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SUMMARY

A carrier graph is a map from a finite graph to a hyperbolic 3-manifold M , which is surjective

on the level of fundamental groups. We can pull back the metric on M to get a notion of length

for the graph. We study the geometric properties of the carrier graphs with minimal possible

length. We show that minimal length carrier graphs exist for a large class of 3-manifolds. We

also show that those manifolds have only finitely many minimal length carrier graphs, from

which we deduce a new proof that such manifolds have finite isometry groups. Finally, we give

a theorem relating lengths of loops in a minimal length carrier graph to the lengths of its edges.

From this we are able, for example, to get an explicit upper bound on the injectivity radius of

M based on the lengths of edges in a minimal length carrier graph.
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CHAPTER 1

INTRODUCTION

We will be working in the context of hyperbolic 3-manifolds. A hyperbolic manifold M

is a Riemannian manifold with constant sectional curvature -1. Equivalently, it is a quotient

of Hn (the unique simply connected Riemannian manifold with constant sectional curvature

-1) by a discrete, torsion-free group of isometries acting properly discontinuously. This group

is isomorphic to π1(M). The study of 3-manifolds has long been closely tied to the study of

their fundamental groups, and the work of Thurston and Perelman made it clear that geom-

etry (especially hyperbolic geometry) has a very important role to play in this study, as well.

The Mostow-Prasad ridigity theorem implies that if two finite volume hyperbolic manifolds

with dimension at least 3 have isomorphic fundamental groups, then they are isometric. The

topology of a manifold determines the fundamental group, and this rigidity theorem says that

in the case of a finite volume, hyperbolic manifold of dimension at least 3, the fundamental

group determines the topology and geometry of the manifold. Thus, topological and geometric

properties of M and group-theoretic properties of π1(M) correspond to each other, at least

abstractly. One of the major themes of low-dimensional topology in recent decades has been to

make this correspondence more concrete.

Carrier graphs are a tool for using geometry to study generating sets of π1(M). A carrier

graph is a finite graph X along with a map f :X → M , with f∗ : π1(X) → π1(M) surjective.

This definition is due to White (21). Implicit in this definition is the requirement that π1(M)
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be finitely generated; we will assume this throughout. It is clear that M has a carrier graph; in

particular, one could map a bouquet of circles into M so that each circle maps to a representative

of an element of a finite generating set for π1(M). Define the rank of a group to be the minimal

number of elements needed to generate the group. For any carrier graph, it is clear that

rank(π1(X)) ≥ rank(π1(M)), and for the carrier graph just given, rank(π1(X)) = rank(π1(M)).

We will assume throughout the text that this rank equality holds for all carrier graphs we

consider. The benefit of this assumption is that it implies that any simple closed curve in X

maps to a homotopically nontrivial loop in M , for otherwise, we could break this loop in X

and get a carrier graph with rank strictly smaller than that of π1(M), which is impossible.

Since M is a Riemannian manifold, we can measure lengths of paths in M . For an edge

e ⊂ X, define the length of e, lenf (e), to be the length of the path f |e (we will assume that

the edges are all mapped to rectifiable curves). Define the length of X, lenf (X), to be the sum

of the lengths of all the edges in X. A minimal length carrier graph (MLCG) f :X → M is a

carrier graph with the property that for all carrier graphs g :Y →M , lenf (X) ≤ leng(Y ). It is

not obvious that minimal length carrier graphs should exist, but White (21) proves that they

do in closed, hyperbolic 3-manifolds. In Theorem 1, we will expand his proof to a much larger

class of hyperbolic 3-manifolds. White showed that when they do exist, MLCGs have some

nice geometric properties, which we will list in the next chapter. By exploiting some of these

properties, he proved that when M is closed, an upper bound on the rank of π1(M) implies an

upper bound on the injectivity radius of M , where the injectivity radius of M is half the length

of its shortest non-trivial loop.
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MLCGs have also been used to study the relationship between the rank of π1(M) and

the Heegaard genus hg(M) of M , which is the smallest g such that M may be obtained by

gluing two genus g handlebodies together along their boundary. A simple topological argument

shows that rank(π1(M)) ≤ hg(M), and in the 1960s, Waldhausen asked if equality holds for

all 3-manifolds. Boileau and Zieschang (4) found non-hyperbolic examples of 3-manifolds with

rank not equal to genus, and Tao Li (9) recently produced a hyperbolic 3-manifold with rank

not equal to genus. These results (and how long it took them to be found) suggest that the

relationship between rank and genus is subtle. Souto (20) and Biringer (2) used MLCGs to

show that for a large class of fibered 3-manifolds M , the rank of π1(M) is equal to the Heegaard

genus of M , where a fibered 3-manifold is one that is the total space of a fiber bundle over the

circle. More specifically, Biringer’s result, which generalized Souto’s, was that if the genus of

the fiber is fixed, then for every ε > 0, there are only finitely many fibered 3-manifolds with

injectivity radius greater than ε for which the rank of π1 is not equal to the Heegaard genus.

Namazi and Souto (11) used MLCGs to show that if two handlebodies of genus g ≥ 2 are glued

together via a sufficiently high power of a certain, generic type of surface homeomorphism, then

the resulting manifold will have rank and Heegaard genus equal to g.

Biringer and Souto (3) used MLCGs to show that there are only finitely many closed hyper-

bolic 3-manifolds with an upper bound on the rank of π1 and a lower bound on the injectivity

radius of M and a lower bound on the first eigenvalue of the Laplacian.

All of the results just mentioned, except for White’s original result, rely heavily on a single

theorem (or sometimes a slight variation) about MLCGs, which we call the nested subgraph
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theorem. This is Theorem 4.2 of (2). Though White did not use this theorem in his original

carrier graph paper, his result follows immediately from it. Since this one theorem about

MLCGs has helped bring so much new insight into hyperbolic 3-manifolds (especially the old

problem of rank versus genus), I believe it may be fruitful to consider MLCGs as an object of

study in their own right. Hence, for my thesis research, I have studied some of the geometric

properties of MLCGs.

