as (2.10), and the actual difference depends on the proportion of the two

arms in the original dataset. Thus, a typical choice of a, b and c that minimize the variance of

δTY
cα for any given X while keeping the proportion between the two arms is

a =
kP (T = 1) − 1

P (T = −1)
, b =

kP (T = −1) − 1

P (T = 1)
, c = 1,

where k = max

{
1

P2 (T = 1)
,

1

P2 (T = −1)

}
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2.4 Interaction Filtering for the Survival Response

2.4.1 Extension to the Survival Response

One advantage of constructing a working model and a working dataset in the proposed

way is that it can be intuitively extended to other responses. Here, we extend the interaction

filtering procedure to the survival response.

i. For patient i from 1 to N, replicate the corresponding observation δ2i times, where δi is

generated from the distribution of δ. The generated new dataset is called the working

dataset.

ii. Use the working dataset from step i and the working model below to perform variable

selection with an appropriate method such as LASSO under the context of the Cox pro-

portional hazard model (32). The selected variables are then the ones that potentially

interact with the treatment.

log
h (t | Xi)

h0 (t)
= 2cαγ ′Xi · Ti/δi (2.19)

Compared with the case of the continuous response, the survival response case has exactly

the same working dataset generating procedure, but the working model is now based on the

Cox regression. Here, we use the same choice of parameter a, b and c as in the continuous case

for simplicity.
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2.4.2 Justification of the Objective Function

Though the extension is intuitive, we need to justify that the objective function based on the

working dataset and the working model is reasonable for filtering the interactions. The proposed

procedure is based on the Cox model, the objective function is thus the partial likelihood, which

is as follows when using the working model and the working dataset

max
f

N∑
i=1

δ2iξi

cαf (Xi) Ti/δi − log
 N∑
j=1

δ2j · exp
(
cαf (Xj) Tj/δj

)
· I
(
Yj ≥ Yi

) (2.20)

subject to fi ∈ zi = {2γ ′Xi | r ∈ Rp}

where Y is the observed time, and ξ is the event indicator with 1 indicating the event and 0

indicating the censoring. Also assume that ξ is independent of T , X and Ỹ, where Ỹ is the

survival time, and equals Y when the observation is not censored.

The objective function (2.20) can be rewritten as follows

max
f

1

N

N∑
i=1

ξicαf (Xi) Tiδi − δ2iξi · log
 N∑
j=1

δ2j · exp
(
cαf (Xj) Tj/δj

)
· I
(
Yj ≥ Yi

)
⇐⇒ max

f

1

N

N∑
i=1

ξicαf (Xi) Tiδi − ξiδ2i · log
 1

N

N∑
j=1

δ2j · exp
(
cαf (Xj) Tj/δj

)
· I
(
Ỹj ≥ Ỹi

)
where Ỹi is the actual survival time

⇐⇒ max
f

1

N

N∑
i=1

{
ξicαf (Xi) Tiδi

−

∫∞
0

ξiδ
2
i ·

log
 1

N

N∑
j=1

δ2j · exp
(
cαf (Xj) Tj/δj

)
· I
(
Ỹj ≥ t

)∆(t− Ỹi)dt

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Thus, the objective function has the following general form

max
f

{
E
(
ξcαf (X) Tδ

)
− E

[∫∞
0

ξδ2log
[
E
(
δ2 · exp

(
cαf (X) T/δ

)
· I
(
Ỹ ≥ t

))]
· ∆
(
t− Ỹ

)
dt

]}
(2.21)

Note that ξ is independent of T , hence,

E
[
ξcαf (X) Tδ

]
= EX

[
cαf (X) · E (δT | X) · E

(
ξ | X

)]
= 0

Thus, the objective function becomes

min
f
l∗ (f) =

{∫∞
0

E
[
ξδ2∆

(
t− Ỹ

)]
logE

[
δ2exp (cαf (X) T/δ) I

(
Ỹ ≥ t

)]
dt

}
(2.22)

subject to f ∈ z = {2γ ′X | γ ∈ Rp}

Let f0 (X) and f∗ (X) be the respective minimizer of (2.22) when no specific form of f (X)

is assumed and when f (X) is in the space of z. We can show that there is an association

between the individual treatment effect and f0 (X) regardless of the true underlying model.

Hence, considering that f∗ (X) is a surrogate of f0 (X) in a functional space, it is reasonable to

use f∗ (X) for interaction filtering.

To find the minimum of l∗ (f), let

∂l∗
(
f (X) + εη (X)

)
∂ε

|ε=0= 0



33

where η (X) is an arbitrary function of X. Thus, f0 (X) satisfies the following condition

EX


∫∞
0

E
[
ξδ2∆

(
t− Ỹ

)]
·
E
[
δexp (cαf0 (X) T/δ) I

(
Ỹ ≥ t

)
cαT | X

]
E
[
δ2exp (cαf0 (X) T/δ) I

(
Ỹ ≥ t

)] dt · η (X)

 = 0, ∀η (X)

which is equivalent to

∫∞
0

E
[
ξδ2∆

(
t− Ỹ

)]
·
E
[
δexp (cαf0 (X) T/δ) I

(
Ỹ ≥ t

)
T | X

]
E
[
δ2exp (cαf0 (X) T/δ) I

(
Ỹ ≥ t

)] dt· = 0. (2.23)

Note that

E
[
δexp (cαf0 (X) T/δ) I

(
Ỹ ≥ t

)
T | X

]
δ ⊥⊥ Ỹ | T

= E
[
δexp (cαf0 (X) /δ) | X, T = 1

]
· E
[
I
(
Ỹ ≥ t

)
| X, T = 1

]
· P (T = 1)

−E
[
δexp (−cαf0 (X) /δ) | X, T = −1

]
· E
[
I
(
Ỹ ≥ t

)
| X, T = −1

]
· P (T = −1)

= φ
(
a, f0 (X)

)
· S (t | X, T = 1) − φ

(
b,−f0 (X)

)
· S (t | X, T = −1)

where φ
(
u, f0 (X)

)
= α · exp

(
cf0 (X)

)
·
c− u ·

[
I (u = a)P (T = 1) + I (u = b)P (T = −1)

]
1− u

+u · α · exp
(
cf0 (X) /u

)
·
[
I (u = a)P (T = 1) + I (u = b)P (T = −1)

