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Abstract  
This paper presents a game-theoretic bargaining approach to allocating rail line capacity in vertically 
integrated systems. A passenger rail agency negotiates with the host freight railroad to determine train 
schedules and the associated payment. The objective on the passenger side is to maximize utility, i.e., 
revenue minus costs of passenger train operations, passenger schedule delay and en-route delay; the 
freight side minimizes the costs of train departure delay, en-route delay, loss of demand, and track 
maintenance. Bargaining in both complete and incomplete information settings are considered; the 
latter arises because the freight railroad may withhold its private cost information. With complete 
information, we find that the equilibrium payments proposed by the passenger rail agency and the 
host freight railroad will each be invariant to who initiates the payment bargaining, although the actual 
payment does depend on who is the initiator. The equilibrium schedule maximizes system welfare. 
With incomplete information, the passenger rail agency may choose between pooling and separating 
equilibrium strategies while proposing a payment, depending on its prior belief about the cost type of 
the freight railroad; whereas the host freight railroad will adopt strategies that do not reveal its cost 
type. To identify equilibrium schedules, a pooling equilibrium is constructed along with conditions for 
the existence of equilibrium schedules. We further conduct numerical experiments to obtain additional 
policy-relevant insights.  
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1. Introduction 

Rail is an essential component in the US passenger and freight transportation system. On the freight 
side, rail transports about 27% of total freight revenue ton-miles (US DOT 2012), with Class I railroads’ 
revenue ton-miles increased from 1,495 billion in 2001 to 1,729 billion in 2011 (AAR 2012). On the 
passenger side, Amtrak, the national intercity transportation service provider, has set ten ridership 
records over the last 11 years, carrying more than 31.5 million passengers in 2013 (Amtrak 2013). 
Amtrak’s operation is characterized by the shared use of infrastructure with freight railroads, as 70% 
of Amtrak’s train miles are produced on tracks which are owned and maintained by host freight 
railroads (Amtrak 2012). The flourishing of passenger rail has spurred the development of Higher 
Speed Rail (HrSR) services (FRA 2015), which still run on shared-use tracks but at a higher speed, up 
to 110 mph (Peterman et al. 2009). Compared to conventional Amtrak trains, introducing HrSR means 
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greater speed heterogeneity between passenger and freight operations, which has negative impact on 
the rail line capacity (Talebian and Zou 2015). Given the HrSR development and the expected 
continuous growth of freight and passenger rail traffic, having appropriate mechanisms in place has 
become increasingly critical to efficiently and fairly allocate capacity between passenger and freight 
operations on shared-use rail lines. 

One premise for allocating rail line capacity is to understand capacity. Two aspects are of particular 
importance. First, the capacity of a rail line depends on how conflict-free train schedules are created; 
thus capacity is endogenously rather than exogenously determined (Pena-Alcaraz et al. 2014). Second, 
the consequence of increasing rail service by one operator may not only delay trains on the line, but 
can also lead to the inability of other operator(s) to schedule as many trains as they originally demand 
(Talebian and Zou 2015). The latter is termed capacity scarcity (Nash and Matthews 2003; Nash and 
Sansom 1999). Capacity scarcity is especially relevant when one type of trains is scheduled before 
another type. In the US, Amtrak services are given higher access priority over freight operations by 
Public Law (110 Congress 2008).  

In addition to the above two aspects, appropriate mechanisms for rail line capacity allocation 
hinges on how a rail system is structured – more specifically, whether infrastructure ownership and 
train operations are vertically integrated or separated. The US rail system has long been vertically 
integrated, with majority of the rail tracks owned by freight railroads, on the ground that such system 
takes advantage of economies of scale which minimize train operating expenses; in contrast, 
separation of infrastructure ownership from operations would require effective communication 
between different entities which may elevate costs. While there are concerns about vertically 
integrated systems for the lack of competition, the counterargument is that sufficient competition 
already exists – from alternative modes, different transportation sources, and between adjacent lines 
(Drew 2009). Among the empirical investigations, Bitzan (2003) finds that the cost of resource use 
would increase if the US rail system were to be vertically separated; a different view is provided by 
Ivaldi and Mc Cullough (2001), who argue that there may be no inherent advantages of vertical 
integration. Although debates on whether vertical separation is needed in the US rail system will 
continue, for the foreseeable future the existing vertical integration structure is likely to remain 
unchanged. 

The state-of-the-practice allocation of rail line capacity between a host freight railroad and Amtrak 
is primarily conducted through negotiation based on Public Law 110-432 (110 Congress 2008). In 
general, the negotiation process, which is due to the legislated power being not absolute, consists of 
determining passenger train schedules and payment between Amtrak and freight host railroads for 
track usage and penalty for train delays (US DOT, 2010). The negotiation process is extensively covered 
in the industry press (e.g., in magazines like Railway Age and Trains) and well known to those who 
follow North American railroads, although published formal disclosure is limited. The academic 
literature on negotiation-based capacity allocation in vertically integrated systems is also quite scarce 
– if it exists – which is in sharp contrast with the abundant knowledge on how to allocate capacity in 
vertically separated systems (see Section 2 below). 

The present paper makes the first attempt to fill this gap. We propose a game-theoretic bargaining 
approach to modeling capacity allocation on a vertically integrated rail line. A mathematical structure 
generally consistent with the practice is established to characterize how passenger and freight sides 
bargain to determine train schedules and payment from the passenger rail agency to the host freight 
railroad. We incorporate a range of cost components that are also in line with the practice. We further 
recognize that the passenger rail agency may not possess full cost information about the host freight 
railroad, and extend the bargaining model from a complete to an incomplete information setting. 
Through analytical solutions and numerical analysis, we obtain a number of policy-relevant insights, 
which advance the knowledge and help inform future practices on capacity allocation on vertically 
integrated, shared-use rail lines in the US. 

The modeling framework developed in this paper could be of potential use in other contexts as well. 
One example is the Chinese High-Speed Rail (CHSR) system where the passenger rail operator, which 
owns and operates CHSR, negotiates with the dedicated freight HSR operator for line capacity 
allocation. The issue of capacity allocation will likely become more important given the growing use of 
high speed rail for intercity logistics as driven by the rapid development of e-commerce in China. 
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Another example is vessel chartering in maritime transportation, where a charterer negotiates with a 
ship owner on shipping price, volume, and time. More generally, the game-theoretic bargaining 
framework developed in this paper could be applied to a range of transportation settings where 
negotiation and/or contracting is involved, such as between shippers and carriers in the trucking 
industry and in aircraft leasing. The framework may be used to investigate other domains as well 
including pipelines and electric power grids – basically any time a government seeks to break up a 
monopoly or provide a product or service which the commercial market has refused to provide. 

The remainder of the paper is organized as follows. Section 2 presents a review of existing 
mechanisms for rail line capacity allocation, based on which the contributions of the present study are 
highlighted. Section 3 puts forward the modeling framework, ensued by a description of the pre-
bargaining input preparation in Section 4. The bargaining model is presented in Section 5. Section 6 
offers numerical analysis and results discussions. Summary of major findings and directions for further 
research are given in Section 7. 