After proving that MLCGs exist, an obvious question is whether they are unique. In Chap-

ter 3, we will make this question more precise and show that the answer is no. However, we will

also show in Theorem 3 that for a very large class of hyperbolic 3-manifolds M , although M

may contain more than one MLCG, it can only have finitely many. This will follow from The-

orem 2, which says that if two MLCGs are homotopic, they must be equal. From Theorem 3,

we will derive a new proof that the isometry groups for these manifolds are finite.

Chapter 4 is devoted to proving Theorem 5, which connects the lengths of loops in a MLCG

f :X → M to lengths of its edges. Roughly speaking, it says that if all of the loops in X are

long, then the edges of X cannot be short. A simple loop in X is part of a minimal cardinality

generating set for π1(X), and so it maps to part of a minimal cardinality generating set for

π1(M). Thus, the contrapositive of Theorem 5 implies that if X contains a sufficiently short

edge e, then π1(M) admits a minimal cardinality generating set containing a short element,

and as the length of e approaches 0, so does the length of this generator.

The results and examples in Chapter 3 are available on the arXiv in (18), and the results

and examples of Chapters 2 and 4 have been published in (19).



CHAPTER 2

BASIC PROPERTIES AND EXISTENCE

As mentioned in the introduction, White showed that MLCGs have some nice geometric

properties. Specifically, he showed

Theorem (White (21)). If M is a closed, hyperbolic 3-manifold, then M has a minimal length

carrier graph. In addition, if f :X → M is a minimal length carrier graph for any hyperbolic

3-manifold M (closed or not), then:

1. the edges of X map to geodesics;

2. X is trivalent;

3. every edge of X has positive length; in particular, the images of vertices are still trivalent;

4. edges adjacent to the same vertex meet at an angle of 2π/3.

We can extend White’s proof of the existence of minimal length carrier graphs to a larger

class of 3-manifolds. For definitions of compression body and NP-end, see (5) and (10), respec-

tively. An NP -end is essentially a topological end of M \ {cusps of M}.

Theorem 1. Let M be an orientable, hyperbolic 3-manifold such that π1(M) is finitely generated

and nonabelian. If M does not contain a minimal length carrier graph, then it has a compact

core which is a compression body. Furthermore, M has a π1-surjective, simply degenerate NP-

end.
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Proof. Let l be the infimum of the lengths of all carrier graphs for M , and let fi : Xi → M

be a sequence of carrier graphs with geodesic edges and whose lengths approach l. In (21),

White applies the Arzelà-Ascoli theorem to such a sequence and shows that the resulting limit

is a minimal length carrier graph. For his argument to work, it is sufficient for there to be a

compact set K containing fi(Xi) for all i. Suppose that M does not have a minimal length

carrier graph and thus, that this condition does not hold for any subsequence of {fi}.

Because it converges, the sequence {lenfi(Xi)} has an upper bound L. There is a compact

submanifold C ⊂ M for which the inclusion map is a homotopy equivalence (see (17)), and

in fact, by the topological version of the tameness theorem ((1), (6)), we can pick C so that

M \ C = ∂C× [0,∞). The radius L neighborhood CL of C is also compact, and so for some i0,

fi0(Xi0) 6⊂ CL. Since lenfi0
(Xi0) ≤ L, we have that fi0(Xi0)∩C = ∅. Thus, fi0(Xi0) is contained

in S × [0,∞) for some component S of ∂C. Since fi0 is a carrier graph, it follows that the map

π1(S)→ π1(C) induced by inclusion is surjective, and in particular, the map π1(∂C)→ π1(C)

is surjective. Since C is compact and has a π1-surjective boundary component, C must be a

compression body. For a proof of this well-known fact, see (5) Lemma 2.2.2.

Unless C ∼= (surface)×I, it has only one π1-surjective boundary component S, and so fi(Xi)

is eventually contained in the end S × [0,∞). If C ∼= (surface) × I, then it is possible that

fi(Xi) lies in each of the two ends infinitely often. In that case, we will assume that we have

passed to a subsequence that lies entirely in one end S × [0,∞).

Let M0 be the manifold obtained by removing standard neighborhoods of the cusps of

M . As can be seen by using the upper halfspace model of hyperbolic space, each cusp has a
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neighborhood isometric to the horoball {(x, y, z) ∈ H3|z ≥ Z} modulo a group of translations,

where Z > 0 depends on the cusp. There is a vertical projection to the horosphere {(∗, ∗, Z) ∈

H3} that descends to a retraction ρ :M →M0. The composition of ρ with any fi is still a carrier

graph for M . Since fi cannot map entirely into a cusp (because then π1(M) would be abelian)

and lenfi(Xi) < L, there is an upper bound for the depth of fi(Xi), i.e. the z-coordinate, in any

cusp. This, combined with the upper bound on the length of fi(Xi), implies an upper bound

on the length of ρ ◦ fi. In addition, a point in a cusp with distance d from the boundary of the

cusp gets moved a distance d by ρ. Since no point of fi(Xi) can have depth greater than L in a

cusp, ρ(fi(Xi)) is contained in a radius L neighborhood of fi(Xi). Thus, {ρ ◦ fi} is a sequence

of bounded length carrier graphs that eventually leaves every compact set, and ρ ◦ fi misses

fixed neighborhoods of every cusp. This implies that ρ(fi(Xi)) is contained in an NP-end for

large i.

We now have that M has a π1-surjective, NP-end E which contains ρ(fi(Xi)) for infinitely

many i. According to the tameness theorem, there are two possibilities for the geometry of E :

it is geometrically finite or simply degenerate. Suppose E is geometrically finite. Then E has a

flaring geometry. In particular, if E = S′ × [0,∞), then it is easy to show that the injectivity

radius at any point away from any cusps in S′ × [t,∞), goes to infinity as t → ∞. Since

ρ(fi(Xi)) is not contained in any standard cusp neighborhood, contains nontrivial loops, and

is exiting E , the length of the carrier graph ρ ◦ fi must being going to infinity. This contradicts

these graphs having bounded length. Hence, E is simply degenerate.