]
− c

1− u
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Also Note that

E
[
ξδ2∆

(
t− Ỹ

)]
(ξ ⊥⊥ T, Ỹ)

= E (ξ) ·
{
E
[
δ2 | T = 1

]
· P (T = 1) · E

[
∆
(
t− Ỹ

)
| T = 1

]
+ E

[
δ2 | T = −1

]
· P (T = −1) · E

[
∆
(
t− Ỹ

)
| T = −1

]}
= E (ξ) · E

(
δ2
)
·
{
P∗ (T = 1) · E

[
∆
(
t− Ỹ

)
| T = 1

]
+ P∗ (T = −1) · E

[
∆
(
t− Ỹ

)
| T = −1

]}
(2.24)

where

P∗ (T = 1) = E
[
δ2 | T = 1

]
· P (T = 1) /E

(
δ2
)

P∗ (T = −1) = E
[
δ2 | T = −1

]
· P (T = −1) /E

(
δ2
)

and P∗ (T = 1) and P∗ (T = −1) are the respective proportion of the treatment arm and the

control arm in the working dataset. Hence, (2.24) can be further written as

E (ξ) · E
(
δ2
)
· g∗ỹ (t)

where g∗ỹ (t) is the marginal density of Ỹ in the working data.

Hence, Condition (2.23) is equivalent to the following

∫∞
0

g∗ỹ (t)
φ
(
a, f0 (X)

)
· S
(
t | X, T = 1

)
G
(
f0 (X) , t

) dt =

∫∞
0

g∗ỹ (t)
φ
(
b,−f0 (X)

)
· S
(
t | X, T = −1

)
G
(
f0 (X) , t

) dt
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where G
(
f0 (X) , t

)
= E

[
δ2exp

(
cαf0 (X) T/δ

)
I
(
Ỹ ≥ t

)]
.

Φ (f0 (X)) =

E∗
Ỹ

[
S(Ỹ|X,T=−1)
G(f0(X),Ỹ)

]
E∗
Ỹ

[
S(Ỹ|X,T=1)
G(f0(X),Ỹ)

] (2.25)

where Φ = φ(a,f0(X))
φ(b,−f0(X))

is a monotone increasing function of f0 (X).

The right hand side of Equation (2.25) can be considered as the representative of the in-

dividual treatment effect, thus (2.25) builds an association between the individual treatment

effect and f0 (X). Since f∗ (X) is a surrogate of f0 (X) in a functional space, it is reasonable to

use f∗ (X) for interaction filtering.

2.5 Remarks for Implementation

In practice, after building the working dataset and the working model, we use LASSO as

the variable selection method. Other methods such as elastic net (33) can also be used. There

are several small tricks that can further enhance the performance.

The minimum variance of δTY
cα for a given X under the three different cases we propose for

the continuous response are shown in (2.10), (2.15) and (2.18). It is clear that if the response

is centered around 0 for every given X, then the value of the minimum variance can be reduced

though the formulas remain unchanged. One way to make the response mean for every given

X close to 0 is to subtract the estimated main effects from the response. Note that the main

effects should be estimated when the treatment and the control arm are coded as 1 and −1

respectively (the estimation of the main effects are affected by the treatment code). This can

be done by fitting a rough complete model like (2.1) with LASSO and estimating important
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main effects. The estimation does not have to be accurate. As long as the response is more

centered around 0 after reducing the main effects, the value of the minimum variance will be

smaller. Actually, even simply subtracting the sample mean of the response will help. The idea

of reducing the main effects is also intuitively correct for both the continuous and the survival

response, since the working model will thus be closer to the true model and the smaller main

effects after reduction are easier to cancel out.

We have a parameter α when building the working model and the working dataset, which

helps make the number of replications of each observation an integer. This is only useful for

illustration purpose such that the user will not get confused by replicating an observation a

fraction of a time. When actually implementing the procedure, replicating an observation is

equivalent to assigning a corresponding weight, so we do not have to make it an integer. Thus,

we simply let α = 1 in practice.

The LASSO method relies on a cross validation procedure to select the best tuning param-

eter. The cross validation procedure involves splitting the dataset randomly into several parts,

so the selected best tuning parameter may be different if the dataset is split in a different way.

In practice, we run the cross validation multiple times and use the median of the selected tuning

parameters.

2.6 Simulation Studies

2.6.1 Simulation Setup

In this section, we perform a series of simulation studies to investigate the performance of

the proposed method under various conditions. The following two methods are compared
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(i) The proposed interaction filtering procedure based on the working model and the working

dataset, with LASSO as the variable selection method (IFL)

(ii) The ordinary multivariate regression procedure based on the complete model (2.1) with

LASSO as the variable selection method (OL)

The following metrics are used for comparing the performance. We borrow the name Sen-

sitivity and Positive Predictive Value, though the situation here is a little different from where

the terms are normally used. We call a covariate a true interaction covariate if there is a

corresponding interaction term specified in the simulation model.

(i) Sensitivity

Definition The probability that a covariate is selected as an interaction covariate given

that it is a true interaction covariate.

Calculation

∣∣{Xi : Xi is a true interacation covariate & Xi is selected as an interaction covariate
}∣∣∣∣{Xi : Xi is a true interacation covariate

}∣∣
(ii) Positive Predictive Value (PPV)

Definition The probability that a selected interaction covariate is a true interaction co-

variate.
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Calculation

∣∣{Xi : Xi is a true interacation covariate & Xi is selected as an interaction covariate
}∣∣∣∣{Xi : Xi is selected as an interaction covariate

}∣∣
(iii) Type I Error

Definition The probability that at least one covariate is selected given that there is no

true interaction covariate.

Calculation Running the simulation multiple times under the condition that there is

no true interaction covariate, and calculate the proportion of times that at least one

interaction covariate is selected.

(Note that the main effects selected by the OL method is not involved in the calculations.)

We use a similar data generating procedure as in Tian’s paper (30). For the continuous

response, the following model is used to generate the dataset

Y =

p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε (2.26)
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where p is set to be 100, and the covariates (X1, X2, ..., X100) follow a multivariate normal

distribution with a compound symmetric variance-covariance matrix



X1

X2

...

X100


∼ N





5

5

...