2. Literature review and contributions of the present study 

Mechanisms for rail line capacity allocation can be broadly categorized into three groups: 
administrative, value-based, and market-based. Administrative mechanisms employ a set of rules, such 
as “intercity trains go first” (Gibson 2003), to allocate train paths to operators. Such mechanisms do 
not rely on values for rail infrastructure capacity, and are mostly employed in rail networks fully 
owned and directly controlled by governments or government-backed infrastructure managers. In the 
rest of the section, we focus on reviewing studies in the value-based and market-based groups. 

The value-based mechanisms require the existence of a rail infrastructure manager, who places on 
each train path a value. On receiving the values, train operators decide whether to take the offered 
paths. Train path values are often determined based on either average or marginal cost. Under average 
cost valuation, total cost is distributed among trains proportional to track infrastructure usage. As 
examples, Kennedy (1997) suggests allocating total cost, including costs due to track maintenance, 
renewal, and traction (electricity) current, to trains according to mileage or passenger-mile shares. 
Kozan and Burdett (2005) propose four access charging schemes which are corridor-based, section-
based, time-based, and weight-based. Under marginal cost valuation, access charges are computed 
based on the effects of the added train on line congestion as well as the train’s knock-on delay effect 
throughout the network (Gibson 2003), or based on the incremental infrastructure wear-and-tear cost 
(Bugarinovic and Boskovic 2015). For estimating the marginal infrastructure wear-and-tear cost, 
various econometric models have been developed (Gaudry and Quinet 2003; Johansson and Nilsson 
2004; Wheat and Smith 2008; Anderson 2011; Anderson et al. 2012).  

The market-based mechanisms apply mostly to vertically separated systems, seeking to elicit prices 
that train operators are willing to pay for their desired train paths, at the same time taking into account 
congestion impact. One prominent form of market-based mechanisms is auction, with pioneering 
efforts made by Brewer and Plott (1996) and Nilsson (1999) who consider respectively first-price and 
second-price auctions. In particular, the second-price auction incentivizes train operators, who are 
bidders, to truthfully report their valuation of schedules. Borndörfer et al. (2009) present a general 
Vickrey-Clarke-Groves (VCG) mechanism which provides incentive compatible and efficient allocation 
of rail line capacity with combinatorial constraints to maintain train path feasibility. (A mechanism is 
called “incentive compatible” if participants in the mechanism find it their best interests to truthfully 
reveal their private information, as is asked by the mechanism.) Borndorfer et al. (2006) design a 
multi-round combinatorial auctioning mechanism that allows flexibility for train departure and arrival 
times, speed, and routes taken. The research is later extended by Harrod (2013) who employs a 
hypergraph-based train scheduling model, arguing that commonly used discrete-time dynamic graphs 
do not fully capture train interactions during block transitions. Most recently, Kuo and Miller-Hooks 
(2015) propose a combinatorial auctioning scheme with two bid set construction techniques that 
enable expression of complementary and substitutable relationship among train slots.  

Besides auction, non-cooperative game-theoretic models have also been employed to determine 
allocation of rail line capacity. The earliest model of this type is from Harker and Hong (1994), who 
propose an internal market structure within a railroad company, which consists of a railroad authority 
and several divisions (e.g., passenger, intermodal, etc.) each with a different per train value for transit 
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time and schedule adherence. The divisions compete for train paths; the railroad authority minimizes 
a weighted sum of train path deviations from ideal timetables subject to train travel time constraints. 
Rail track charges are determined based on the dual prices of the train travel time constraints, which 
represent the value of using the track to each train. Bassanini et al. (2002) consider a similar structure 
and develop a three-stage model, in which train operators request their preferred schedules at the first 
stage. At the second stage, the infrastructure manager determines access charges and the effective 
schedules by solving an analytical, probabilistic timetabling model. At the third stage, each train 
operator sets fare given the access charges and effective schedules. Lang et al. (2013) propose a two-
level model to capture interactions among an infrastructure manager, a regulatory agency, and train 
operators. At the upper level, the regulatory agency sets access charge that maximizes social welfare 
subject to the break-even constraint for the infrastructure manager. Given the access charge, at the 
lower level train operators compete to maximize profit.  

None of the three approaches, however, is amenable to the US rail system, which is the interest of 
the present study. The administrative approach is flawed as it does not provide incentives for train 
operators to efficiently use existing capacity. In addition, the requirement of a government or 
government-backed entity for capacity allocation is obviously not the case in the US. Within the value-
based approach, average cost-based valuation is inadequate, because it neglects rail line capacity 
constraints and congestion (Gibson 2003; Harrod 2013); marginal-cost based valuation is also difficult 
to implement as marginal cost depends on the order of trains put on the line. The market-based 
approach is not suitable either as it applies only to open access markets with separation of rail 
infrastructure ownership and train operations.  

In view of these, this research contributes to the literature of rail line capacity allocation in three 
major ways. First, a bargaining approach is developed which allocates capacity between a passenger 
rail agency (PRA) and a host freight railroad (FRR) on a shared-use line which is owned and maintained 
by FRR. PRA and FRR make alternating proposals, until PRA and FRR reach an agreement on the 
schedule of passenger trains and the associated payment from PRA to FRR. Second, we investigate 
bargaining under complete and incomplete information. In the latter case, PRA is assumed to only have 
a probabilistic belief about FRR’s cost type, which is plausible as FRR may not want to disclose its full 
private information. Third, in addition to deriving close-form solutions, we conduct numerical analysis, 
which generate policy-relevant insights into the current practice and future improvement of capacity 
allocation on vertically integrated, shared-use rail lines.  

3. Modeling framework 

Building upon the previous discussions, our modeling framework reflects the following six aspects: 
 
1. The allocation of rail line capacity is endogenous. Rail line capacity is determined through train 

scheduling (Pena-Alcaraz et al. 2014), which specifies train paths. A train path consists of a set 
of consecutive rail track blocks and the time interval for the train to use each track block. 
Allocation of rail line capacity refers to assigning a set of train paths between PRA and FRR, 
provided that these paths do not violate operational feasibility of trains on the line.  
 

2. PRA is public but FRR is private. The public nature of PRA is in line with the fact that Amtrak 
consistently receives subsidies from the US federal government. The public nature means that 
PRA cares about passenger cost as well as its own profit while calculating utility associated 
with each schedule. In contrast, the objective of the host FRR is purely to maximize profit.  
 

3. Passenger trains are given access priority over freight trains. The US Public Law 110-432 
stipulates that Amtrak trains have access priority over freight trains while operating on a 
shared-use line (110 Congress 2008). In our modeling framework it means that, in occasion of 
train meets or overpasses, passenger trains should receive priority over freight trains.  
 

