
 

 
A Computational Genome-wide Study of Protein Folding Rate 

 

 
 
 
 

BY 
 

SANDEEP C. GORLA 
B.S. Equivalent, National Institute of Technology Durgapur, 2010 

 

 

THESIS 

Submitted as partial fulfillment of the requirements 
for the degree of Master of Science in Bioinformatics 

in the Graduate College of the 
University of Illinois at Chicago, 2012 

 
Chicago, Illinois 

 
 
 
 
 

Defense Committee: 
 
  Jie Liang, Chair and Advisor 
  Yang Dai 
  Anjum Ansari, Physics 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This thesis is dedicated to my family, whose unconditional love and support 
motivated me and made this possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



ACKNOWLEDGEMENTS 
 
 
 I wish to thank my advisor Prof. Jie Liang from UIC for his invaluable guidance and 

immeasurable patience in assisting me with my research. Many thanks also go to Prof. Yang 

Dai and Prof. Anjum Ansari for taking time out of their busy schedules to serve on my 

committee. 

 A whole lot of thanks to past and present group members, David Jimenez Morales, 

Ke Tang, Hammad Naveed, Gamze Gursoy, Meishan Lin, Yingzi Li, Yun Xu, Michael 

Montesano, Volga Pasupuleti, Jieling Zhao, Marco Maggioni, Youfang Cao, Larisa Adamian, 

and Joe Dundas. 

 A special thanks to my friend Meghana for her invaluable suggestions made towards 

the writing of this thesis report. 

 
 
               SCG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iii



Table of Contents 
 
 

1 INTRODUCTION ...................................................................................................... 1 
1.1 Protein folding ................................................................................................................. 3 
1.2 Protein folding kinetics ................................................................................................... 2 
1.3 Protein folding rate prediction models.......................................................................... 3 
1.4 Folding rate distribution of a cell .................................................................................. 4 

2 DATASET ................................................................................................................... 6 
2.1 Proteomic data................................................................................................................. 6 
2.2 Data on representative Sequences of All Known Protein Families............................. 6 

3 PREDICTING PROTEIN FOLDING RATES FROM SEQUENCE ................... 7 
3.1 Summary.......................................................................................................................... 7 
3.2 Ouyang’s folding rate prediction model ....................................................................... 7 

4 LENGTH CORRECTION FOR THE MODEL ................................................... 13 

5 RESULTS AND DISCUSSION............................................................................... 14 
5.1 Cellular proteomes have a broad distribution of folding rates ................................. 14 
5.2 Folding rate distributions in extremophiles................................................................ 20 
5.3 Fast and slow folders among representative sequences of all protein families........ 24 
5.4 Relatiomship between structure and folding rate ...................................................... 34 

5.4.1 Heliobacter pylori cysteine rich protein B ............................................................... 34 
5.4.2 Ribonuclease T1....................................................................................................... 35 

6 CONCLUSIONS....................................................................................................... 37 

7 FUTURE WORK...................................................................................................... 38 
 

CITED LITERATURE………………………………………………………………...39 

 

 

 

 

 

 

 

 

 

 
 
 
 

 iv



LIST OF FIGURES 
 
 
Figure 1: Jack-knife test of the predicted folding rate from weighted NNP vs. 

experimentally measured values ............................................................................... 10 
Figure 2: Folding rate prediction results of 10 test cases.................................................. 10 

........................................................................................................................................... 13
Figure 3: Curve fitting predicted folding rates of all organisms to a simple linear equation 

 
Figure 4: Boxplots of predicted folding rate vs. length for the mesophilic model 

organisms .................................................................................................................. 16 
Figure 5: Predicted folding rate distributions for different mesophilic model organisms.17 
Figure 6: Predicted folding rate distributions after length normalization for different 

mesophilic model organisms..................................................................................... 18 
Figure 7: Predicted folding rate distributions for different extremophiles. ...................... 21 
Figure 8: Predicted folding rate distributions after length normalization for different 

extremophiles............................................................................................................ 22 
Figure 9: Folding Rate vs. Length plot after length normalization for representative 

sequences of all known protein families................................................................... 24 
Figure 10: Predicted folding rate distributions of randomly shuffled sequences of slow 

and fast folding proteins among representative sequences of all known protein 
families...................................................................................................................... 26 