5


,



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1




The means of the covariates are set to 5 to mimic the real world data which usually have

positive measurements. The random error ε follows Normal (0, 1). The probability that a

patients belongs to the treatment arm is 2/3, i.e., P (T = 1) = 2/3, P (T = −1) = 1/3. When

there exist true interaction covariates, the values of γ ′s are as follows

γ1 = 1, γ2 = −1, γ3 = 2, γ4 = −2, and all other γ = 0

Thus, the four true interaction covariates are X1, X2, X3 and X4.

For the survival response, we generate the data from a modification of (2.26)

Y = exp

{
0.1 ·

(
p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε

)}
(2.27)

All the settings and parameters in the survival response case are exactly the same as in the

continuous response case. The event indicator is randomly generated to induce 20% censoring

rate.
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We consider the following different scenarios for simulation.

(i) β5 = 1, β6 = −1, β7 = 2, β8 = −2, all other β = 0

p = 0.2, sample size N = 50, 100, 200

(ii) β5 = 1, β6 = −1, β7 = 2, β8 = −2, all other β = 0

p = 0.5, sample size N = 50, 100, 200

(iii) β5 = 2, β6 = −2, β7 = 4, β8 = −4, all other β = 0

p = 0.2, sample size N = 50, 100, 200

(iv) β5 = 2, β6 = −2, β7 = 4, β8 = −4, all other β = 0

p = 0.5, sample size N = 50, 100, 200

Scenario (i) and (ii) represent the cases that the main effects are moderate, while Scenario (iii)

and (iv) represent the cases that the main effects are relatively large.

2.6.2 Simulation Result for the Continuous Response

2.6.2.1 Sensitivity and Positive Predictive Value

We conductded 500 runs of simulation for every case mentioned above. In each run, a dataset

is generated, and both methods (IFL and OL) are applied to select interaction covariates. The

corresponding Sensitivity and Positive Predictive Value are calculated. After having results

from all the 500 runs, boxplots are generated to show the average performance.

Figure 1 and Figure 2 are the boxplots of Sensitivity and Positive Predictive Value when

the main effects are moderate (Scenario (i) and (ii)). We can see that the two methods perform
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almost the same in Sensitivity. The sample size has a positive impact on the Sensitivity, while

the correlation among covariates has a negative impact. However, when it comes to the Positive

Predictive Value, our method has a better performance, and this advantage becomes bigger as

the sample size increases.

Figure 3 and Figure 4 are the boxplots of Sensitivity and Positive Predictive Value when

the main effects are relatively large (Scenario (iii) and (iv)). Overall, we can see the same

performance pattern as when the main effects are moderate. Comparing Figure 3 and Figure 1,

our method essentially maintains the same performance, while the OL method surprisingly has

a slightly improved Sensitivity when the main effects increase. A possible reason is that the OL

method has to handle both the main effects and the interaction effects, and larger main effects

can help it better select and estimate those main effects, which in turn helps select interaction

covariates. As for the Positive Predictive Value, our methods still perform better, especially

when the sample size becomes larger.
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Figure 1. Sensitivity when the main effects are moderate (Scenario (i) and (ii), Continuous).
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Figure 2. PPV when the main effects are moderate (Scenario (i) and (ii), Continuous).
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Figure 3. Sensitivity when the main effects are large (Scenario (iii) and (iv), Continuous).
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Figure 4. PPV when the main effects are large (Scenario (iii) and (iv), Continuous).
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2.6.2.2 Type I Error

In the pharmaceutical area, a false discovery could waste a lot of time and resources if a

separate trial is conducted to verify the result. Thus, it is interesting to find out how the

methods perform when there are actually no interaction effects.

The same model and data generating procedure are used except that the interaction co-

efficients γ ′s are all set to 0. We conducted 500 runs of simulation for every case. In each

run, a dataset is generated, and both methods (IFL and OL) are applied to select interaction

covariates. If a method reports that some interaction covariates are selected, a so-called error

event is recorded for that method. The proportion of error events out of 500 runs is calculated

as the estimated Type I Error for each method.

Since whether the main effects are small or relatively large does not make much difference

in performance, we thus only show the results for the cases with large main effects here to avoid

repetition. According to Table I, our method is significantly better than the OL method in

all cases. The OL method has Type I Errors almost close to 1, and improves slowly when the

sample size increases. To the contrary, our method has a very small Type I Error, and improves

significantly when the sample size increases.
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TABLE I

TYPE I ERROR (LARGE MAIN EFFECTS, CONTINUOUS)

p N Method Type I Error

0.2

50
IFL 0.290
OL 0.976

100
IFL 0.052
OL 0.968

200
IFL 0.002
OL 0.906

0.5

50
IFL 0.280
OL 0.984

100
IFL 0.040
OL 0.974

200
IFL 0.002
OL 0.934
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2.6.3 Simulation Result for the Survival Response

2.6.3.1 Sensitivity and Positive Predictive Value

Similar to the continuous response case, we conducted 500 runs of simulation for every case

mentioned above. In each run, a dataset is generated, and both methods (IFL and OL) are

applied to select interaction covariates. The corresponding Sensitivity and Positive Predictive

Value are calculated. After having results from all the 500 runs, boxplots are generated to show

the average performance.

Figure 5 and Figure 6 show the results when the main effects are moderate. When the

sample size is very small (N = 50), the OL method beats our method in both Sensitivity and

Positivity Predictive Value. Note that around half of 500 runs of simulation for each method

cannot select any interaction covariates, so the Positive Predictive Value of these runs cannot

be calculated and has to be excluded from the boxplot. When the sample size increases, our

methods perform better in both Sensitivity and Positivity Predictive Value.

Figure 7 and Figure 8 show the results when the main effects are relatively large. The

OL method beats our method in Sensitivity when the sample size is very small (N = 50), but

our method catches up and outperforms the OL method as the sample size increases. As for

Positive Predictive Value, our method has a better performance especially when the sample

size is large.
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Figure 5. Sensitivity when the main effects are moderate (Scenario (i) and (ii), Survival).
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Figure 6. PPV when the main effects are moderate (Scenario (i) and (ii), Survival).
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Figure 7. Sensitivity when the main effects are large (Scenario (iii) and (iv), Survival).
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Figure 8. PPV when the main effects are large (Scenario (iii) and (iv), Survival).
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2.6.3.2 Type I Error

The same model and data generating procedure are used except that the interaction co-

efficients γ ′s are all set to 0. In total 500 runs of simulation are conducted for every case.

The proportion of times that at least one interaction covariate is selected is calculated as the

estimated Type I Error for each method.