8

c c

ϕ

c c

a

b b

120 120

120

a

b b

Figure 1. Shortening procedure

Suppose two geodesic segments in H3 with the same length meet at a shared endpoint with

angle ϕ < 2π/3. We can replace the edges with a tripod (with the same endpoints) as shown

in Figure 1. A little hyperbolic trigonometry shows (with the edge length labels from the figure)

that 2c > 2b + a, so the tripod is shorter. One can apply this procedure to a pair of geodesic

edges that share an endpoint in a carrier graph. Generally, such a pair of edges will not be

the same length, so we instead apply it to two “edge segments” (i.e. a subarc of an edge).

Note that if an edge has both endpoints at the same vertex, we may apply the procedure with

edge segments from the same edge, each with length up to half that of the full edge. This

shortening procedure is the key tool that White uses to prove points 2-4 in the theorem above.

We will need a stronger statement. Let Sh(c, ϕ) be the reduction in length after performing

the shortening procedure on edge segments of length c meeting at angle ϕ. If ϕ is understood,

we will use the notation Sh(c). With some hyperbolic trigonometry, one can see that a and b

are functions of c and ϕ. So Sh(c, ϕ) = 2c− 2b(c, ϕ)− a(c, ϕ).

Lemma 1. For a fixed length c, if ϕ < 2π/3, Sh(c, ϕ) is a strictly decreasing function of ϕ.

For a fixed angle ϕ < 2π/3, Sh(c, ϕ) is a strictly increasing function of c.
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Hence, smaller angles and longer edges produce a greater reduction in length in the short-

ening procedure.

Proof. Fixing c, we need to show that 2b+ a is an increasing function of ϕ. We know c and its

opposite angle, so the hyperbolic law of sines immediately shows that b is an increasing function

of ϕ. Given b, we can compute a. Thus, treating b as a function of ϕ and a as a function of b,

we have:

d

dϕ
(2b+ a) = 2

db

dϕ
+
da

db

db

dϕ
.

So it suffices to show that da
db > −2. Given that the angle opposite c is 2π/3, the hyperbolic

law of cosines says cosh c = cosh a cosh b + 1
2 sinh a sinh b. Implicit differentiation with respect

to b yields

0 = sinh(a)a′ cosh(b) + cosh(a) sinh(b) +
1

2
cosh(a)a′ sinh(b) +

1

2
sinh(a) cosh(b)

0 = a′(sinh(a) cosh(b) +
1

2
cosh(a) sinh(b)) + cosh(a) sinh(b) +

1

2
sinh(a) cosh(b)

a′ = −
cosh(a) sinh(b) + 1

2 sinh(a) cosh(b)

sinh(a) cosh(b) + 1
2 cosh(a) sinh(b)

We want a′ > −2, which is equivalent to

cosh(a) sinh(b) +
1

2
sinh(a) cosh(b) < 2 sinh(a) cosh(b) + cosh(a) sinh(b)

1

2
sinh(a) cosh(b) < 2 sinh(a) cosh(b)
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ϕ
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Figure 2. Shortening procedure triangles for i = 1 (smaller) and i = 2 (larger)

which is true if a 6= 0. However, in the shortening procedure, a = 0 if and only if ϕ = 2π/3;

hence, the result follows.

Now fix 0 < ϕ < 2π/3. Pick c1 and c2 with 0 < c1 < c2. For i = 1, 2, let ai = a(ci, ϕ)

and bi = b(ci, ϕ). Using some hyperbolic trigonometry, one can explicitly write down formulas

for a and b as functions of c and ϕ. By (rather tediously) differentiating them, it is not hard

to prove that a and b are increasing functions of c, so a1 < a2 and b1 < b2. Let a′ = a2 − a1

and c′ = c2 − c1. We wish to show that 2c2 − 2b2 − a2 > 2c1 − 2b1 − a1. This is equivalent

to c′ + b1 > b2 + 1
2a
′. Figure 1 shows two symmetric triangles which each give the relationship

between a, b and c. Figure 2 shows the corresponding triangles for ai, bi and ci for i = 1, 2 on

top of each other.

The quadrilateral wxyz can be split into two triangles by inserting the diagonal [x, y]. By

the triangle inequality, we have c′ + b1 > len([x, y]). The line segments [x, y], [y, z] and [x, z]
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form a triangle in which the angle opposite [x, y] is 2π/3. As noted above, the shortening

procedure works because of the observation that in such a triangle,

2len([x, y])− 2len([y, z])− len([x, z]) > 0.

Since len([y, z]) = b2 and len([x, z]) = a′, it follows that c′ + b1 > b2 + 1
2a
′, which was our

goal.



CHAPTER 3

UNIQUENESS

It is natural to ask whether minimal length carrier graphs are unique. We must take a

little care regarding what it means to be unique. For example, if f : X → M is a minimal

length carrier graph and η :X → X is a homeomorphism, then fη is a minimal length carrier

graph, as well, though intuitively, we would think of it as being the same graph as f . Thus,

we define carrier graphs f :X → M and g : Y → M to be strongly equivalent if there exists

a homeomorphism η : X → Y such that f = gη. Following Souto (20), we say f and g are

equivalent if there exists a homotopy equivalence η : X → Y such that f and gη are freely

homotopic. The previously mentioned results about existence and basic properties of minimal

length carrier graphs all still hold (with identical proofs) if you only consider carrier graphs

within an equivalence class.

The question of uniqueness can now be stated in (at least) two more precise ways:

1. Must any two minimal length carrier graphs for M be strongly equivalent?

2. Must any two carrier graphs which both have minimal length within the same equivalence

class be strongly equivalent?

The answer to both questions is no, according to the examples in Section 3.1. However, we

will prove two weaker uniqueness results in Sections 3.2 and 3.3. In order to state them, we

need one final (and very strong) notion of equivalence. Two carrier graphs f, g :X → M are

12



13

essentially equivalent if f = gη for some homeomorphism η :X → X that fixes vertices and

leaves edges and their orientations invariant. In other words, f and g are the same except for

reparameterizing the edges. Carrier graphs are essentially distinct if they are not essentially

equivalent.