Figure 11: (a) PDB structure of 1KLX, (b) PDB structure of 1KLX with di-sulfide 
bridges....................................................................................................................... 35 

Figure 12: (a) PDB structure of 1I0V, (b) PDB structure of 1I0V with the critical Pro 
residues labelled........................................................................................................ 36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 v



LIST OF TABLES 
 
 
Table 1: Optimized clustering solution of 210 NNP types ................................................. 9 

 
Table 3: Comparison of protein folding rate predictive ability of 9 methods .................. 12
Table 2: List of predicted and experimental folding rates ................................................ 11

 
Table 4: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate 

distributions of the mesophilic model organisms ..................................................... 19 
Table 5: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate 

distributions after length normalization of the mesophilic model organisms........... 19 
Table 6: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate 

distributions of the extremophiles............................................................................. 23 
Table 7: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate 

distributions after length normalization of the extremophiles .................................. 23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 vi



 vii

SUMMARY 
 

 Proteins are the workhorses of living organisms and are essential in carrying out a 

multitude of complex processes that are critical for the survival of a cell. Proteins should 

be able to ‘fold’ to a native three-dimensional structure in a biologically relevant time to 

be functional. In our current study, we tried to gain insight into this complex process of 

protein folding by studying the folding rate distributions in a proteome. 

 We used a folding rate prediction model based on the evaluation of the 

contribution of pairs of sequentially neighboring amino acids to the folding rate. We used 

this model to compute the proteome-wide distributions of folding rates of several model 

organisms. We looked at the extreme limits of these distributions and see that many slow 

folding proteins in a cell require the help of the chaperone machinery to fold in a 

biologically relevant time. On analyzing the folding rate distributions in extremophiles 

we see that these halophiles have a different folding rate distribution when compared to 

mesophiles. We see a small increase in the fraction of the slowest folding proteins in 

halophiles when compared to mesophiles. We further identified the fastest and slowest 

folders among representative sequences of all known protein families. We analyzed 

certain structures among these fast/slow folders to gain valuable insight into the 

relationship between structure and the folding rate of a protein. 

 



1 INTRODUCTION 

1.1 Protein folding  

Protein folding is the physical process by which a protein assumes it’s highly 

structured functional conformation starting from a denatured state. This is one of the most 

fundamental processes in a living cell. The messenger RNA (mRNA) produced by 

transcription is translated by the ribosome into a polypeptide, which initially doesn’t have 

a developed three-dimensional structure. This random coil of amino acids assembles 

itself into a specific three-dimensional shape (native state), which is essential to perform 

the correct biological function. The folding of a protein often occurs co-translationally. 

This means that the N-terminal of the polypeptide chain starts to fold as the rest of the 

protein is being synthesized. Misfolded proteins are the root cause of many 

neurodegenerative diseases. Anfinsen in 1961 [1] showed that a protein could 

spontaneously refold from denatured states in a test tube in the absence of any cellular 

environmental factors. This essentially means that “sequence information” alone 

determines the folding process.  However, it is important to note that some proteins need 

the assistance of chaperones to fold to the correct structure. This doesn’t mean that 

Anfinsen’s Dogma is false because chaperones don’t provide any information for folding; 

rather they prevent unproductive side-reactions like aggregation of several protein 

molecules. 

Since Anfinsen, many researchers have worked on “the protein folding problem”. The 

protein folding problem has two important facets: (1) the mechanism by which a protein 

folds to its native conformation; (2) How the amino acid sequence of a protein determines 

its structure? Protein folding mechanisms are usually studied via free energy landscapes 
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from simulations that are tested by experiments. Currently, the following mechanisms of 

protein folding are widely accepted. (1) Hydrophobic collapse model: characterized by a 

initial nucleus formation; followed by formation of secondary structure, and finally the 

coalescence of secondary structural elements into native three-dimensional structure (2) 

Nucleation-condensation model: characterized by concurrent formation of secondary and 

tertiary structural elements; (3) Zipping and assembly model: emphasizing zipper-like 

folding mechanism; (4) Funnel model: emphasizing folding as involving parallel 

pathways forming a funnel-shaped energy landscape rather than a single microscopic 

pathway. 