Table II shows the result for the cases when the main effects are relatively large. The cases

with moderate main effects have similar results. From Table II, we can see that the Type I Error

of our method is much smaller than that of the OL method. When the sample size increases

from 50 to 200, our method improves greatly while the OL method does not improve at all.

2.6.4 Summary

In this chapter, we introduced an interaction filtering procedure that can select relevant

interactions without modeling the main effects. The proposed method works for both the

continuous and the survival response, and is shown to be a reasonable procedure not relying

on model specifications. Simulation is conducted to compare the performance of the proposed

method and the ordinary multivariate regression with LASSO. Overall, our method shows a

better performance in Sensitivity, Positive Predictive Value and Type I Error, especially when

the sample size is moderately large.
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TABLE II

TYPE I ERROR (LARGE MAIN EFFECTS, SURVIVAL)

p N Method Type I Error

0.2

50
IFL 0.166
OL 0.924

100
IFL 0.142
OL 0.996

200
IFL 0.062
OL 1.000

0.5

50
IFL 0.178
OL 0.944

100
IFL 0.092
OL 0.998

200
IFL 0.034
OL 1.000



CHAPTER 3

SIGNATURE BUILDING WITH QUANTITATIVE CRITERIA

In this chapter, we propose a subgroup signature building method based on quantitative

criteria. The proposed method does not rely on a specific model, and works for both the

continuous and the survival response.

3.1 Motivation

Some subgroup identification methods focus on prediction, either predicting a response or

a score, and select desired patients based on the prediction result. These methods usually

produce a clear quantitative description of patients’ potential outcome before selection, which

brings several advantages. First, researchers can have some sense about the characteristics of

potential subgroups. Second, the goal of the subgroup identification procedure can be based

on some quantitative feature. Third, this also helps make the procedure look less like a fishing

adventure though it still is. But the performance of these methods relies on the prediction

accuracy at individual level, which is actually a more difficult problem than simply selecting a

subgroup.

Some other methods tries to maximize the interaction effect or treatment effect in a sub-

group, based on either p values of the interaction terms or the difference between test statistics

of subgroups. These methods focus directly on splitting the dataset, and is thus more optimized

for subgroup identification rather than prediction. The training result can often provide well

55
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separated subgroups in terms of drug effects. However, there are also several disadvantages.

First, maximizing the effect does not provide enough information about the potential subgroup.

One does not know what the maximized effect is until a subgroup is obtained. Second, it is

difficult to adjust the subgroup identification goal as needed. One could end up with a very

small group with a very large effect size. But since the whole procedure is built on maximizing

the effect, you cannot do much about it. Third, the training result is often overly optimistic.

It is desirable to have a method that focuses directly on subgroup identification rather

than prediction, but meanwhile also provides quantitative information about the patients being

selected. It is also desirable that the method does not rely on any specific model, and can have

an adjustable identification goal.

3.2 Setup and Notations

The same setup and notations are used as in Chapter 2.Howerver, to make this chapter self-

contained, we repeat them here. Suppose we have a randomized clinical trial with two arms, in

which patients are allocated at random to receive either the treatment or the control with some

prespecified probabilities. The control could be a placebo or some other existing treatment.

Let Y ∈ R1 be the response variable and T ∈ R1 be the binary treatment variable, where T = 1

and −1 correspond to the treatment arm and the control arm respectively. Let X ∈ Rp be the

p-dimensional random vector of baseline covariates, including an intercept covariate 1. Since

it is a randomized trial, T and X are independent. Assume the observed dataset consists of N

patients, and every patient data in the dataset is an independent and identically distributed

copy of (Y, T, X).
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3.3 Method Derivation for the Continuous Response

A natural question people would ask when taking a medicine is ”how much can I improve?”.

This question is a perfect quantitative criterion for subgroup identification. Translating it to a

mathematical formula, we have

E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
≥ 2d (3.1)

where d is a pre-specified constant, and serves as a threshold for the desired subgroup or say

signature-positive group (Sig.+). Patients satisfying Condition (3.1) are those we want to

identify and put in the signature-positive group. The rest of the patients are automatically put

in the signature-negative group (Sig.−).

Based on (3.1), a patient in the positive group should satisfy

E
(
Y − Td | X, T = 1

)
− E

(
Y − Td | X, T = −1

)
≥ 0 (3.2)

Let D0(X) be the true or say correct subgroup identifier, where

D0(X) =


1 when belonging to Sig.+ group

−1 when belonging to Sig.− group
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Note that every patient in the Sig.+ group should have a nonnegative value in (3.2), while

every patient in the Sig.− group should have a negative value. Thus, D0(X) has to satisfy

D0 (x) ∈ argmax
D

∫ [
E
(
Y−Td | X, T = 1

)
−E
(
Y−Td | X, T = −1

)]
I
(
D (x) = 1

)
ω (x)dP (x) (3.3)

where ω(x) ≥ 0 is a weight function depending on X, P(x) is the distribution of X and I(·) is

an indicator function.

We rewrite (3.3) as follows

argmax
D

{∫
E
(
Y − Td | X, T = 1

)(
1− I (D (x) = −1)

)
ω (x)dP (x)

−

∫
E
(
Y − Td | X, T = −1

)
I
(
D (x) = 1

)
ω (x)dP (x)

}
⇐⇒ argmin

D

{∫
E
(
Y − Td | X, T = 1

)
I
(
D (x) = −1

)
ω (x)dP (x)

+

∫
E
(
Y − Td | X, T = −1

)
I
(
D (x) = 1

)
ω (x)dP (x)

}
⇐⇒ argmin

D

∫ {
E
[(
Y − Td

)
I
(
D (X) 6= T

)
| X, T = 1

]
+ E

[(
Y − Td

)
I
(
D (X) 6= T

)
| X, T = −1

]}
ω (x)dP (x)

⇐⇒ argmin
D

∫ {
E

[ (
Y − Td

)
I
(
D (X) 6= T

)
TP (T = 1) + (1− T)/2

| X, T = 1

]
· P (T = 1)

+ E

[ (
Y − Td

)
I
(
D (X) 6= T

)
TP (T = 1) + (1− T)/2

| X, T = −1

]
· P (T = −1)

}
ω (x)dP (x)

⇐⇒ argmin
D

∫
E

[ (
Y − Td

)
I
(
D (X) 6= T

)
TP (T = 1) + (1− T)/2

| X

]
ω (x)dP (x)