Theorem 2. Let M be a hyperbolic 3-manifold and let f :X → M and g :X → M be carrier

graphs, which either each have minimal length within their equivalence classes or each have

minimal length globally. If f and g are homotopic, then f and g are essentially equivalent.

And although there may be more than one carrier graph of minimal length globally or within

an equivalence class, we show

Theorem 3. Let M be a hyperbolic 3-manifold and suppose that π1(M) is nonabelian and

M does not have a π1-surjective, simply degenerate NP-end. Then M has only finitely many

essentially distinct minimal length carrier graphs, and each equivalence class of carrier graphs

can have only finitely many essentially distinct minimal length representatives.

3.1 Non-uniqueness examples

Proposition 1. Let M be a hyperbolic 3-manifold with rank(π1(M)) = 2. Suppose that M has

a minimal length carrier graph f :X →M and that M has a fixed-point free isometry h of finite

order not divisible by 3. Then hf is a minimal length carrier graph not strongly equivalent to

f .

Proof. It is clear that hf is a minimal length carrier graph. Suppose it is strongly equivalent to

f . Then there exists a homeomorphism η :X → X such that hf = fη. Note that η cannot fix
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any point x ∈ X, for then h would fix f(x). As noted above, minimal length carrier graphs must

be trivalent. There are only two trivalent graphs of rank 2: one that looks like a θ and one that

looks like eye-glasses. The eye-glasses graph does not admit a fixed-point free homeomorphism;

so X is the θ graph. Up to homotopy, η must be the homeomorphism that swaps vertices and

cyclically permutes the edges.

Let m be the order of h. Then hmf = fηm, which is equivalent to f = fηm. Since m is

not divisible by 3, ηm cyclically permutes the edges of X. Hence, f must map each edge to the

same image, which contradicts f being a carrier graph because f∗(π1(X)) would be trivial.

We can get concrete examples from this proposition. For example, let M be the figure 8

knot complement. Then M is a two-fold cover of the Gieseking manifold, hence it has a fixed-

point free isometry h of order 2, and the rank of π1(M) is easily found to be two (from, say,

the Wirtinger presentation); so M has non-unique minimal length carrier graphs.

We can also get closed examples. Reid (16) shows how to produce, for any p > 1, a closed

hyperbolic 3-manifold M with a regular, cyclic cover N of degree p such that rank(π1(N)) = 2.

If p is not divisible by 3, then N with its order p deck transformation satisfies the hypotheses

of Proposition 1 and thus has non-unique minimal length carrier graphs.

We can take these examples a bit further to get examples of carrier graphs which are minimal

in the same equivalence class but are not strongly equivalent. Reid’s manifolds are formed as

follows. Let ϕ be a pseudo-Anosov homeomorphism of a punctured torus T and let Mϕ be

the mapping torus of ϕ. Let a, b be generators of π1(T ). Reid forms a manifold, which we are

calling N , by taking the obvious p-fold cyclic cover of Mϕ and performing a certain Dehn filling
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on it. It is shown that N is a p-fold cyclic cover of a manifold obtained from Dehn filling Mϕ

and the preimage of the filling torus for Mϕ is the filling torus of N (in particular, the deck

transformations of N leave the filling torus invariant). By abuse of notation, we will use a and

b to refer to the generators of the fiber subgroup of Mϕ and its cover and to their images in

the filled manifold N . Reid shows that a and b generate π1(N). Let H be the filling torus

of N . Then N \ H is fiber bundle over S1 with fiber a compact surface of genus 1 and with

1 boundary component. Choose representatives α and β of a and b, respectively, that lie in

a particular fiber Σ of N \ H. If h is an order p deck-transformation of N , then h ◦ α and

h ◦ β are loops in the fiber h(Σ) which also generate π1(N). Notice that there is a submanifold

homeomorphic to Σ× [0, 1] ⊂ N containing α, β, h ◦ α and h ◦ β. The manifold Σ× [0, 1] is a

genus 2 handlebody and the pairs {α, β} and {h◦α, h◦β} each generate its fundamental group.

It is a well-known fact that any two minimal cardinality generating sets for the fundamental

group of a handlebody are Nielsen equivalent; hence, h preserves the Nielsen equivalence class

of the generating pair {a, b}.

Let f :S1∨S1 → N be the carrier graph given by mapping one of the S1s to α and the other

to β, and let f ′ be a carrier graph of minimal length in the equivalence class of f . Then h ◦ f ′

has minimal length in the equivalence class of the graph coming from h ◦ α and h ◦ β. In (20),

Souto shows how to associate an equivalence class of carrier graphs to a Nielsen equivalence

class of generators for π1 and vice versa. His discussion of this correspondence implies that

since h preserves the Nielsen equivalence class of {a, b}, f ′ and h ◦ f ′ are equivalent. However,
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Proposition 1 implies that these carrier graphs are not strongly equivalent. Hence, minimal

length carrier graphs are not unique even within an equivalence class.

3.2 Non-existence of homotopies of minimal length carrier graphs

For the proof of Theorem 2, we will need a lemma.

Lemma 2. Let x, y and z be distinct points in Hn. Let x′ (resp. y′) be the midpoint of the

geodesic between x (resp. y) and z. Then d(x′, y′) ≤ 1
2d(x, y), and equality is achieved exactly

when the angle ∠xzy is 0 or π.

Proof. Let a = d(x′, z), b = d(y′, z), c = d(x′, y′) and γ = ∠xzy. We wish to show that

2c ≤ d(x, y). This is equivalent to cosh(2c) ≤ cosh(d(x, y)). By the hyperbolic law of cosines,

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ)

cosh d(x, y) = cosh(2a) cosh(2b)− sinh(2a) sinh(2b) cos(γ).

Now we just follow our noses: cosh(2c) = 2 cosh2(c)− 1, so we need to show

2 cosh2(c)− 1 ≤ cosh(2a) cosh(2b)− sinh(2a) sinh(2b) cos(γ).