4. PRA makes a payment to FRR for track usage. The payment from PRA is to compensate the host 
FRR for the incremental costs caused by accommodating passenger services. The incremental 
costs include costs due to: i) additional freight train delays, both at departure and en route; ii) 
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inability of FRR to run as many freight trains as demanded (Nash and Sansom 1999), which 
leads to a loss of demand and thus profit; and iii) additional track maintenance requirement.  
 

5. Passenger trains are allowed to stop en route. Passenger trains stopping en route increases line 
operational flexibility, which may permit FRR to dispatch more freight trains with less delays. 
As a result, the incremental cost to FRR will be reduced, leading to lower payment from PRA. 
However, this should be balanced against increased travel time of passenger trains and 
associated cost to passengers, which PRA cares about. 
 

6. Rail passenger demand is sensitive to schedule delay. For a rail traveler, schedule delay is defined 
as the time difference between one’s preferred departure and the closest train departure 
(Hendrickson and Kocur 1981) (for further discussion, see subsection 4.2.4). Long schedule 
delay adds to the travel inconvenience and discourages rail travel. In response, rail travelers 
may switch to an alternative mode (e.g., auto, air), or decide not to travel at all. Reduced rail 
ridership means less PRA revenue. Thus PRA should account for the sensitivity of passenger 
demand to schedule delay when scheduling trains.  

 
With the above aspects, Figure 1 presents the overall approach to allocating rail line capacity 

between PRA and the host FRR. Before the bargaining begins, necessary inputs need to be prepared. 
These include the set of feasible passenger train schedules, FPTS, which are generated prior to freight 
train schedules. Given each generated passenger train schedule, the best freight train schedule is then 
generated (see section 4.3). This order of train schedule generation reflects the access priority given 
to passenger trains over freight trains in occasion of train meets and overpasses. For each feasible 
passenger train schedule 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 and the associated freight train schedule, we compute PRA’s utility 
and FRR’s cost.  

Our specifications of PRA’s utility and FRR’s cost draw from existing qualitative descriptions of the 
PRA-FRR negotiation practice in the US. For example, in the negotiation, a key element in determining 
the amount of payment is the service quality PRA receives (Bing et al., 2010). PRA compensates FRR 
more for providing a higher quality of service (US DOT, 2010). PRA’s quality of service entails en-route 
delay cost of passenger trains and passengers, and schedule delay cost of passengers, all of which are 
considered in our PRA utility function (see Section 4.2). On the other hand, a high PRA quality of service 
is often at the price of FRR cost, which should be reflected in the payment such that FRR recovers not 
only the additional operating and maintenance cost, but also the opportunity cost due to capacity 
granted to PRA (NCHRP, 2007). Our modeling of the FRR-side cost elements is consistent with the 
above cost considerations: the FRR cost function includes costs of freight train departure delay, en-
route delay, loss of demand, and track maintenance (see Section 4.3). Having PRA's utility and FRR's 
cost functions in place, the two players then proceed to bargaining to achieve an agreed schedule and 
corresponding payment. In the next two sections, we detail in sequence pre-bargaining input 
preparation and bargaining. 
 

 
Figure 1: Overall approach to rail line capacity allocation 
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4. Pre-bargaining input preparation  

4.1 Generating feasible passenger train schedules 

We assume a given number of passenger trains running each day on the line of interest. FPTS is 
generated based on our previous work (Talebian and Zou 2015). Among all the schedules in FPTS, one 
schedule is chosen as the baseline schedule 𝑠𝑏 . Details about FPTS generation is provided in Appendix 
A. For each 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 generated, we compute PRA’s utility and FRR’s cost as follows. 

4.2 Computing PRA’s utility 

4.2.1 PRA’s utility structure 

Given an 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 , we consider PRA’s utility 𝑢𝑠𝑖
𝑃  to be the difference between PRA’s operating 

revenue (𝑂𝑅𝑠𝑖
𝑃 ) and the sum of operating cost (𝑂𝐶𝑠𝑖

𝑃 ), passenger schedule delay cost (𝑆𝐷𝐶𝑠𝑖
𝑃 ), and 

passenger en-route delay cost (𝐸𝐷𝐶𝑠𝑖
𝑃). As utility is a relative term, we measure PRA’s operating cost, 

passenger schedule delay cost, and passenger en-route delay cost against their respective values under 
baseline schedule 𝑠𝑏 . For operating revenue, we measure it against zero, or the operating revenue 
when PRA is unable to run on the line. Note that choosing a baseline value is equivalent to 
adding/subtracting a constant term in the utility function. They do not change the relative 
attractiveness of each feasible passenger train schedule. Measuring 𝑂𝑅𝑠𝑖

𝑃  against zero is an artificial 

construct. It, together with the measurement of 𝑂𝐶𝑠𝑖
𝑃 , 𝑆𝐷𝐶𝑠𝑖

𝑃 , and 𝐸𝐷𝐶𝑠𝑖
𝑃 , ensures that the value of 𝑢𝑠𝑖

𝑃  is 

positive, which is desired in the bargaining model in Section 5. In sum, 𝑢𝑠𝑖
𝑃  is expressed as 

 

𝑢𝑠𝑖
𝑃 = 𝑂𝑅𝑠𝑖

𝑃 − (𝑂𝐶𝑠𝑖
𝑃 − 𝑂𝐶𝑠𝑏

𝑃 ) − (𝑆𝐷𝐶𝑠𝑖
𝑃 − 𝑆𝐷𝐶𝑠𝑏

𝑃 ) − (𝐸𝐷𝐶𝑠𝑖
𝑃 − 𝐸𝐷𝐶𝑠𝑏

𝑃 )  (1) 

 

4.2.2 Operating revenue 

We consider constant rail fare for each origin-destination (OD) pair, and assume that an estimate 
of OD demand under baseline schedule 𝑠𝑏  is known beforehand. However, the number of rail 
passengers for each OD is elastic with respect to passenger schedule delay. Once OD demand for a given 
schedule 𝑠𝑖  is known (see subsections 4.2.4), PRA’s operating revenue is calculated by multiplying 
travel demand on each OD by the corresponding rail fare, and then summing over all ODs. 

4.2.3 Operating cost 

For a given 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆, PRA’s operating cost is calculated by summing up the train movement cost 
and train stopping cost. Each cost is obtained by multiplying an appropriate cost factor (in $/hr) by 
the total time trains spend in moving/stopping during the trips. 