⇐⇒ argmin
D

E

[ (
Y − Td

)
I
(
D (X) 6= T

)
TP (T = 1) + (1− T)/2

·ω (X)

]
(3.4)
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Note that D(X) can be equivalently written as sign
(
f (X)

)
for some function f, where

sign (u) =


1 if u ≥ 0

−1 if u < 0

Thus, the objective function in (3.4) becomes

min
f
E

(Y − Td
)
· I
(
sign

(
f (X)

)
6= T

)
·ω (X)

TP (T = 1) + (1− T)/2

 (3.5)

The indicator function in (3.5) is not easy to handle during the optimization process. In

practice, we often use a convex surrogate loss function instead. By rewriting (3.5) as

min
f
E

[ (
Y − Td

)
·ω (X)

TP (T = 1) + (1− T)/2
· I
(
f (X) · T ≤ 0

)]
, (3.6)

using log-loss l(u) = log (1+ e−u) to replace the 0-1 loss l0(u) = I (u ≤ 0), the objective

function becomes

min
f
E

[ (
Y − Td

)
·ω (X)

TP (T = 1) + (1− T)/2
· log

(
1+ e−f(X)T

)]
. (3.7)

Let f∗ (X) be the minimizer of (3.7). The corresponding subgroup identifier is then D∗ (X) =

sign
(
f∗ (X)

)
.

The subgroup signature building problem is now transformed to a minimization problem.

Clearly, the objective function (3.7) focuses on identification rather than prediction. Meanwhile,

it is also based on an adjustable quantitative criterion: the response difference of before and
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after taking the medicine needs to be greater than a threshold. Moreover, it does not rely on

any specific models.

Knowing the actual distributions of the variables in (3.7) and having a corresponding formula

for the expectation are usually very difficult if not impossible. Instead, we may approximate

the expectation with some observed data and seek to minimize the following empirical version

of the objective function

min
f

1

N

N∑
i=1

Yi − Tid

TiP (T = 1) + (1− Ti) /2
· log

(
1+ e−f(Xi)Ti

)
·ω (Xi) (3.8)

The minimizer f̂∗ (X) of (3.8) is thus an approximation of f∗ (X), and the corresponding D̂∗ (X) =

sign
(
f̂∗ (X)

)
is an approximation of D∗ (X)

3.4 Fisher Consistency

After a series of derivation, we have the objective function (3.7) and its empirical version

(3.8). We need to show that the method works as expected, i.e., D̂∗ (X) is Fisher consistent.

More specifically, we show the following result

Theorem 1. Define

R (f) = E

[ (
Y − Td

)
ω (X)

TP (T = 1) + (1− T) /2
· log

(
1+ e−f(X)T

)]
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If function f∗ (X) minimizes R (f), then D∗ (X) = D0 (X) almost surely, where D0 (X) is

the true subgroup identifier satisfying

D0 (X) =


1 if E

(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
≥ 2d

−1 if E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
< 2d

Proof. If f∗ (X) minimizes R (f), then f∗ (X) minimizes R (f | X) almost surely with respect to

X. It suffices to show that if f∗ (X) minimizes R (f | X), then D∗ (X) = D0 (X).

R (f | X) = E

[
(Y − d)ω (X)

P (T = 1)
· log

(
1+ e−f(X)

)
| X, T = 1

]
· P (T = 1)

+E

[
(Y + d)ω (X)

P (T = −1)
· log

(
1+ ef(X)

)
| X, T = −1

]
· P (T = −1)

= E
[
(Y − d) ·ω (X) · log

(
1+ e−f(X)

)
| X, T = 1

]
+E
[
(Y + d) ·ω (X) · log

(
1+ ef(X)

)
| X, T = −1

]
= E

[
Y − d | X, T = 1

]
·ω (X) · log

(
1+ e−f(X)

)
+E
[
Y + d | X, T = −1

]
·ω (X) · log

(
1+ ef(X)

)
(3.9)

To find the minimizer f∗ (X), simply take the derivative of (3.9) with respect to f and

make it zero. Hence, we have

∂R (f | X)

∂f
= E

[
Y − d | X, T = 1

]
·ω (X) · −1

1+ ef
+ E

[
Y + d | X, T = −1

]
·ω (X) · ef

1+ ef

= 0
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=⇒ f∗ (X) = logE
[
Y − d | X, T = 1

]
− logE

[
Y + d | X, T = −1

]
It is straightforward to see that this local minimum is also a global minimum. Clearly,

sign
(
f∗ (X)

)
=


1 if E

(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
≥ 2d

−1 if E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
< 2d

Note that D∗ (X) is defined as sign
(
f∗ (X)

)
..

3.5 Extension to the Survival Response

The objective function (3.7) and its empirical version (3.8) do not rely on any specific model.

It is thus straightforward to extend it to the survival response. The corresponding quantitative

criterion for the survival response is that ”the survival time difference between before and after

taking the medicine needs to be greater than a threshold”, which is as follows

E
(
Ỹ | X, T = 1

)
− E

(
Ỹ | X, T = −1

)
≥ 2d (3.10)

where Ỹ is the survival time (Y is the observed time). However, unlike the continuous response

case, we usually have censoring in the time to event data. We only observe Y. Some observed

times are survival times, while others are censoring times. To address this issue, we need some

further assumptions.
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In Chapter 2, we assumed that the event indicator ξ is independent of T and X. In other

words,

I
(
Ỹc − Ỹ ≥ 0

)
⊥⊥ X, T

where Ỹc is the censoring time. Hence, it is not unreasonable to move one step further and

assume

Ỹc − Ỹ ⊥⊥ X, T

Based on the above independence assumption, we have

E
(
Y | X, T

)
= E

[
Ỹ · ξ+ Ỹc · (1− ξ) | X, T

]
= E

[
Ỹ · ξ | X, T

]
+ E

[(
Ỹc − Ỹ

)
· (1− ξ) | X, T

]
+ E

[
Ỹ · (1− ξ) | X, T

]
= E

[
Ỹ | X, T

]
+ E

[(
Ỹc − Ỹ

)
· (1− ξ)

]

Hence, the survival time difference between before and after taking the medicine becomes

E
[
Ỹ | X, T = 1

]
− E

[
Ỹ | X, T = −1

]
= E

[
Y | X, T = 1

]
− E

[(
Ỹc − Ỹ

)
· (1− ξ)

]
− E

[
Y | X, T = −1

]
+ E

[(
Ỹc − Ỹ

)
· (1− ξ)

]
= E

[
Y | X, T = 1

]
− E [Y | X, T = −1]
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Thus, we can simply treat the observed time as the actual survival time, and perform the

signature building procedure with the objective function (3.7) and (3.8) in the same way as in

the continuous response case.