The left side is equal to

2 cosh2(a) cosh2(b)− 4 cosh(a) cosh(b) sinh(a) sinh(b) cos(γ) + 2 sinh2(a) sinh2(b) cos2(γ)− 1.
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Notice that

sinh(2a) sinh(2b) cos(γ) = 4 cosh(a) cosh(b) sinh(a) sinh(b) cos(γ).

So our goal becomes

2 cosh2(a) cosh2(b) + 2 sinh2(a) sinh2(b) cos2(γ)− 1 ≤ cosh(2a) cosh(2b).

Using the identity cosh(2x) = 2 cosh2(x)−1 and some algebra, one can see that this is equivalent

to

sinh2(a) sinh2(b) cos2(γ) + cosh2(a) + cosh2(b) ≤ cosh2(a) cosh2(b) + 1.

It suffices to prove this inequality with the assumption that cos2(γ) = 1, or equivalently, γ =

0, π. In this case, it is an equality, which follows from the identity cosh2(b) = sinh2(b) + 1.

Proof of Theorem 2. Suppose f and g are homotopic and essentially distinct. Let H : X ×

[0, 1]→M be a homotopy from f to g. The space X× [0, 1] can be triangulated as follows. Let

e ⊂ X be an edge. Suppose e has distinct endpoints. Then a homeomorphism from e to [0, 1]

can be extended to a homeomorphism from e× [0, 1] to [0, 1]× [0, 1] (sending e to [0, 1]× {0}).

The latter space has a triangulation with two triangles obtained by splitting the square along

one of its diagonals. This triangulation can be pulled back to a triangulation for e × [0, 1]. If

e’s endpoints are the same (i.e. e is a loop), then it can be triangulated in essentially the same

way, but with e × {0} and e × {1} identified. These triangulations can be glued together in
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an obvious way to yield a triangulation of X × [0, 1]. The map H can be made simplicially

hyperbolic with respect to this triangulation, i.e. it can be made to send edges to geodesic

segments and 2-simplices to geodesic triangles. We will assume this has been done. Note that

this does not change the ends of the homotopy (f and g), since they already have geodesic

edges by virtue of having minimal length.

We now construct a new carrier graph h :X → M . Let v be a vertex of X. Then H maps

{v} × [0, 1] to a geodesic arc in M . Let h(v) be the midpoint of that geodesic. Having defined

h on the vertices on X, we can define it on the edges. Let e be an edge of X with distinct

endpoints v and w. Then e× [0, 1] consists of two triangles, which share a common edge. Let

m be the midpoint of the (geodesic) image of that edge under H. There are geodesic arcs

e1 and e2 connecting h(v) to m and m to h(w) and lying within H(e × [0, 1]). Let h map e

homeomorphically to the path formed by concatenating e1 and e2. See Figure 3. If e has only

one endpoint, then h(e) is formed similarly; the picture is the same as Figure 3, except that the

left and right edges are identified. Thus, the map h is essentially the midpoint of the homotopy

H. It is clear that h is homotopic to f and g, which implies that it is a carrier graph in the

same equivalence class as f and g.

We will show that lenh(X) < 1
2(lenf (X)+leng(X)). Because lenf (X) = leng(X) (since they

both have minimal length), h will be shorter than both, which will contradict minimality and
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f(e)f(v)

f(w)

h(v)

h(w)

g(v) g(w)
g(e)

me1
e2

ϕ

θ

Figure 3. H(e× [0, 1])

complete the proof. Still referring to Figure 3, we can lift to H3 and apply Lemma 2 to the left

and right triangles to get

lenh(e) = len(e1) + len(e2) ≤
1

2
leng(e) +

1

2
lenf (e) (3.1)

with equality if and only if θ, ϕ ∈ {0, π}. Summing over all edges, we get lenh(X) ≤ 1
2(lenf (X)+

leng(X)). In order for this to be a strict inequality, we need for there to be at least one edge

for which (Equation 3.1) is a strict inequality.

For any vertex v ∈ X, let Hv = H({v} × [0, 1]). There must be some vertex v0 such that

Hv is not just a point. For otherwise, f and g would agree on the vertices of X and for each

edge e of X, f(e) and g(e) would be geodesic segments homotopic relative to their endpoints.

Hence, f(e) would be the same as g(e). If e has distinct endpoints, then it is clear that on e, f

and g differ by an orientation preserving homeomorphism. If e is a loop, then perhaps f and g
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map e to the same geodesic, but with opposite orientation. Since f and g are homotopic (via a

homotopy that does not move the vertices), that would imply that the loop f(e) is homotopic

to its inverse. Since π1(M) is torsion-free and simple loops in X map to non-nullhomotopic

loops in M , this cannot happen. Therefore, f and g must be essentially equivalent, which is a

contradiction. Note that if Hv is not a single point, it is a geodesic path.

Pick an edge e with (not necessarily distinct) endpoints v and w, such that Hv is not a single

point. If the inequality (Equation 3.1) for e is strict, then we are done. If it is an equality, then

the angles θ and ϕ must each be either 0 or π. This implies that the angle between Hv and

f(e) is either 0 or π. The vertex v must have some other edge e′ 6= e adjacent to it. Since f

is a minimal length carrier graph, the angle between f(e′) and f(e) is 2π/3. Thus, the angle

between f(e′) and Hv cannot be 0 or π, and so for e′, the inequality (Equation 3.1) must be

strict. Hence, we get the desired contradiction

lenh(X) <
1

2
(lenf (X) + leng(X)) = lenf (X).

3.3 Finiteness of minimal length carrier graphs

In the examples following Proposition 1, we found that minimal length carrier graphs were

not unique because we can compose them with ambient isometries to get new carrier graphs.

It is perhaps natural then to conjecture the following:
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Conjecture 1. If f, g :X →M are essentially distinct minimal length carrier graphs or carrier

graphs of minimal length in the same equivalence class, then for some isometry h ∈ Isom(M),

f and hg are essentially equivalent.