 

1.2 Protein folding kinetics 

 Levinthal, in 1969 [41], noted that for a protein to fold by sequentially sampling 

the vast possible conformational space, it would take a time longer than the age of 

universe. How then are proteins able to converge to their native states so fast? 

Understanding this relationship between a protein sequence and its folding rate is a 

fundamental and challenging problem. Folding speeds of different proteins vary 

significantly. Small proteins usually fold faster with simple 2-state kinetics. They have no 

visible intermediates in the course of folding. Larger proteins generally fold at a lower 

rate via a 3-state folding kinetics and metastable intermediates are often observed. 

 Studying protein folding rates is very important because of the following reasons: 

(1) It gives us a valuable insight into the protein folding mechanism. (2) Understanding 

protein folding kinetics helps us design proteins with desired folding speeds. (3) Protein 

aggregation is directly related to the rate of protein folding. The failure of a protein to 
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fold properly is the root cause of a range of diseases like Cystic Fibrosis and Alzheimer’s 

disease. 

 Protein folding rates can be calculated and analyzed using a range of biochemical 

experiments [2-7]. These methods are both expensive and time consuming. This coupled 

with the rapidly increasing gap between newly discovered sequences and available 

experimental folding rate data requires a fast and efficient computational model to predict 

protein folding rates. 

 

1.3 Protein folding rate prediction models 

 Plaxco et al. [8] in 1998 made the important observation that the average relative 

contact order (RCO), a measure of relative fraction of local vs. non-local non-covalent 

contacts, correlates well with the folding rates of two-state folding proteins. Subsequently, 

many variations of this idea have been studied, indicating that folding rates also correlate 

with long-range order (LRO) [9], the effective contact order (ECO) [10], the total contact 

distance (TCD) [11], a chain topology parameter (CTP) [12] and the effective length of 

protein, Leff [13]. However, these results were obtained with a relatively small data set 

and often require the knowledge of the native structure of the protein. Ouyang and Liang 

[14], using a large set of both single-state and multi-state folders, showed that folding 

rates correlate well with the number of residues that form geometric contacts. Other 

sequence-based methods [15-19] have been proposed recently. These methods do not 

consider the influence of sequence order on the protein folding rate. Xu et al. [20] used 

amino acid sequence order to derive a method, based on an extended version of pseudo-

amino acid composition, for predicting protein folding rates. 
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 In our current analysis, we used a novel, highly accurate folding rate prediction 

model proposed by Ouyang [21]. This model was developed by evaluating the 

contribution of amino acid pairs in a sequence to the folding rate. In this model an 

optimization procedure based on simulated annealing was used to divide all possible 

nearest neighbor pairs (NNPs) of residues in a protein into three clusters, each with an 

optimized weight parameter, according to the contribution to the folding speed. This 

method predicts the folding rates with the greatest accuracy when compared with 9 other 

methods [11, 22-25, 49-51]. 

 

1.4 Folding rate distribution of a cell 

 It is important to look at the folding rate distribution of a proteome as to see what 

the biological implications of folding speed are. A nascent polypeptide chain should be 

able to fold in a biologically relevant time to be functional. In the same way we wish to 

see if there is an upper limit to the folding speed. These limits represent one of the most 

important constraints on a cell because cell growth is limited by the folding rates of its 

slowest folding proteins [42].  