3.6 Large Sample Properties under Linear Function Setup

Objective functions (3.7) and (3.8) do not specify the form of function f (X). In practice,

we are interested in finding a linear function f (X) = β ′X, β ∈ Rp, which is intuitive for

interpretation and easy to use. The corresponding objective function and its empirical version

are as follows

R0 (β) = E

[ (
Y − Td

)
ω (X)

TP (T = 1) + (1− T) /2
· log

(
1+ e−β

′XT
)]

∧
= E

[
g (β;X, Y, T)

]

Rn (β) =
1

N

N∑
i=1

(
Yi − Tid

)
ω (Xi)

TiP (Ti = 1) + (1− Ti) /2
· log

(
1+ e−β

′XiTi
)

∧
=
1

N

N∑
i=1

g (β;Xi, Yi, Ti)

where

g (β;X, Y, T) =

(
Y − Td

)
ω (X)

TP (T = 1) + (1− T) /2
· log

(
1+ e−β

′XT
)

Note that shifting the response Y by some constant does not affect the quantitative criterion

(3.1) and thus does not affect the true group identifier D0 (X). As a result, we can always shift

the response Y by some constant such that (Y − Td) is positive. This condition is important for

the implementation as well as the large sample properties.

Let β0 = argmin
β

R0 (β) . Under the following regularity conditions:

(i) R0 (β) <∞ for all β ∈ Rp
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(ii) E ‖ ∂g(β;X,Y,T)∂β ‖2<∞ for each β in a neighborhood of β0

(iii) R0 (β) is twice differentiable at β0

We will have

Theorem 2. βn→β0 with probability 1, if β0 is unique and the regularity condition(i) holds.

Proof. Using result in 3.2.2 of Boyd and Vandenberghe (34), g (β;X, Y, T) is convex with respect

to β for every fixed (X, Y, T). Also note that

(
Y − Td

)
ω (X)

TP (T = 1) + (1− T) /2
> 0. Since β0 is

unique and the regularity condition(i) holds, it follows from Theorem 1 of Niemiro (35)

that βn→β0 with probability 1.

Theorem 3.
√
n (βn − β0)

D→ N
(
0,H−1VH−1

)
, if β0 is unique and the regularity conditons

(i), (ii), (iii) hold, where H =
∂2R0 (β)

∂β2
|β0, V = Var

[
∂g (β;X, Y, T)

∂β
|β0

]
.

Proof. g (β;X, Y, T) is convex with respect to β for every fixed (X, Y, T) and(
Y − Td

)
ω (X)

TP (T = 1) + (1− T) /2
> 0. Since β0 is unique and the regularity conditons (i), (ii), (iii)

hold, the result follows directly from Theorem 4 of Niemiro (35).

One simple example satisfying these regularity conditions is the case when the support of X

and Y are finite. Then the expectations are simply the weighted sum, and we can easily verify

those conditions. In real world applications, all measurements are taken by some instrument
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with limited range and precision, so it is not unreasonable to assume that these measurements

have finite support.

3.7 Remarks for Implementation

In practice, (3.8) is the objective function that we actually deal with. As has been mentioned

before, shifting the response Y by some constant does not affect the quantitative criterion (3.1)

and thus does not affect the true group identifierD0 (X). To make the objective function convex,

we sometimes need to shift the response so that every (Yi − Tid) is positive.

One direct way to optimize the twice differentiable convex function is to use the Newton-

Raphson algorithm. However, the objective function (3.8) is based on log-loss which is essen-

tially the loss function for the logistic regression. To see this, rewrite the likelihood of a logistic

regression as follows

l =

N∑
i=1

[
yilog (pi) + (1− yi) log (1− pi)

]
=
∑
yi=1

log
1

1+ eβ ′xi(1−2yi)
+
∑
yi=0

log
1

1+ eβ ′xi(1−2yi)

= −

N∑
i=1

log
(
1+ eβ

′xi(1−2yi)
)

where yi = 0 or 1 is the binary response, xi is the q–dimensional covariates. pi is the probability

that Yi equals 1. Clearly, the likelihood above has a similar form as (3.8). So, instead of writing

a separate algorithm, we can directly use the weighted logistic regression to solve the problem,

which makes it very convenient.
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During the derivation, we assume E
(
Y | X, T = 1

)
−E
(
Y | X, T = −1

)
≥ 2d is the quantitative

criteriion for the signature positive group. Note that T = 1 is not necessarily the treatment

arm and T = −1 is not necessarily the control arm. By switching the code of treatment and

control, we can effectively change between preferring a larger response and a smaller response.

The threshold parameter d can also serve as a tuning parameter if we have no specific target

subgroup in mind. In this case, a series of d values go through a cross-validation procedure and

the p value of the interaction between the selected subgroup and the treatment is calculated

for each d. The best d that leads to the smallest interaction p value is then selected. This

procedure is quite like those methods that maximize the interaction effects, but the tuning

parameter d provides a way to adjust the greediness and base the training procedure on the

potential testing result.

One potential improvement to the current procedure is to include an L1 penalty in the

objective function such that the signature building step can also do variable selection. Then,

the interaction filtering procedure introduced in Chapter 2 can work as a pre-filtering step with

less stringent regulation.

3.8 Relationship with Outcome Weighted Learning Method

The outcome weighted learning method (OWL) tries to maximize the expected reward given

that the treatment assignment rule is implemented, i.e., max E
[
Y | T = D(X)

]
. Their derived

objective function is as follows

min
D
E
[ Y · I

(
T 6= D (X)

)
TP (T = 1) + (1− T) /2

]
(3.11)
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Compared with (3.4), the above objective function is a special case when d = 0 and ω (X) = 1.

However, the starting point of the two methods are completely different. It is therefore inter-

esting to see whether maximizing E
[
Y | T = D (X)

]
is actually equivalent to our quantitative

criterion with d = 0.