4.2.4 Passenger schedule delay cost 

Computing passenger schedule delay cost is based on passenger Preferred Departure Time (PDT) 
profiles. Each profile corresponds to a combination of a train station and a direction of travel. It 
describes the number of rail passengers preferring to depart from the station in the direction, in 
discrete time intervals over the course of a day given an 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆. Figure 2 illustrates a passenger 
PDT profile for a station-direction combination, with respect to an 𝑠𝑖  which consists of three passenger 
trains. A traveler in a time interval chooses the nearest train to board, with the objective of minimizing 
the time difference between his/her preferred departure and the train departure, i.e., the traveler’s 
schedule delay. In short-haul intercity travel, traveler schedule delay cost is important and even 
comparable to ticket fare (Kanafani 1983; Talebian and Zou 2015). Total passenger schedule delay 
costs, 𝑆𝐷𝐶𝑠𝑖

𝑃 , are obtained by summing over all travelers and applying appropriate cost values of 

schedule delay. Details about computing passenger schedule delay cost can be found in subsection 
3.2.1 in Talebian and Zou (2015). 
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Figure 2: Illustration of passenger PDT distribution and choice of  

trains to board (source: Talebian and Zou (2015)) 

 
In the present paper, we further incorporate the fact that the number of travelers preferring to 

depart in each time interval 𝑚  for each station-direction combination 𝑤  is elastic with respect to 
schedule delay cost experienced by the travelers. The elasticity is 𝑒𝑑/𝑤. Specifically, we assume that a 

baseline passenger train schedule, 𝑠𝑏  and the associated passenger PDT profiles are known. In the 
baseline PDT profiles, the total number of travelers for 𝑤 is the sum of estimated OD demand involved 
in 𝑤. For a time interval 𝑚 ∈ 𝑇, the number of travelers, 𝑞𝑠𝑏

𝑤,𝑚 , is calculated by distributing the total 

number of travelers, based on the ratio of the height of the time interval m over the sum of heights over 
all time intervals. With 𝑠𝑏 , we compute schedule delay cost for each traveler, 𝑠𝑠𝑏

𝑤,𝑚, ∀𝑚 ∈ 𝑇, 𝑤 ∈ 𝑊 . 

Now given 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆, we re-calculate the new schedule delay cost for each traveler: 𝑠𝑠𝑖

𝑤,𝑚, ∀𝑚 ∈ 𝑇, 𝑤 ∈

𝑊. The number of travelers whose PDT is in 𝑚 and for 𝑤 is then obtained by 

𝑞𝑠𝑖

𝑤,𝑚 = 𝑞𝑠𝑏

𝑤,𝑚 (1 − 𝑒𝑑/𝑤 (1 −
𝑠𝑠𝑖

𝑤,𝑚

𝑠𝑠𝑏

𝑤,𝑚))      ∀ 𝑤 ∈ 𝑊, 𝑚 ∈ 𝑇, 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆  (2) 

 
Using 𝑠𝑠𝑖

𝑤,𝑚, 𝑞𝑠𝑖

𝑤,𝑚, and appropriate cost values for schedule delay, we compute 𝑆𝐷𝐶𝑠𝑖
𝑃  as discussed 

before.  

4.2.5 Passenger en-route delay cost 

Passenger en-route delay occurs when: 1) a train stops at a siding; and 2) a train has longer than 
the minimum layover at an intermediate station. For a given 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 , the key to computing 
passenger en-route delay cost is to know the number of passengers onboard when an en-route delay 
occurs.  Assuming that the PDT profile for each OD follows the PDT profile of the corresponding 
departing station–direction combination, we can easily compute the exact number of passengers on 
each train at any location on the line. Recall that travelers choose the train that minimizes their 
schedule delay cost. Whenever an en-route delay occurs, we multiply the number of passengers 
onboard by the length of the en-route delay and by the value of passenger travel time to obtain the 
total passenger delay cost associated with this en-route delay. 

4.3 Computing FRR’s cost 

FRR’s cost 𝐶𝑠𝑖
𝐹 , which is conditional on passenger train schedule 𝑠𝑖 , consists of four components: 

train departure delay cost (𝐷𝐷𝐶𝑠𝑖
𝐹), en-route delay cost (𝐸𝐷𝐶𝑠𝑖

𝐹), loss-of-demand cost (𝐿𝐷𝐶𝑠𝑖
𝐹), and track 

maintenance cost (𝑇𝑀𝐶𝑠𝑖
𝐹). Inclusion of 𝐷𝐷𝐶𝑠𝑖

𝐹  and 𝐸𝐷𝐶𝑠𝑖
𝐹  is self-explanatory. 𝐿𝐷𝐶𝑠𝑖

𝐹  occurs when FRR is 

unable to run as many freight trains as demanded, and the loss of demand results in a profit loss. 
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Because each train imposes some incremental cost for track maintenance on the line, 𝑇𝑀𝐶𝑠𝑖
𝐹  captures 

the track maintenance cost associated with running passenger trains under 𝑠𝑖  as well as running 
freight trains given 𝑠𝑖 . Similar to the computation of 𝑢𝑠𝑖

𝑃 , we measure each cost component against a 

baseline. The baseline here is defined as when there is pure freight traffic on the line. In sum, FRR’s 
cost can be expressed as (subscript 0 indicates the baseline): 

 

𝐶𝑠𝑖
𝐹 = (𝐷𝐷𝐶𝑠𝑖

𝐹 − 𝐷𝐷𝐶0
𝐹) + (𝐸𝐷𝐶𝑠𝑖

𝐹 − 𝐸𝐷𝐶0
𝐹) + (𝐿𝐷𝐶𝑠𝑖

𝐹 − 𝐿𝐷𝐶0
𝐹) + (𝑇𝑀𝐶𝑠𝑖

𝐹 − 𝑇𝑀𝐶0
𝐹)  (3) 

 
To compute each cost component, we need to know the freight train schedule given 𝑠𝑖 . As already 

mentioned, to account for the access priority of passenger trains over freight trains in meets and 
overpasses, we insert freight trains between existing passenger trains in a way that minimizes the total 
cost to freight trains. More specifically, we consider that there is a predetermined number of desired 
freight trains running on the line, each having an earliest allowed departure and a latest allowed arrival 
times. FRR seeks a freight train schedule that minimizes the sum of 𝐷𝐷𝐶𝑠𝑖

𝐹 , 𝐸𝐷𝐶𝑠𝑖
𝐹 , and 𝐿𝐷𝐶𝑠𝑖

𝐹 , 

constrained by the presence of the passenger train schedule 𝑠𝑖 . Finding such a freight train schedule is 
based on our previous work (specifically, subsection 3.2.2 of Talebian and Zou (2015)). Note that the 
cost minimization does not consider 𝑇𝑀𝐶𝑠𝑖

𝐹 : the rationale is that 𝐷𝐷𝐶𝑠𝑖
𝐹 , 𝐸𝐷𝐶𝑠𝑖

𝐹 , and 𝐿𝐷𝐶𝑠𝑖
𝐹  are tactical 

cost that FRR deals with on a daily basis; whereas 𝑇𝑀𝐶𝑠𝑖
𝐹 , like the action of track maintenance itself, is 

considered at a more strategic level.  
Once the cost-minimum freight train schedule is obtained, we further compute 𝑇𝑀𝐶𝑠𝑖

𝐹 . We follow 

Lang et al. (2013) and Kennedy (1997) by considering 𝑇𝑀𝐶𝑠𝑖
𝐹  to consist of fixed and variable costs. The 

fixed cost does not vary with train schedules, and thus does not appear in 𝐶𝑠𝑖
𝐹 . The variable cost is a 

linear combination of passenger and freight train miles scheduled on the line.  