We use our prediction model to compute folding rates of all proteins with lengths 

between 25 to 350 amino acids from the proteomes of E. coli, B. subtilis, S. cerevisiae, C. 

elegans, D. melanogaster, A. thaliana, M. musculus and H. sapiens. We use only the 

protein sequences of lengths between 25 to 350 amino acids because the training set used 

in building our prediction model contains proteins only from this range; and hence we 

believe that our prediction model works in this range with the highest confidence. We 

compare and analyze the distributions of the folding rates among these different 
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mesophilic model organisms. We then analyze the predicted folding rate distributions of 

two halophiles (H. salinarum and S. ruber), two psychrophiles (C. psychrerythraea and F. 

psychrophilum), and four thermophiles (A. fulgidus, M. jannaschii, P. abyssi, and P. 

horikoshii); to see if there is a differential distribution in extremophiles compared to 

mesophilic model organisms. We also list and analyze the fastest and slowest folders 

among representative sequences of all known protein families. While doing this analysis 

we show how sequence order gives different and more accurate folding rate values when 

compared to using amino acid composition alone. We also look at the PDB structures of 

these special families to gain insight into the structure-folding rate relationship. For doing 

all the above comparisons we need to do a length normalization as the size of a protein 

does affect the folding rate of a protein [26-31]. Once normalized, we can freely compare 

the folding rates of proteins having different lengths. 

 

 

 

 

 

 

 



 

2 DATASET 

2.1 Proteomic data 

 For comparing proteome-level protein folding rate distributions we have 

downloaded all protein sequences between the lengths of 25 and 350 amino acids from 

the proteomes of E. coli, B. subtilis, C. elegans, D. melanogaster, S. cerevisiae, A. 

thaliana, M. musculus, H. sapiens, H. salinarum, S. ruber, C. psychrerythraea , F. 

psychrophilum, A. fulgidus, M. jannaschii, P. abyssi, and P. horikoshii from UniprotKB 

[32]. 

 

 2.2 Data on representative Sequences of All Known Protein Families 

 To compare folding rates of proteins at the family level, we have downloaded 

sequences  between the lengths of 25 and 350 amino acids which represent each family in 

SCOP [33] from the ASTRAL [34] database. 
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3 PREDICTING PROTEIN FOLDING RATES FROM SEQUENCE 

 

3.1 Summary 

 It is important to be able to predict folding rates from amino acid sequences alone 

due to the constraints on the available structure data of proteins. Devising a reliable 

model that can predict folding rates from sequence information alone will help us to 

utilize the large amount of sequence information available on public databases and also to 

do proteome-level analysis. There are several works describing the prediction of folding 

rates from primary sequence [11,22-25,49-51]. However, these methods require at least 

some sequence information (for e.g. structural class) or use amino-acid compositions 

alone; without emphasizing on the “sequence order”. The position of each residue in 

sequence is also crucial for folding a chain to it’s native three dimensional structure. 

Therefore, the inclusion of sequence order information in the prediction model should 

give us a better prediction. Here, we use the model proposed by Ouyang [21] where he 

evaluated the contribution of amino acid pairs in sequence to protein folding speed and 

developed a new folding rate prediction method with much higher accuracy. 

 

3.2 Ouyang’s folding rate prediction model 

A brief description of the model is as follows. First, a nearest neighbor pair (NNP) 

is defined as a pair of residues, which are nearest neighbor of each other in protein sequence. 

Since there are total 20 amino acid types, the total number of possible NNP types is  
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20×20/2+10 = 210 if we consider A-B and B-A as the same NNP. Then, 210 NNPs will be 

clustered into three groups according to the contribution to folding speed. Simulated 

annealing algorithm is employed to find optimal clusters. In summary, at each step, the 

algorithm heuristic considers some neighbor solutions of the current clustering, and 

probabilistically decides between moving the system to one of neighbor solution or staying in 

current state. The probabilities are chosen so that the system ultimately tends to move to 

states of lower energy state (better clustering). Typically this step is repeated until the system 

reaches a state that is good enough for the application, or until a given computation budget 

has been exhausted.  