According to our quantitative criterion, when d equals 0, patients should take the treatment

(i.e., belong to the Sig.+ group) as long as it is no worse than the control for them, and

should take the control otherwise. In other words, patients should take the medicine that they

can benefit from. This is a practical case when two competing drugs are available. Though

maximizing E
[
Y | T = D (X)

]
seems doing the same thing, they are actually different. To see

this, we provide a simple data example as follows:

TABLE III

ILLUSTRATIVE DATA EXAMPLE

Patient ID Covariate X Treatment T Response Y

1 1 -1 4
2 1 1 0
3 1 1 0

4 2 -1 0
5 2 1 1
6 2 1 1

7 3 -1 0
8 3 1 4
9 3 1 4
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In this illustrative data example, we are lucky to have patients with the same covariate

value in both arms, and we assume the response has no variance. The benefits of taking the

treatment are −4, 1 and 4 for X = 1, 2 and 3 respectively. Let us consider two options for

subgroup selection. Option 1, Sig.−group = {X = 1 or 2} and Sig.+group = {X = 3}; Option

2, Sig.− group = {X = 1} and Sig+ .group = {X = 2 or 3}. Clearly, when d = 0, our method

will choose Option 2 which gives patients the medicine that they can benefit from. However,

if we calculate E
[
Y | T = D (X)

]
, we have 3 and 2.8 for Option 1 and Option 2 respectively.

Maximizing E
[
Y | T = D (X)

]
will thus lead to Option 1, which is not a reasonable choice.

Actually, maximizing E
[
Y | T = D (X)

]
is equivalent to our quantitative criterion with d=0

only when P (T = 1) = P (T = −1) = 1/2. It is not a good objective function in general. Though

the OWL method ends up with (3.11), which is a special case of our method, its starting point

is not correct.

3.9 Simulation Studies

3.9.1 Simulation Setup

In this section, we perform a series of studies to investigate the performance of the proposed

subgroup signature building method with quantitative criteria (QC). We want to see if the

QC method can successfully select the patients who belong to the Sig.+ group when the true

interaction covariates are provided. More specifically, the following metrics are considered

(i) Sensitivity

Definition The probability that a patient is selected by the QC method given that the

patient is truly in the Sig.+ group.
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Calculation

∣∣{Patienti : Patienti is in the Sig.+ group & Patienti is selected
}∣∣∣∣{Patienti : Patienti is in the Sig.+ group

}∣∣
(ii) Positive Predictive Value (PPV)

Definition The probability that a selected patient is truly in the Sig.+ group.

Calculation

∣∣{Patienti : Patienti is in the Sig.+ group & Patienti is selected
}∣∣∣∣{Patienti : Patienti is selected

}∣∣
We use a similar data generating procedure as in Chapter 2. To make this section self-

contained, we repeat it here. For the continuous response, the following model is used to

generate the dataset

Y =

p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε

where p is set to be 100, and the covariates (X1, X2, ..., X100) follow a multivariate normal

distribution with a compound symmetric variance-covariance matrix



X1

X2

...

X100


∼ N





5

5

...

5


,



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1




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The means of the covariates are set to 5 to mimic the real world data which usually have

positive measurements. The random error ε follows Normal (0, 1). The probability that a

patient belongs to the treatment arm is 2/3, i.e., P (T = 1) = 2/3, P (T = −1) = 1/3.The values

of γ ′s are as follows

γ1 = 1, γ2 = −1, γ3 = 2, γ4 = −2, and all other γ = 0

The four true interaction covariates are therefore X1, X2, X3 and X4. The values of β ′s are as

follows

β5 = 2, β6 = −2, β7 = 4, β8 = −4, and all other β = 0

The four main effects are relatively large compared with the interaction effects.

For the survival response, we generate the data from the following model

Y = exp

{
0.1 ·

(
p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε

)}

All the settings and parameters in the survival response case are exactly the same as in the

continuous response case. The event indicator is randomly generated to induce 20% censoring

rate.

We set the desired subgroup to have a threshold parameter d = 1 and 0.1 for the continuous

response case and the survival response case respectively, which accounts for about 35% of

the study population. The group that a patient actually belongs to can be calculated through
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comparing E
(
Y | X, T = 1

)
− E

(
Y | X, T = −1

)
with 2d. For the continuous response case, it

is straightforward to obtain the true group for every subject using the data generating model.

For the survival response case, E
(
Y | X, T

)
can be calculated through the moment generating

function of the normal distribution induced by
∑p
i=1 βiXi +

∑p
i=1 γiXiTi + ε

For both the continuous and the survival response, the following scenarios are considered.

(i) ρ = 0.2, sample size N = 50, 100, 200, 400

(ii) ρ = 0.5, sample size N = 50, 100, 200, 400

Though we have 100 covariates in the generated dataset, here in this section, we are only

interested in the performance of the QC method which is not responsible for variable selection.

Therefore, we let the algorithm know that only X1, X2, X3 and X4 are the true interaction

covariates.

We conducted 500 runs of simulation for every case mentioned above. In each run, a training

dataset is randomly generated and the QC method is applied. Meanwhile, a testing dataset

with a sample size of 5000 is also generated using the same parameter setting as the training

dataset. The corresponding Sensitivity and Positive Predictive Value are calculated in the

testing dataset for each run, and boxplots are generated to show the average performance.

3.9.2 Simulation Result for the Continuous Response

Figure 9 and Figure 10 are the boxplots of Sensitivity and Positive Predictive Value respec-

tively for the continuous response case. When the sample size increases, both Sensitivity and

Positive Predictive Value increase, and the variance of the two metrics from 500 runs decreases.

The correlation among covariates has a slight negative effect on the performance.
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Figure 9. Sensitivity for the continuous response case (true interaction covariates known).
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Figure 10. PPV for the continuous response case (true interaction covariates known).
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3.9.3 Simulation Result for the Survival Response

Figure 11 and Figure 12 are the boxplots of Sensitivity and Positive Predictive Value re-

spectively for the survival response case. The performance is not as good as the continuous

response case, especially in terms of Positive Predictive Value. This is not surprising since the

survival dataset is generated from a nonlinear model, which poses more challenge. But the

pattern remains the same. When the sample size increases or the correlation among covariates

decreases, both the Sensitivity and the Positive Predictive Value are improved.