5. Bargaining 

In this section, we formally introduce the bargaining model. The bargaining consists of two steps. 
In the first step, PRA and FRR bargain over the payment from PRA to FRR for each possible schedule. 
With each possible schedule given a price tag (i.e., a mutually agreed-upon payment from PRA to FRR), 
bargaining in the second step seeks a mutually agreed-upon schedule. Based on our consultation with 
former Amtrak employees, the two-step process is consistent with today’s Amtrak-freight railroad 
negotiation practice in which PRA and FRR make alternating proposals and determine train schedule 
and payment simultaneously. On the other hand, the two-step process makes a simplification that we 
associate each possible train schedule with a payment prior to schedule bargaining. The benefit of 
making such a simplification is a significant reduction of the train schedule-payment bundle space, 
which makes the simultaneous determination of payment and train schedule mathematically tractable. 
The payment bargaining, which associates each possible train schedule with a payment from PRA to 
FRR, is a fictitious game taking place in PRA and FRR’s minds. It means that PRA and FRR strategize 
the steps in advance without actually going through the process of making alternating offers, and their 
bargaining power will determine the payment for each schedule. 

We consider bargaining with both complete and incomplete information. In the complete 
information setting, PRA and FRR know precisely the utility/cost information of the other side. In the 
incomplete information setting, we conjecture that PRA does not possess full cost information about 
FRR, but only has a probabilistic belief. This is plausible in the US, where private Class I railroads hold 
their cost information as confidential (Lai et al. 2013; RSG 2012).  

5.1 Complete information setting 

5.1.1 Payment bargaining 

To model payment bargaining between PRA and FRR under complete information, we employ a 
Rubinstein-style infinite-horizon bargaining game (Rubinstein 1982). Without loss of generality, here 
we consider a payment bargaining initiated by PRA for a given schedule 𝑠𝑖  (Figure 3). The infinite 
horizon means that the game has an infinite number of bargaining periods. Figure 3 shows the first 
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and second bargaining periods. Let 𝑝𝑠𝑖
𝑡  denote the proposed payment from PRA to FRR in the beginning 

of the 𝑡𝑡ℎ period. In odd periods, the proposal is made by PRA; in even periods, the proposal is made 
by FRR. 

The bargaining starts with PRA proposing payment 𝑝𝑠𝑖
1  (Step 1). FRR then decides whether to 

accept or reject the proposal (Step 2). If PRA accepts 𝑝𝑠𝑖
1 , then the bargaining ends and the payoffs to 

PRA and FRR will be 𝑈𝑃,𝑠𝑖

1 = 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

1  and 𝑈𝐹,𝑠𝑖

1 = 𝑝𝑠𝑖
1 − 𝐶𝑠𝑖

𝐹 , where 𝑢𝑠𝑖
𝑃  and 𝐶𝑠𝑖

𝐹  are from pre-bargaining 

input preparation, and known to PRA and FRR. If FRR rejects 𝑝𝑠𝑖
1 , then the bargaining proceeds to the 

second period and FRR proposes payment 𝑝𝑠𝑖
2  (Step 3). We consider discounting of one’s payoff as 

bargaining goes by, with 𝛿𝑃  and 𝛿𝐹  ( 0 < 𝛿𝑃, 𝛿𝐹 < 1) being the discount factors for PRA and FRR 
between two bargaining periods. 𝛿𝑃  and 𝛿𝐹  values are common knowledge. Introducing 𝛿𝑃  and 𝛿𝐹 
captures the time-value of money, or opportunity costs to PRA and FRR due to disagreement (Gibbons 
1992). The opportunity costs include loss of production, lost interest income, and expenses or fees 
paid to brokers, attorneys, or other agents (Kennan and Wilson 1993). Therefore, if PRA accepts FRR’s 

proposal in Step 4, then the present-value payoffs to PRA and FRR will be 𝑈𝑃,𝑠𝑖

2 = 𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

2 ) and 

𝑈𝐹,𝑠𝑖

2 = 𝛿𝐹(𝑝𝑠𝑖
2 − 𝐶𝑠𝑖

𝐹). If PRA rejects FRR’s proposal, then PRA makes another payment proposal in the 

third period. The process of making alternating payment proposals continues until one accepts the 
other’s proposal.  

Before delving into the solution of the bargaining, it is worth highlighting the bounds for 𝑝𝑠𝑖
𝑡 . 𝑝𝑠𝑖

𝑡  

should be one such that both PRA and FRR receive non-negative payoffs, i.e., 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

𝑡 ≥ 0 and 𝑝𝑠𝑖
𝑡 −

𝐶𝑠𝑖
𝐹 ≥ 0, ∀𝑡, 𝑠𝑖 . Otherwise, PRA (or FRR or both) will not have the incentive to be in the bargaining; or if 

already in the bargaining, it is for sure that the payment proposal will not be accepted. The non-
negativity requirement yields 𝐶𝑠𝑖

𝐹 ≤ 𝑝𝑠𝑖
𝑡 ≤ 𝑢𝑠𝑖

𝑃 , which further implies that 𝐶𝑠𝑖
𝐹 ≤ 𝑢𝑠𝑖

𝑃  must hold. If 𝑢𝑠𝑖
𝑃 <

𝐶𝑠𝑖
𝐹  , the bargaining will never achieve a mutual agreement.  

 

  
Figure 3: Structure of the payment bargaining under complete information: 

PRA initiates the payment bargaining 

 
With the above bounds conditions met, it is known that a bargaining game with infinite horizon 

and alternating proposals is stationary (Fudenberg and Tirole 1991). The stationarity property means 
that PRA always proposes the same payment when it comes to its turn to propose. Likewise for FRR. 
Consequently all subgames starting with PRA’s proposal, including the whole game, will have the same 
subgame perfect Nash equilibrium (SPNE). Similarly, all subgames initiating with FRR’s proposal will 
also have the same SPNE. It can be further shown that the infinite-horizon bargaining game has a 
unique SPNE (Fudenberg and Tirole 1991). We use 𝑝𝑠𝑖

1∗  and 𝑝𝑠𝑖
2∗  to denote the equilibrium payment 
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proposals by PRA and FRR. Intuitively, each side accepts a payment proposal from the other side only 
when the proposal would result in sufficiently high payoff. The criteria used by FRR and PRA to accept 
the other’s proposal are: 

 

• FRR accepts payment 𝑝𝑠𝑖
1  proposed by PRA if and only if  𝑝𝑠𝑖

1 − 𝐶𝑠𝑖
𝐹 ≥ 𝛿𝐹(𝑝𝑠𝑖

2∗ − 𝐶𝑠𝑖
𝐹), ∀𝑠𝑖 ∈ 𝐹𝑇𝑃𝑆; 

• PRA accepts payment 𝑝𝑠𝑖
2  proposed by FRR if and only if  𝑢𝑠𝑖

𝑃 − 𝑝𝑠𝑖
2 ≥ 𝛿𝑃(𝑢𝑠𝑖

𝑃 − 𝑝𝑠𝑖
1∗), ∀𝑠𝑖 ∈ 𝐹𝑇𝑃𝑆. 