 In this model, the optimization procedure includes following steps: (1) randomly 

divide 210 NNPs into three clusters, each cluster initially has 70 NNPs. (2) optimize weights 

of three clusters by SVD with leave-one-out testing. If there is improvement of correlation 

coefficient r between calculated ln(kf) and experimental data, the current cluster solution will 

be kept. Otherwise, the acceptance is specified by an acceptance probability function, which 

is depended on the difference between current r and previous r and current temperature. (3) If 

the current solution is accepted then new clusters will be created from current ones. To 

efficient generate candidate clusters, three move sets are used. Each time, two of three 

clusters are randomly selected. Then 1, 3, or 5 NNPs will be selected from one cluster and 

move to another cluster. (4) Decrease temperature and repeat step 2 and 3 till reaching the 

lowest temperature limitation. The final outputs are three clusters of 210 NNPs and three 

optimized weight parameters. The same dataset is tested and the result is listed in Table 1. 
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Table 1: Optimized clustering solution of 210 NNP types 

 
Cluster Weight Cluster Members (NNP Types) 

Cluster 1 0.2991 

AA AF AH AI AP AT AW CF CH CP CS CV DD DE DN DQ 
DS EF EK EL EM EQ ER ES FF FK FN FR FY GH GI GK GM 
GN GQ GR HK HM HR HY II IN IY KM KR KT LL LP LQ 
LS MQ MR MW NP NQ NR NY PP PS PW QW RT RV SW 
YY 

Cluster 2 -0.5136 

AC AE AQ AV CE CG CI CM CR CT CW CY DG DI DM DP 
DR DV DY EH EV EW EY FI FP FQ FS FV GS GT GV GW 
HH HI HL HP HQ HV HW IK KK KQ KV KY LT MP MS NS 
NT NV NW PR PY QT QY RS RW ST SV TW VV VW VY 
WW WY 

Cluster 3 -0.0656 

AD AG AK AL AM AN AR AS AY CC CD CK CL CN CQ DF 
DH DK DL DT DW EE EG EI EN EP ET FG FH FL FM FT 
FW GG GL GP GY HN HS HT IL IM IP IQ IR IS IT IV IW KL 
KN KP KS KW LM LN LR LV LW LY MM MN MT MV MY 
NN PQ PT PV QQ QR QS QV RR RY SS SY TT TV TY 

 
 
 The positive weight (0.2991) of cluster 1 denotes NNP types in this group can 

facilitate protein folding. On the other hand, cluster 2 contains NNP types, which may retard 

folding. And cluster 3 doesn’t show significant effect. Consequently, we build a predictive 

model using following linear equation: 

 

  1 2ln 11.6418 0.2991 0.5136 0.0656 3f cluster cluster clusterk N N    N  

 

 Here, N is the number of NNPs which belong to one of above three clusters. The 

excellent performance (r=0.98) of leave-one-out test shows that this model can be used as 

accurate protein folding prediction (Figure 1). We further collected 10 folding rate data 

which are not used in building model. The real prediction result also shows high correlation 

(r=0.95 Figure 2) between predicted data and experimental data. The average difference of all 

test cases is only 0.73 unit (Table 2). 
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Figure 1: Jack-knife test of the predicted folding rate from weighted NNP vs. experimentally 

measured values 
 

 
 

 

 
Figure 2: Folding rate prediction results of 10 test cases 
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Table 2: List of predicted and experimental folding rates 

 
 

 Compared with other methods [11, 22-25, 49-51] (Table 3), the empirical 

relationships derived for weighted NNP predict the folding rates with greatest accuracy. We 

systematically analyze the sequence information which can be used for folding and find both 

amino acid composition and relative residue position in sequence determines protein folding 

kinetics. 
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Table 3: Comparison of protein folding rate predictive ability of 9 methods 

 

Method Parameter Used information 
Size of 
testing 
dataset 

R Reference 

linear single regression  contact order  3D structure  32 0.74 Plaxco et al.[8]  
linear single regression  long-range order  3D structure  32 0.81 Gromiha and 

Selvaraj[23]  
linear single regression  total contact distance  3D structure  32 0.88 Zhou and Zhou[11]  
linear multiple 
regression  

secondary structure 
content  

3D structure  32 0.91 Gong et al.[24]  

linear multiple 
regression  

amino acid properties  1D sequence + 
structure class info.  