3.10 Summary

In this chapter, we proposed a subgroup signature construction method based on an ad-

justable quantitative criterion. The proposed method does not rely on a specific model, and

works for both the continuous and the survival response. The simulation result shows that

the introduced method can successfully select the patients in the Sig.+ group with acceptable

Sensitivity and Positive Predictive Value when the true interaction covariates are provided.
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Figure 11. Sensitivity for the survival response case (true interaction covariates known).
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Figure 12. PPV for the survival response case (true interaction covariates known).



CHAPTER 4

PERFORMANCE OF THE COMBINED PROCEDURE

In this chapter, we combine the interaction filtering step (IFL) in Chapter 2 and the sub-

group signature building step (QC) in Chapter 3 together into a complete subgroup identifi-

cation procedure (IQ). The performance of the IQ method is first evaluated in a standalone

manner and then will be compared with two other methods.

4.1 Sensitivity and Positive Predictive Value

In Chapter 3, we investigated the performance of the QC procedure when the true interaction

covariates are known. In reality, there is no way to have this information, and we need to do

variable selection. We repeat the exact same simulation as in Chapter 3, but the true interaction

covariates are not assumed to be known. The IQ method will first select important interaction

covariates through the IFL procedure and then the QC procedure will build an identification

rule.

To make this chapter self-contained, we briefly repeat the simulation setup. For the contin-

uous response, the following model is used to generate the dataset

Y =

p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε

78
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where p is set to be 100, and the covariates (X1, X2, ..., X100) follow a multivariate normal

distribution with a compound symmetric variance-covariance matrix



X1

X2

...

X100


∼ N





5

5

...

5


,



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1





The random error ε follows Normal (0, 1). The probability that a patients belongs to the

treatment arm is 2/3, i.e., P (T = 1) = 2/3, P (T = −1) = 1/3.The values of γ ′s are as follows

γ1 = 1, γ2 = −1, γ3 = 2, γ4 = −2, and all other γ = 0

The values of β ′s are as follows

β5 = 2, β6 = −2, β7 = 4, β8 = −4, and all other β = 0

For the survival response, we shall generate the data from the following model

Y = exp

{
0.1 ·

(
p∑
i=1

βiXi +

p∑
i=1

γiXiTi + ε

)}
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All the settings and parameters in the survival response case are exactly the same as in the

continuous response case. The event indicator is randomly generated to induce 20% censoring

rate.

We set the desired subgroup to have a threshold parameter d = 1 and 0.1 for the continuous

response case and the survival response case respectively, which accounts for around 35% of the

study population.

For both the continuous and the survival response, the following scenarios are considered.

(i) ρ = 0.2, sample size N = 50, 100, 200, 400

(ii) ρ = 0.5, sample size N = 50, 100, 200, 400

We conducted 500 runs of simulation for every case mentioned above. Sensitivity and

Positive Predictive Value, which have the same definition as in Chapter 3, are calculated in

a testing dataset of 5000 patients for each run. Boxplots are generated to show the average

performance.

Figure 13 and Figure 14 are the results for the continuous response case. Figure 15 and

Figure 16 are the results for the survival response case. Clearly, the performance is not as good

as when the true interaction covariates are known, but is still acceptable when the sample size

is above 100. Note that the overall performance of the IQ method depends on both of the two

sub-procedures, IFL and QC. If either of them goes extremely wrong, the result will not look

good.
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Figure 13. Sensitivity for the continuous response case (true interaction covariates not known).
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Figure 14. PPV for the continuous response case (true interaction covariates not known).
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Figure 15. Sensitivity for the survival response case (true interaction covariates not known).
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Figure 16. PPV for the survival response case (true interaction covariates not known).
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4.2 Comparison with Two Other Methods

In this section, we will compare our IQ method with the AIM method (29) and the SIDES

method (26). As we have mentioned in Chapter 1, AIM creates a score system which can be

used to stratify patients. SIDES tries to find the subgroup with maximized treatment effect

and build a collection of binary rules to select patients. Clearly, neither AIM nor SIDES can

be used to select a subgroup with specified quantitative feature. To make the three methods

comparable, we set the subgroup identification goal as finding a subgroup with the most signifi-

cant improvement after taking the treatment, which is essentially what SIDES and many other

methods do. But we have to modify the IQ method and the AIM method a little. For the IQ

method, instead of setting a specific threshold parameter d, we treat d as a tuning parameter

and let the algorithm decide the best d that leads to the most significant interaction effect (we

mentioned this in Section 3.7). For the AIM method, after the score system is built, we look

for a cutoff on the score such that patients above or below that cutoff will become the Sig.+

group that has the most significant interaction effect.

We use the same simulation model as in Section 4.1. The correlation among the covariates

is set to be 0.5. Since AIM and SIDES cannot handle high dimensional data, the number of

covariates p is set to be 20. All other parameters remain the same as before. We generate a

training set of 150 patients, and apply the learning results from the three methods on a testing

set of 5000 patients.

Figure 17 depicts the training and testing result for the continuous case. Note that the

vertical line segments are the error bars corresponding to one standard deviation, and the



86

values of N in the graph are the sample size of Sig.+ group or Sig.− group depending on

its position. AIM is distracted by the main effects due to its incomplete model, and finds a

subgroup with very strong prognostic effect but marginal predictive effect. More specifically, in

both the training and the testing result of AIM, average response in the Sig.+ group is much

larger than the average response in the Sig.− group, which indicates a strong prognostic effect

or say main effect in the Sig.+ group. However, patients in the Sig.+ group only benefit a

little more than the patients in the Sig.− group after taking the medicine. Both SIDES and IQ

manage to select a subgroup that has very significant treatment effect. In the testing set, the

average improvement in the two Sig.+ groups are about the same, but considering the sample

size of the Sig.+ group and its variance (length of the error bars), IQ method is apparently

better. This is mainly due to the fact that SIDES is greedy and tries to find the maximized

effect in the training set, while the IQ method can adjust its greediness through the tuning

threshold parameter d.

Figure 18 depicts the training and testing result for the survival case. Clearly, AIM is still

distracted by the big main effects. As for SIDES and IQ, this is a clear example of why being

greedy is a bad strategy. The training result of SIDES is much more significant than that

of IQ, and the sample size distribution of the two are about the same. However, due to its

non-adjustable greediness, the finding of SIDES is a false discovery. The pattern found in the

training set disappears completely in the testing set. To the contrary, though the training result

of IQ does not look so impressive, the pattern holds in the testing set.
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Figure 17. Comparison of methods for the continuous response case.
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Figure 18. Comparison of methods for the survival response case.
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