 
The first criterion states that after PRA proposes 𝑝𝑠𝑖

1 , FRR will anticipate that if she rejects, then PRA 

must accept her subsequent proposal 𝑝𝑠𝑖
2∗ , because otherwise the bargaining would repeat and 

discounting would reduce both sides’ payoffs. Acceptance of the subsequent proposal 𝑝𝑠𝑖
2∗ would give 

FRR a SPNE payoff of 𝛿𝐹(𝑝𝑠𝑖
2∗ − 𝐶𝑠𝑖

𝐹). Thus, as long as 𝑝𝑠𝑖
1 − 𝐶𝑠𝑖

𝐹  is no less than 𝛿𝐹(𝑝𝑠𝑖
2∗ − 𝐶𝑠𝑖

𝐹), FRR will 

accept 𝑝𝑠𝑖
1 . Similar reasoning can be made for the second criterion. 

At the equilibrium, PRA’s proposal will make FRR indifferent between accepting and rejecting; 

likewise for FRR’s proposal. Consequently, 𝑝𝑠𝑖
1∗ − 𝐶𝑠𝑖

𝐹 = 𝛿𝐹(𝑝𝑠𝑖
2∗ − 𝐶𝑠𝑖

𝐹)  and 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

2∗ = 𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

1∗) . 

Solving these two equations lead to the equilibrium payments as: 
 

𝑝𝑠𝑖
1∗ =

1

1 − 𝛿𝐹𝛿𝑃

(𝛿𝐹(1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + (1 − 𝛿𝐹)𝐶𝑠𝑖

𝐹) (4.1) 

𝑝𝑠𝑖
2∗ =

1

1 − 𝛿𝐹𝛿𝑃

((1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + 𝛿𝑃(1 − 𝛿𝐹)𝐶𝑠𝑖

𝐹) (4.2) 

 
Therefore, the bargaining will proceed as follows: at the outset PRA proposes 𝑝𝑠𝑖

1∗  to FRR with 

anticipation of FRR’s payment proposal 𝑝𝑠𝑖
2∗ if FRR rejects 𝑝𝑠𝑖

1∗. Facing 𝑝𝑠𝑖
1∗, FRR decides to accept the 

payment proposal, and the bargaining ends.  
As expected, the payment from PRA to FRR positively correlates with PRA’s utility and FRR’s cost. 

FRR will require a higher payment if a passenger train schedule imposes greater cost to FRR. On the 
other hand, PRA will be willing to pay more if the schedule gives PRA higher utility. Comparing (4.1) 
with (4.2) and recalling that 𝐶𝑠𝑖

𝐹 ≤ 𝑢𝑠𝑖
𝑃  must hold if the bargaining proceeds, we can conveniently show 

that 𝑝𝑠𝑖
1∗ ≤ 𝑝𝑠𝑖

2∗ . Because of the stationarity nature of the bargaining, 𝑝𝑠𝑖
2∗  would be the payment 

proposed by FRR (and accepted by PRA) if the bargaining is initiated by FRR. Then 𝑝𝑠𝑖
1∗ ≤ 𝑝𝑠𝑖

2∗ suggests 

that the first-mover in the bargaining has an advantage: the equilibrium payment will be lower if PRA 
starts (thus greater payoff to PRA) and be higher if FRR starts (thus greater payoff to FRR). To make 
this explicit, the payoffs to PRA and FRR are: 
 

𝑈𝑃,𝑠𝑖

1∗ = 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

1∗ =
1 − 𝛿𝐹

1 − 𝛿𝐹𝛿𝑃

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) 
(5.1) 

 

𝑈𝐹,𝑠𝑖

1∗ = 𝑝𝑠𝑖
1∗ − 𝐶𝑠𝑖

𝐹 =
𝛿𝐹(1 − 𝛿𝑃)

1 − 𝛿𝐹𝛿𝑃

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) (5.2) 

 
The SPNE payoffs to PRA and FRR in the subgame starting with FRR’s proposal, which would also 

be the payoffs to PRA and FRR if the bargaining starts with FRR proposing a payment, are: 
 

𝑈𝑃,𝑠𝑖

2∗ = 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

2∗ =
𝛿𝑃(1 − 𝛿𝐹)

1 − 𝛿𝐹𝛿𝑃

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) (6.1) 

𝑈𝐹,𝑠𝑖

2∗ = 𝑝𝑠𝑖
2∗ − 𝐶𝑠𝑖

𝐹 =
1 − 𝛿𝑃

1 − 𝛿𝐹𝛿𝑃

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) (6.2) 

 
Clearly, 𝑈𝑃,𝑠𝑖

1∗ > 𝑈𝑃,𝑠𝑖

2∗  and 𝑈𝐹,𝑠𝑖

2∗ > 𝑈𝐹,𝑠𝑖

1∗ . 
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5.1.2 Schedule bargaining 

Given a price tag (i.e., payment from PRA to FRR) to each possible train schedule, PRA and FRR 
enter the bargaining to determine a mutually agreed-upon schedule. Again, we consider a Rubinstein-
style infinite-horizon bargaining game. Without loss of generality, we assume that the schedule 
bargaining is initiated by FRR, and that the payment associated with each schedule comes from the 
payment bargaining initiated by PRA. 

Figure 4 shows the structure of the schedule bargaining game. FRR starts the bargaining by 
proposing a schedule 𝑠1 ∈ 𝐹𝑃𝑇𝑆  in Step 1. Should PRA accept 𝑠1 , the bargaining ends, resulting in 
payoffs 𝑈𝑠1

𝑃 = 𝑢𝑠1
𝑃 − 𝑝𝑠1

1∗ to PRA and 𝑈𝑠1
𝐹 = 𝑝𝑠1

1∗ − 𝐶𝑠1
𝐹  to FRR, where 𝑝𝑠1

1∗ is from (4.1). If PRA rejects 𝑠1, 

then PRA makes the counter-proposal 𝑠2 . The process of making alternating schedule proposals 
continues until one accepts the other’s proposal.  