32 0.97 Gromiha[25]  

linear single regression  Composition Index Sequence only  62 0.72 Ma et al.[49] 
linear multiple 
regression  

amino acid properties Sequence only  77 0.96 Gromiha et al.[50] 

quadratic response 
surface model 

amino acid properties Sequence only  77 0.9 Huang and 
Gromiha[51] 

linear multiple 
regression  

Weighted NNP  Sequence only  80 0.98  

 

 

 

  



 

4 LENGTH CORRECTION FOR THE MODEL 

 

We need to correct for length in our model in order to compare folding rates of 

proteins having different lengths. We plotted the predicted folding rates of all organisms 

used in this study against their lengths and fitted the data to several simple equations.  We 

found that the simple linear equation 

 

Predicted Folding Rate = 11.080.08 (Length)
 

 

fits the data with an r- square value of 0.8114 and standard error of 4.156 (Fig. 3). 

We use this equation for length normalization of predicted folding rates in our further 

analysis.  

  

Figure 3: Curve fitting predicted folding rates of all organisms to linear equation y = a + bx; 
where ‘y’ is the predicted folding rate, ‘x’ is the length of the protein, a = 11.08, b = 0.08. We 
find that this simple equation fits the data with an r- square value of 0.8114 and standard error of 
4.156. 
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5 RESULTS AND DISCUSSION 

 

5.1 Cellular proteomes have a broad distribution of folding rates 

 Protein synthesis rates and folding rates hugely impact cell growth rates. In the 

present study we have calculated folding rate distributions across the whole proteome that 

give us more information than what we get by just calculating the average folding rate of a 

proteome. We downloaded whole proteomes of E. coli, B. subtilis, S. cerevisiae, C. elegans, 

D. melanogaster, A. thaliana, M. musculus and H. sapiens from UniprotKB. Using our 

model, we calculated the predicted folding rates of all the proteins between the lengths of 25 

and 350 amino acids in a proteome. Figure 4 below contains the boxplot of predicted folding 

rates plotted against length for all the proteomes. Figure 5 illustrates the proteome-wide 

distribution of predicted folding rates for each proteome. We then do the length 

normalization and look at the new distributions (Fig. 6). By doing this we are basically 

removing the dependency of protein folding rate on length and looking to see if there are 

other factors influencing a given protein’s folding rate.  

The general shapes of the boxplot in Fig. 4 and histogram in Fig. 5 are conserved 

across different organisms.  Cellular proteomes have a broad distribution of folding rates 

varying across 45 units of ln(kf) in almost all the model organisms. This is significant 

because 45 units on logarithmic scale translates to a huge range on a normal scale. The 

means, standard deviations and quantile ranges are given in Table 5. From Fig. 6 we see 

that the folding rate distributions have a characteristic bell shape and are almost similar 

after length normalization for all the mesophilic model organisms. The little difference  
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that was present in the original distributions was almost completely lost after length 

normalization. Table 6 gives the means, standard deviations and quantile ranges after 

length normalization. This essentially means that length of a protein is the major 

determinant of protein folding rate for proteins in the range of 25-350 amino acids. At the 

same time, we should also note that length is not the only determinant of a given 

protein’s folding rate. If length was the only determinant we would have observed that all 

proteins after length normalization have the same folding rate; instead we see a 

characteristic normal-like distribution.  

In all the distributions in Fig. 5, the extreme limits are +15 and -30 of ln(kf). 15 

units of ln(kf) translated to 3.27 (μsec)-1. This is equal to a folding time of ~0.3 μsec. 

Estimates from polymer collapse theory [43] and reaction rate theory [43] along with 

experimenta observations predict a speed limit of ~N/100 μsec for a single-domain 

protein of length N. Our extreme limit on fast folders is very close to this estimate. On 

the other hand cells also require their proteins to fold in a biologically relevant time for 

their proper functioning. Therefore, the folding rate of a protein should be comaparable to 

its synthesis rate. In E. coli, the translation speed is about 10-15 amino acids per second. 

Therefore, we can estimate that a protein shouldn’t fold slower than about ~1/min [46]. 

Our limits from distributions not in acoordance with this theoretical extreme slow limit. 