It is well-known that a large class of hyperbolic 3-manifolds, including finite volume mani-

folds, have finite isometry groups. Thus, Theorem 3, that there are only finitely many minimal

length carrier graphs, would follow immediately from this conjecture. On the other hand, the

fact that the isometry group of M is finite (for a large class of hyperbolic 3-manifolds) follows

from Theorem 3.

Theorem 4. If M has nonabelian fundamental group and does not have a π1-surjective, simply

degenerate NP-end, then the isometry group of M is finite.

Proof. Let C be the set of essential equivalence classes of minimal length carrier graphs in M .

By Theorem 1, this set is nonempty, and by Theorem 3, this set is finite. It is clear that

Isom(M) acts on C, which gives a map from Isom(M) to the finite group of permutations of C.

Let K be the kernel of this map. It suffices to show that K is finite. Isometries of M that are

in K fix a minimal length carrier graph f :X → M up to essential equivalence. In particular,

for some vertex v ∈ X, they fix f(v) and permute the images of the three edges attached to

v. This gives a map from K to S3, the permutation group on three elements. An element h of

the kernel of this map would fix f(v) and the three tangent vectors at f(v) corresponding to

the three edges of X attached to v. Since the angles between these edges are all 2π/3, these

tangent vectors span a plane in the tangent space. Lifting to H3, h̃ would fix some preimage of

f(v) and fix a hyperplane going through f(v) pointwise (since it is an isometry and fixes the
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tangent plane). Hence, h must be the identity map. Thus, K injects into S3, which means that

K is finite. Therefore, Isom(M) is finite.

Our proof of Theorem 3 uses Theorem 2 via the following proposition.

Proposition 2. Suppose M satisfies the hypotheses of Theorem 3 and let L > 0. There are

only finitely many essentially distinct carrier graphs which are minimal length within their

equivalence class and have length less than or equal to L.

Proof. Suppose M has an infinite sequence of carrier graphs fi : X → M , each of minimal

length within its equivalence class and each with length less than or equal to L. Being minimal

length implies the graphs are trivalent. There are only finitely many trivalent graphs of a

particular rank; so we may pass to a subsequence and assume that every Xi is homeomorphic

to a particular graph X. We will continue to call this sequence fi. From the proof of Theorem 1,

it follows that there is some compact submanifold that contains fi(X) for all i. Additionally, the

bound on the length of the fi implies that the sequence is equicontinuous. We can now apply

the Arzelà-Ascoli theorem to get that a subsequence of {fi} converges uniformly. Therefore,

for some large i and j, fi is sufficiently close to fj that the two maps must be homotopic. This

contradicts Theorem 2.

Proof of Theorem 3. Let C be the set of minimal length carrier graphs for M (up to essential

equivalence), and let L be the length of any element of C. Elements of C clearly have minimal

length within their equivalence classes. Thus, C is contained in the set of carrier graphs which
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are of minimal length in their equivalence classes and have length less than or equal to L. The

latter set is finite, by virtue of Proposition 2.

Similarly, the set of carrier graphs of minimal length within a particular equivalence class is

seen to be finite by letting L be the length of any minimal length representative and applying

Proposition 2 in the same way.

Remark. The nested subgraphs theorem of Biringer and Souto says that a MLCG f :X →M

has a nested sequence of subgraphs

∅ = Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = X

such that the length of any edge in Yi+1 \Yi is bounded above in terms of the injectivity radius

of M , the rank of π1(M), the length of Yi, and the diameters of the convex cores of the covers

of M corresponding to f∗(π1(Y
j
i )) where Y 1

i , . . . , Y
k
i are the components of Yi. If Yi is a tree,

the convex core of the cover is trivial. If Yi has a single simple loop, then the convex core of the

cover is a loop whose length is bounded above by the length of the loop. Using this fact and

the nested subgraphs theorem, one can show that the length of a MLCG in a rank 2 manifold is

bounded above in terms of only the injectivity radius of M . In fact, a bound can be computed

explicitly from Biringer’s proof of the theorem in (2). Knowing the injectivity radius of M and

an upper bound on the length of any minimal length carrier graph allows one to compute how

close two such graphs must be to force them to be homotopic. Since distinct minimal length

carrier graphs cannot be homotopic (by Theorem 2), this gives a lower bound on how close
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such graphs can be to each other. Finally, a packing argument using the volume of M puts an

explicitly computable bound on the number of minimal length carrier graphs that can occur in

M . Because there are only finitely many manifolds with a lower bound on injectivity radius and

an upper bound on volume and each manifold has finitely many minimal length carrier graphs,

a bound on the number of such graphs in each manifold exists abstractly. It is interesting that

it can actually be computed explicitly from a given injectivity radius and volume. The required

computations are an excellent exercise in hyperbolic geometry.



CHAPTER 4

LENGTHS OF LOOPS AND EDGES

The main result of this chapter concerns bounding lengths of edges in a minimal length

carrier graph. Essentially, our result states that if all the simple loops in a minimal length

carrier graph are long, then it cannot contain a short edge. Contrapositively, if X has a

(sufficiently) short edge, then it contains a short loop.

4.1 Technical lemmas

We will need two simple, technical lemmas.

Lemma 3. Fix any ϕ < 2π/3. There exists z > 0 and s0 > 0 such that if s < s0 and c/s > z,

then Sh(c) > s.

Proof. Suppose the following claim is true: there exists c0 > 0 and y > 0 such that for all

c ≤ c0, Sh(c)/c ≥ y. Let z = 1/y; then for any positive s and c with c ≤ c0 and c/s ≥ z,

Sh(c)

c
≥ 1

z

Sh(c) ≥ c

z
≥ s

Let s0 = c0/z, and pick s with 0 < s < s0 and c with c/s > z. Let c′ = zs. Then c′ < c0 and

c′/s = z; so Sh(c′) ≥ s. Since c > c′, by Lemma 1, Sh(c) > Sh(c′) ≥ s.

25
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To prove the claim, note that by continuity, it suffices to show that

lim
c→0+

Sh(c)

c
> 0.