Similar to payment bargaining, the infinite-horizon schedule bargaining game is stationary, i.e., FRR 
always proposes the same schedule at the beginning of all odd bargaining periods and PRA always 
proposes the same schedule at the beginning of all even bargaining periods. Using similar reasoning 
as in subsection 5.1.1, the criteria for PRA and FRR to accept the other’s proposal is: 

 

• PRA accepts 𝑠1 proposed by FRR if and only if 𝑈𝑠1
𝑃 ≥ 𝛿𝑃𝑈𝑠2

∗
𝑃 ;  

• FRR accepts 𝑠2 proposed by PRA if and only if 𝑈𝑠2
𝐹 ≥ 𝛿𝐹𝑈𝑠1

∗
𝐹 ;  

 

 
Figure 4: Structure of the schedule bargaining game under complete information: 

FRR initiates the schedule bargaining 

 
Note that schedules are discrete. Unlike the payment bargaining, it may not be possible to have a 

schedule pair (𝑠1
∗, 𝑠2

∗) that exactly makes PRA and FRR indifferent between accepting and rejecting the 
other’s proposal. On the other hand, for whatever schedule 𝑠1 FRR proposes to PRA at the beginning 
of the schedule bargaining, the payoffs to FRR and PRA can be immediately obtained from (5.1) and 
(5.2). Since 𝛿𝐹  and 𝛿𝑃  are constant, the strategy for FRR is to propose 𝑠1

∗ = argmax𝑠1
(𝑢𝑠1

𝑃 − 𝐶𝑠1
𝐹 ) 

according to (5.2). Because such 𝑠1
∗ achieves the maximum possible payoffs not only for FRR but also 

for PRA, PRA cannot reject it. By the same token, if it is PRA’s turn to propose a schedule 𝑠2, then PRA 
will also propose 𝑠2

∗ = argmax𝑠2
(𝑢𝑠2

𝑃 − 𝐶𝑠2
𝐹 )  according to (5.1). FRR cannot reject 𝑠2

∗  because 𝑠2
∗ 

maximizes FRR’s payoff as well. Therefore, there exists an equilibrium schedule pair (𝑠1
∗, 𝑠2

∗) in the 
schedule bargaining game, where 𝑠1

∗ = argmax𝑠1
(𝑢𝑠1

𝑃 − 𝐶𝑠1
𝐹 )  and 𝑠2

∗ = argmax𝑠2
(𝑢𝑠2

𝑃 − 𝐶𝑠2
𝐹 ) . 𝑠1

∗  and 𝑠2
∗ 

can be identical or different schedules, as long as 𝑠1
∗ and 𝑠2

∗ yield the same maximum value for 𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹 , 

which can be viewed as the welfare of the bargaining system. The equilibrium is subgame perfect. We 
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formalize the above discussion as Proposition 1. 
 
Proposition 1: The schedule bargaining has at least one equilibrium schedule pair (𝑠1

∗, 𝑠2
∗). 𝑠1

∗ and 𝑠2
∗ can 

be identical or different, but they both maximize welfare of the bargaining system, i.e., the difference 

between PRA’s utility and FRR’s cost (𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹). The equilibrium schedule is invariant to FRR’s and PRA’s 

discount factors. 
 

Two points are worth mentioning. First, the general bargaining game structure and finding are 
invariant to the objectives of PRA and FRR. This is because, as shown in the derivations above, the 
equilibrium schedule pair ( 𝑠1

∗ , 𝑠2
∗ ) should always be such that 𝑠1

∗ = argmax𝑠1
(𝑢𝑠1

𝑃 − 𝐶𝑠1
𝐹 )  and 𝑠2

∗ =

argmax𝑠2
(𝑢𝑠2

𝑃 − 𝐶𝑠2
𝐹 ). Having alternative objectives may affect the functional forms of 𝑢𝑠𝑖

𝑃  and 𝐶𝑠𝑖
𝐹  (for 

example, 𝑢𝑠𝑖
𝑃  would be replaced by an expression of social welfare if we consider PRA as a social welfare 

maximizer; −𝐶𝑠𝑖
𝐹  would be substituted by FRA’s profit if FRR is viewed as a profit maximizer). 

Consequently, argmax𝑠𝑖
(𝑢𝑠𝑖

𝑃 − 𝐶𝑠𝑖
𝐹) may yield a different equilibrium schedule. But such a schedule still 

maximizes welfare of the bargaining system, now just under a new functional form for 𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹 . This 

is formalized as Corollary 1 below.  
 

Corollary 1: The general bargaining game structure and the finding that the equilibrium schedule pair 
( 𝑠1

∗ , 𝑠2
∗ ) should always be such that 𝑠1

∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠1
(𝑢𝑠1

𝑃 − 𝐶𝑠1
𝐹 )  and 𝑠2

∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠2
(𝑢𝑠2

𝑃 − 𝐶𝑠2
𝐹 )  are 

invariant to the specific objectives for PRA and FRR. 
 
Second, note that the above discussion uses the fact that 𝑈𝑃,𝑠𝑖

1∗  and 𝑈𝐹,𝑠𝑖

1∗  are both proportional to 

𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹 . Therefore, no matter who initiates the schedule bargaining, the set of equilibrium schedules 

and payoffs to PRA and FRR remain the same. This invariance is also true if it is FRR who initiates the 
payment bargaining. Proposition 2 below summarizes this observation.  
 
Proposition 2: Whether PRA or FRR initiates the schedule bargaining does not change the set of 
equilibrium schedules, nor the payoffs to PRA and FRR. 

5.2 Incomplete information setting 

Different from the previous subsection, now we assume that PRA does not have complete 
information about FRR’s cost for each schedule, i.e., 𝐶𝑠𝑖

𝐹 , ∀𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 , but only knows FRR’s cost 

probabilistically. More specifically, PRA believes that FRR is one of the two types: low-cost FRR (LFRR) 
and high-cost FRR (HFRR). PRA believes that there is 𝜃 (0 < 𝜃 < 1) probability for FRR to be HFRR 
and 1 − 𝜃  probability for FRR to be LFRR. PRA’s such belief is common knowledge. The costs 

associated with 𝑠𝑖  to LFRR and HFRR are 𝐶𝑠𝑖
𝐹  and 𝐶�̅�𝑖

𝐹  (0 ≤ 𝐶𝑠𝑖
𝐹 < 𝐶�̅�𝑖

𝐹 ≤ 𝑢𝑠𝑖
𝑃 ), which is also known to PRA 

and FRR. As in the complete information case, we first consider an infinite-horizon payment bargaining 
for each 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 , which is again a fictitious play. Given a price tag (i.e., mutually agreed-upon 
payment) to each schedule, PRA and FRR then bargain over schedule.  

5.2.1 Payment bargaining 

Now that PRA has incomplete information about FRR’s type, it is likely that who initiates the 
payment bargaining will result in even more different equilibrium payments than in the complete 
information setting. Thus we investigate in sequence payment bargaining initiated by PRA and FRR. 