This means that the assistance of molecular chaperones is vital for those very slow 

folding proteins which otherwise wouldn’t be able to fod in a biologically relevant time.
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Figure 4: Boxplots of predicted folding rate vs. length for the mesophilic model organisms. Bin size is 17.5 units of length  
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Figure 5: Predicted folding rate distributions for different mesophilic model organisms. Bin size is 2.5 units of ln(kf). The blue line indicates the 
mean of the distribution; the red lines indicate the range of (mean ± standard deviation) for the distributions. 
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Figure 6: Predicted folding rate distributions after length normalization for different mesophilic model organisms. Bin size is 2.5 units of ln(kf). 
The blue line indicates the mean of the distribution; the red lines indicate the range of (mean ± standard deviation) for the distributions. 
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Table 4: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate distributions of the mesophilic model organisms 

 

 
 
 
 
 
 
 
Table 5: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate distributions after length normalization of the 
mesophilic model organisms 
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5.2 Folding rate distributions in extremophiles 

 Water molecules play a critical role in protein folding through the formation of 

hydrogen bonds and hydrophobic effect [44]. Hydrophobic effect is the burial of 

hydrophobic amino acid side-chains in the core of the protein. Water activity is hugely 

affected by extreme conditions like high/low temperatures and high salinity. In addition 

to this reduction in diffusion rates and changes in solvent viscosity [45] hugely impact 

protein folding in extremophiles. 

 We do the same analysis as mesophiles for the extremophiles. Fig. 7 gives the 

original folding rate distributions and Fig. 8 gives the folding rate distributions after 

length normalization. The shape of the distributions in the case of extremophiles is 

inconsistent and different from mesophilic model organisms. We observe a small increase 

in the percentage of the slowest folding proteins in halophiles when compared to 

mesophiles. 

 How extremophiles adapt to the extreme conditions to be able to be functional is a 

very complex issue. In our distributions we see a small increase in the slowest folding 

proteins in halophiles when compared to mesophiles. The halophiles through special 

adaptations seem to overcome these barriers for optimal protein folding.  
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Figure 7: Predicted folding rate distributions for different extremophiles. Bin size is 2.5 units of ln(kf). The blue line indicates the mean of the 
distribution; the red lines indicate the range of (mean ± standard deviation) for the distributions. 
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Figure 8: Predicted folding rate distributions after length normalization for different extremophiles. Bin size is 2.5 units of ln(kf). The blue line 
indicates the mean of the distribution; the red lines indicate the range of (mean ± standard deviation) for the distributions. 
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Table 6: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate distributions of the extremophiles 

 
 

 
 
 
 
 
Table 7: Mean, standard deviation (SD) and quantile ranges for the predicted folding rate distributions after length normalization of the 
extremophiles 
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5.3 Fast and slow folders among representative sequences of all known protein 

families 

 

 We downloaded the representative sequences of all known protein families 

between lenghts of 25 and 350 amino acids from SCOP and applied our model to predict 

their folding rates. Then, we applied length correction on this data to analyze slow and 

fast folders. 

 

Figure 9: Folding Rate vs. Length plot after length normalization for representative sequences of 
all known protein families. The outliers marked as circles are used for significance analysis. 

 
 We collected 40 sequences from this dataset which have abnormally faster or 

slower folding rates when compared with other sequences of the same length. To confirm 

the significance of these 40 proteins, we do the following: 
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(a). We shuffle each protein sequence 1000 times and generate shuffled sequences with 

the same amino acid composition. 

(b). We calculate predicted folding rates for these shuffled sequences. 

(c). We plot the predicted folding rates’ distribution of these 1000 sequences along with 

the predicted folding rate of the parent sequence (Figure 10). 

(d). We also look at the PDB structure of the sequence to gain insight into the structure-

folding rate relationship. 