Since Sh(0) = 0, this limit is, by definition, the derivative of Sh evaluated at 0. One can,

without too much difficulty, write b and a explicitly as functions of c (and ϕ), then take their

derivatives at 0 to get that the derivative of Sh evaluated at c = 0 is

2− 3

2
B − 1

2

√
4− 3B2

where B = 2√
3

sin
(ϕ
2

)
. This quantity is easily seen to be positive. Showing that Sh′(c) > 0 for

c > 0 by this method is much harder, which is why Lemma 1 uses a geometric argument for

that case.

Lemma 4. Let X be a finite, metric graph (e.g. a minimal length carrier graph). For any

m, l0 > 0, if X has an edge e of length less than l0, then e is contained in a connected subgraph

S with the following properties:

1. For every edge e′ adjacent to S, but not contained in S,

len(e′)

len(S)
> m;
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2. If |S| is the number of edges in S, then

len(S) < l0(m+ 1)|S|−1.

Proof. We will build S inductively, one edge at a time, so that at each step, the second condition

is satisfied. We will stop once the first condition is also satisfied. Let e1 be an edge of X with

len(e1) < l0, and let S1 = e1. Note that S1 satisfies the second property of the lemma. Having

defined Si (satisfying property 2), if the first condition of the lemma holds for Si, then set S = Si

and stop. Otherwise, let ei+1 be an edge adjacent to Si, but not in it, with len(ei+1) ≤ m len(Si).

Set Si+1 = Si ∪ ei+1. Note that

len(Si+1) ≤ len(Si) +m len(Si)

= (m+ 1) len(Si)

< (m+ 1)l0(m+ 1)i−1

< l0(m+ 1)(i+1)−1.

So Si+1 satisfies the second property, as well. Since X has finitely many edges, this process

must eventually stop, yielding S.

4.2 A short edge implies a short loop

We are now ready to prove the following theorem.
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Theorem 5. Suppose M is a hyperbolic 3-manifold and f :X →M is a minimal length carrier

graph. Let k = rankπ1(M) and assume k > 1. For every r > 0, there exists l > 0 such that

if every circuit in X has length greater than r, then every edge in X has length at least l. The

value of l depends only on r and k.

By a circuit in a graph, we mean a simple, closed curve. Note that each circuit in X

represents an element of a minimal cardinality generating set for π1(X), and thus for π1(M).

We will refer to an element of a minimal cardinality generating set as a basis element. Thus, to

meet the criterion that every circuit in X has length greater than r, it suffices, for example, for

every basis element of M to have length greater than r. Contrapositively, the theorem states

that if X has a sufficiently short edge, then X, and thus M , has a short basis element.

We would like to emphasize that an explicit formula for l is given in the proof.

Proof. Let k = rankπ1(X). For ϕ = cos−1(−1/3), let z and s0 be as in Lemma 3. Choose

m > 0 big enough so that (1/2)(m− 2)/(4k − 5) > z. Let r > 0, suppose that every circuit in

X has length greater than r, and set

l = min

{
s0

(4k − 5)(m+ 1)2k−4
,

r

(m+ 1)3k−4

}
.

Suppose X has an edge e with lenf (e) < l. Lemma 4 says that e is contained in a subgraph

S ⊂ X with len(S) < l(m+ 1)|S|−1, where |S| is the number of edges in S, and for every edge e′

that touches S but is not contained in it, len(e′) > mlen(S). For brevity, let L = len(S). It is

easy to see thatX has exactly 3k−3 edges; so |S| ≤ 3k−3 and hence, L < l(m+1)3k−4 ≤ r. Since



29

X has no circuits with length less than r, S must be a tree. Then |S| ≤ (# vertices in X)−1 =

2k − 3, and L < l(m+ 1)2k−4.

We are going to create a new carrier graph Y that will be homeomorphic to the graph

obtained from X by collapsing S to a point. We first construct the abstract graph Y . Let R

be the complement of the interior of S in X. Then R ∩ S consists of the vertices of S that

have at least one adjacent edge not contained in S. We are going to modify R by “splitting”

each valence 2 vertex (i.e. the vertices in R ∩ S that have exactly one edge from S attached

to them). More precisely, let v be such a vertex and let e1 and e2 be the edges in R that are

attached to it. Suppose that e1 and e2 are distinct edges and let wi be the other endpoint of ei.

Remove v, e1 and e2 from R. For i = 1, 2, add in a new vertex vi and an edge e′i connecting wi

and vi. If e1 = e2, then remove e1 and v and replace them with two new vertices v1 and v2 and

an edge connecting them. In either case, we will say that v1 and v2 were split from v. Call the

modified graph R′. To obtain Y , add edges connecting every valence 1 vertex of R′ to a single

new vertex, the cone point. Set C = Y \ R′. Note that Y will have some vertices of valence 2

exactly at the points in R′ ∩ C. See Figure 4.

We now describe a map g :Y →M . The graph R is a quotient of R′ obtained by identifying

pairs of vertices in R′ split from the same vertex in R. On R′, define g to be the composition

of f with the quotient map R′ → R. Fix a nonvertex point p ∈ S, let p′ be the cone point of

C, and set g(p′) = f(p). If [v′, p′] ⊂ C is an edge in C, let v be the endpoint in R that v′ was

split from. There is a unique, injective path [v, p] in S from v to p. Let g map the edge [v′, p′]

to the path f |[v,p]. There will be some valence two vertices in Y coming from the endpoints of
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Figure 4. Collapsing a tree. Dashed lines are S, dotted lines are C, solid lines are part of R

R′. We will treat the two edges attached to such a vertex as a single edge, and though we may

still refer to these endpoints, they will not be considered vertices. The map g :Y → M is still

a carrier graph.

Notice that the length (with respect to g) of any edge in C is less than or equal to L. The

number of such edges is at most twice the number of vertices in S, and the number of vertices

in X is 2k − 2. Thus, leng(C) ≤ (4k − 4)L. Since Y was formed by replacing S with C,

leng(Y ) ≤ lenf (X) + (4k − 5)L. Some of the edges in Y map to non-geodesics, so we replace g

by the map h, which is the same as g on the vertices of Y , but maps the edges to the geodesic

arcs homotopic to the their images under g. The lengths of edges with respect to h will not be

any longer than the lengths with respect to g, so we have lenh(Y ) ≤ lenf (X) + (4k − 5)L.

Our goal will be to show that we can apply the shortening procedure to Y at the point

h(p′) to reduce its length by more than (4k − 5)L, thereby making it shorter than X. This
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will contradict X being a minimal length carrier graph and therefore, will show that X cannot

contain the short loop e.

Corollary 7.2 of (7) says that if Q1, . . . , Qn ∈ H3 are distinct from P ∈ H3, then

∑
1≤i<j≤n

cos∠(Qi, P,Qj) ≥ −n/2.

Since S is a tree and has at least one edge, p′ has valence at least four. If we lift h on a small

neighborhood of p′ to H3 and apply this corollary to any four edges, we get that there are two

edges attached to p′ with angle at most cos−1(−1/3) between them. Let η1 and η2 be two such

edges and let ϕ ≤ cos−1(−1/3) be the angle between them. Note that we could have η1 = η2,

if both endpoints from this edge are at p′.

We can get a lower bound for the lengths of the edges attached to p′. Let e0 be an edge

attached to p′ and suppose e0 has only one endpoint at p′. Then e0 can be written as e0 = e1∪e2,

where e1 ⊂ R′ and e2 ⊂ C. From the construction of Y and g, we see that there is some

edge e′1 ⊂ X that touches S but is not contained in it, such that g(e1) = f(e′1). Hence,

leng(e1) = lenf (e′1) > mL. Also, since e2 is an edge in C, leng(e2) ≤ L. Under h, the image

of e0 comes from straightening g(e1 ∪ e2) into a geodesic. Applying the triangle inequality, we

get that lenh(e0) ≥ (m − 1)L. Now suppose e0 has both endpoints at p′. The argument here

is similar: we write e0 = e1 ∪ e2 ∪ e3, where e1 and e3 are edges in C and have length at most

L, and e2 is in R′ and has length at least mL. With two applications of the triangle inequality,

we get lenh(e0) ≥ (m− 2)L.
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We are going to apply the shortening procedure to the edges η1 and η2. If these are distinct

edges, then we can use edge segments of length min{len(η1), len(η2)}, which is at least (m−1)L,

from each. If η1 = η2, then each edge segment can use up to half of the edge. Thus, we can

use edge segments of length at least (1/2)(m − 2)L. Let c be the length of the longest edge

segments in η1 and η2 that we can do the shortening procedure on. We have c ≥ (1/2)(m−2)L.

The reduction in the length of Y coming from doing the shortening procedure on η1 and η2 is

Sh(c, ϕ). From Lemma 1, we have

Sh(c, ϕ) ≥ Sh((1/2)(m− 2)L, cos−1(−1/3)) > (4k − 5)L.

The last inequality comes from Lemma 3 since, by our choices of m and L,

(1/2)(m− 2)L

(4k − 5)L
> z

and

(4k − 5)L < (4k − 5)l(m+ 1)2k−4 ≤ s0.

After the shortening procedure we will have a carrier graph shorter than the minimal length

carrier graph X, which is a contradiction. This implies that no edge of X can have length less

than l.
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4.3 Short loops, long generators

An immediate corollary of Theorem 5 is that a lower bound on injectivity radius gives a

lower bound on the lengths of edges in a minimal length carrier graph, since there are no

basis elements with length less than twice the injectivity radius. It is possible, a priori, that

Theorem 5 does not give any more information than that corollary. In other words, it may be

that if M has a small injectivity radius, then it must have a short basis element, too. We now

give an example of a sequence of closed manifolds for which the injectivity radius goes to zero,

but for which there is a lower bound on the length of a basis element and, thus, a lower bound

on the length of any edge in their minimal length carrier graphs. This example was suggested

independently by Ian Agol, Ian Biringer, and Juan Souto.

Let H be a genus 2 handlebody, and let DH be the double of H. We would like to chose an

essential, separating, simple, closed curve γ ⊂ ∂H sufficiently complicated so that M∞ = DH\γ

is a finite volume, cusped hyperbolic 3-manifold. To see that such a curve exists, first note

that by the Hyperbolization Theorem of Perelman ((12), (14), (13)), it sufficies to be able to

identify M∞ with the interior of a compact manifold N with torus boundary, where N contains

no essential sphere, disk, annulus or torus. A slight modification of the proof of Corollary 3.7

in (8) shows that this will be the case if γ has distance at least 3 in the curve complex from any

curve in ∂H bounding a disk in H. Furthermore, it follows from Theorem 2.7 of (8) that γ can

be chosen to make this distance arbitrarily large. Assume that such a γ has been chosen and

that M∞ has the desired properties. Let Mn = H ∪gn H, where g : ∂H → ∂H is Dehn twist

along γ. Notice that Mn can be obtained from DH by 1/n Dehn surgery on a neighborhood of



34

γ; call the core of the filling torus γn. It is clear that the map gn acts trivially on H1(∂H), so

one can easily check that H1(Mn) = Z2. Since there is an obvious genus 2 Heegaard splitting

of Mn, we have rankπ1(Mn) = 2. According to Thurston’s hyperbolic Dehn filling theorem

(see (15)), the sequence Mn converges geometrically to M∞. Thus, the minimal injectivity

radius of Mn approaches zero. Also, for large enough n, any sufficiently short (nontrivial) curve

must be contained in the Margulis tube around γn, so that in π1(M), it represents a power of

γn. Hence, we only need to show that γn cannot be a basis element. Note that γn and γ are

freely homotopic in Mn, and γ is trivial in H1(Mn), since it is a separating curve in ∂H. Any

generating pair for π1(Mn) must descend to a pair of generators for H1(Mn) = Z2, so neither

γn nor any sufficiently short curve can be a basis element.
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