 On analyzing the distributions we see that the folding rates of parent sequences 

fall near the tails of distribution as expected. This basically tells us that these sequences 

have a “special sequence order” which results in the abnormally faster or slower folding 

rates. If we had used amino acid composition alone or length to predict the folding rates 

in our model; these sequences would not have shown up as unique. It is interesting to 

observe that according to our model the fast folders among representative sequences of 

all known protein families have large percentage of alpha helices; while the slow folders 

are mainly made up of beta sheets. 
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Figure 10: Predicted folding rate distributions of randomly shuffled sequences of slow and fast 
folding proteins among representative sequences of all known protein families. The red line 
indicates the value where the predicted folding rate of the actual parent sequence lies in the 
distribution. On the right side of each distribution we give the PDB structure of the sequence. 
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Figure 10: continued 
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Figure 10: continued 
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Figure 10: continued 
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Figure 10: continued 
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Figure 10: continued 
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Figure 10: continued 
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Figure 10: continued 
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5.4 Relationship between structure and folding rate 

 It has been observed that alpha helical proteins have the fastest folding kinetics 

when compared to all beta sheet proteins of proteins which are combinations of alpha 

helices and beta sheets. This is in accordance to the popular idea of topology affected 

folding rates [8]. Alpha helocal proteins have the smallest number of contacts per residue 

(structurally less complex) and thus have faster folding kinetics. It is also observed that 

proline isomerization and conformationally restrictive disulfide bonds [46] result in 

slower folding of proteins. 

 Our model’s results [Fig. 9] are in accordnace with the above theory. The fast 

folders among representative sequences of all known protein families have large 

percentage of alpha helices; while the slow folders are mainly made up of beta sheets. 

Among the 40 families, we will look more deeply into the following two more 

structurally complex families. 

 

5.4.1 Heliobacter pylori cysteine rich protein B 

 The PDB structure of the H. pylori cysteine rich protein Chain A (1KLX) is given 

in Fig. 11 (a). This is an all-alpha motif and should technically fold fast. Our model 

predicts that this protein folds very slowly (ln(kf) = -8.46). So, we investigate further into 

the sequence and three dimensional structure. It turns out that di-sulfide bridges play a 

vital role in the folding kinetics of this particular protein. The PDB structure with di-

sulfide bridges is given in Fig. X (b). It seems that the relative slow kinetics of di-sulfide 

bond formation between cysteine residues is critically affecting the folding kinetics of 

this cysteine rich protein [47]. 
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Figure 11: (a) PDB structure of 1KLX, (b) PDB structure of 1KLX with di-sulfide bridges 

 

 

5.4.2 Ribonuclease T1 

 The PDB structure of Ribonuclease T1 Chain A (1I0V) is given in Fig. 12 (a). 

This is a relatively short protein chain and should fold fast. Our model predicts that this 

protein folds much slower ( ln(kf) = -9.16) than other proteins of comparable length. 

When we look more deeply into the sequence and structure we learn that isomerization of 

the two cis prolyl bonds at Pro 39 and Pro 55 could be the rate-determining steps of the 

slow folding kinetics of Ribonuclease T1 chain A [48]. 
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Figure 12: (a) PDB structure of 1I0V, (b) PDB structure of 1I0V with the critical Pro residues 
labelled 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 CONCLUSIONS 

  

 Understanding the relationship between sequence, structure, and folding rate of a 

protein is critical to gain insight into the protein folding mechanism. In our current work, 

we used a model which takes into account the ‘sequence order’ in a protein in predicting 

the folding rate of a protein. Our results show that ‘sequence order’ is indeed a very 

important determinant of a protein’s folding rate along with the length. We used this 

model to comute the folding rate distributions of a proteome from which we look at the 

extreme limits of folding rate in a cell. We find that many proteins in a cell require the 

help of the chaperone machinery to be able to fold in a biologically relevant time. We 

have also shown that halophiles have a difrent distribution of folding rates when 

compared to mesophiles. We further find the fastest and slowest folding proteins among 

those representing all known protein families. We analyzed certain structures among 

these fast/slow folders to gain valuable insight into the structure-folding rate relationship. 
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7 FUTURE WORK 

 

 Understanding how simple mutations affect folding rate of a protein is one of the 

most important challenges in current bioinformatics. Our current model is not sensitive 

enough to predict folding rate changes due to mutations. We need a larger and more 

diverse experimental dataset to be able to create a more sensitive prediction model. 

 Is ribosomal translation speed connected to protein folding rates? A recent study 

[37], reported that slowing bacterial translation rates enchanced eukaryotic protein 

folding effeciency in a prokaryotic system. It is important to know if the folding 

pathways of proteins evolved in the context of translation rates. 
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