Case 1: PRA proposes the payment first 

Figure 5 illustrates the structure of the payment bargaining initiated by PRA. At Step 1, Nature 
moves and FRR realizes its type. The dashed line at Step 2 indicates that the two decision nodes for 
PRA (on what payment to propose) belong to the same information set, i.e., PRA at Step 2 does not 
know which one of the two nodes is reached. PRA proposes 𝑝𝑠𝑖

1  to FRR. If FRR accepts the proposal, 

then the payment bargaining ends. Otherwise, FRR makes a counter-proposal. PRA and FRR keep 
making alternating proposals until one accepts the other’s proposal.  
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Figure 5: Structure of the payment bargaining under incomplete information:  

PRA initiates the payment bargaining 

 
Before delving into the solution of the payment bargaining game, we introduce the following lemma 

which shows that, when it comes to FRR to propose a payment, FRR’s strategy is not to reveal its type. 
 

Lemma 1: When it comes to FRR to propose a payment, the payment will be invariant to FRR’s type. No 
matter what type FRR is, FRR will pretend to be HFRR. In other words, the proposed payment will be one 
that would be proposed by HFRR in a complete information setting. 
Proof: We prove by contradiction. Suppose that FRR would propose different payments according to 
its type. On seeing the proposed payment, PRA would discover FRR’s type. Henceforth, the bargaining 
would become a Rubinstein-style bargaining (i.e., with complete information). Knowing FRR’s type, 

the equilibrium payment proposed by PRA would be 
1

1−𝛿𝐹𝛿𝑃
(𝛿𝐹(1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + (1 − 𝛿𝐹)𝐶�̅�𝑖
𝐹)  and 

1

1−𝛿𝐹𝛿𝑃
(𝛿𝐹(1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + (1 − 𝛿𝐹)𝐶𝑠𝑖
𝐹) for HFRR and LFRR respectively, following (4.1). Because 𝐶�̅�𝑖

𝐹 >

𝐶𝑠𝑖
𝐹 , FRR would obtain a lower payoff if it were LFRR than were HFRR. However, LFRR can obtain a 

higher payoff by pretending to be HFRR, and will do so. ∎ 
 
With Lemma 1, we conjecture two Bayesian equilibria for the payment bargaining. In the first, 

pooling equilibrium, PRA proposes a payment high enough such that FRR accepts it regardless of type. 
In the second, separating equilibrium, PRA proposes a payment that only LFRR accepts it. In what 
follows, we first derive the payment for each equilibrium and then develop the conditions for PRA to 
propose a payment that corresponds to one of the equilibria. 
 
Equilibrium 1 (pooling equilibrium): this occurs when PRA is highly confident that FRR is HFRR. 
Consequently PRA proposes a payment 𝑝𝑠𝑖

1  (see Step 2 in Figure 5) that is high enough for HFRR to 

accept. If FRR is indeed HFRR (i.e., the right branch in Figure 5), by accepting 𝑝𝑠𝑖
1  HFRR will immediately 

achieve payoff 𝑝𝑠𝑖
1 − 𝐶�̅�𝑖

𝐹 . If HFRR rejected 𝑝𝑠𝑖
1 , PRA would renew the belief and know for sure that FRR 

is HFRR. The subsequent bargaining would become a Rubinstein bargaining, for which we already 
know the equilibrium payment proposed by HFRR would be  
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which follows (4.2). Therefore, in Step 2 HFRR will accept 𝑝𝑠𝑖
1  if and only if 𝑝𝑠𝑖

1 − 𝐶�̅�𝑖
𝐹 ≥ 𝛿𝐹(𝑝𝐻 − 𝐶�̅�𝑖

𝐹). At 

equilibrium, PRA proposes 𝑝𝑠𝑖

∗,𝐻 such that HFRR is indifferent between accepting and rejecting: 𝑝𝑠𝑖

∗,𝐻  −

𝐶�̅�𝑖
𝐹 = 𝛿𝐹(𝑝𝐻 − 𝐶�̅�𝑖

𝐹) . Substituting the expression for 𝑝𝐻  into this indifference equation yields the 

equilibrium payment 𝑝𝑠𝑖

∗,𝐻: 

 

 

Given 𝑝𝑠𝑖

∗,𝐻 , PRA’s payoff will be 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐻 . 

If FRR is LFRR, FRR will also accept the payment proposal 𝑝𝑠𝑖

∗,𝐻 . To see this, we simply compare 

LFRR’s payoff between accepting and rejecting the proposal. By accepting 𝑝𝑠𝑖

∗,𝐻, LFRR achieves payoff 

𝑝𝑠𝑖

∗,𝐻 − 𝐶𝑠𝑖
𝐹; if LFRR rejected 𝑝𝑠𝑖

∗,𝐻 , then by Lemma 1 LFRR would propose the same payment 𝑝𝐻  in Step 

4. In the subgame starting from Step 4, LFRR’s payoff would be 𝛿𝐹(𝑝𝐻 − 𝐶𝑠𝑖
𝐹) . But 𝑝𝑠𝑖

∗,𝐻 − 𝐶𝑠𝑖
𝐹 >

𝛿𝐹(𝑝𝐻 − 𝐶𝑠𝑖
𝐹) , which can be shown by substituting (7) and (8) for 𝑝𝐻  and 𝑝𝑠𝑖

∗,𝐻 :  𝑝𝑠𝑖

∗,𝐻 − 𝐶𝑠𝑖
𝐹 −

𝛿𝐹(𝑝𝐻 − 𝐶𝑠𝑖
𝐹) =

1

1−𝛿𝐹𝛿𝑃
((1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + 𝛿𝑃(1 − 𝛿𝐹)𝐶�̅�𝑖
𝐹) − 𝐶𝑠𝑖

𝐹 − 𝛿𝐹 (
1

1−𝛿𝐹𝛿𝑃
((1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + 𝛿𝑃(1 −

𝛿𝐹)𝐶�̅�𝑖
𝐹) − 𝐶𝑠𝑖

𝐹) = (1 − 𝛿𝐹) (
1−𝛿𝑃

1−𝛿𝐹𝛿𝑃
(𝑢𝑠𝑖

𝑃 − 𝐶𝑠𝑖
𝐹) +

𝛿𝑃(1−𝛿𝐹)

1−𝛿𝐹𝛿𝑃
(𝐶�̅�𝑖

𝐹 − 𝐶𝑠𝑖
𝐹)) > 0  because 0 ≤ 𝐶𝑠𝑖

𝐹 < 𝐶�̅�𝑖
𝐹 ≤ 𝑢𝑠𝑖

𝑃 . 

Therefore, LFRR will accept 𝑝𝑠𝑖

∗,𝐻. PRA’s payoff remains 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐻 .  

In sum, the expected payoff for PRA under the pooling equilibrium is 𝜃(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐻) + (1 − 𝜃)(𝑢𝑠𝑖
𝑃 −

𝑝𝑠𝑖

∗,𝐻) = 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐻 , which is invariant of PRA’s belief in 𝜃. 

 
Equilibrium 2 (separating equilibrium): this occurs when PRA highly believes that FRR is LFRR, and 

proposes a lower payment 𝑝𝑠𝑖
1  than 𝑝𝑠𝑖

∗,𝐻 in Step 2 such that only LFRR would accept it. If FRR is indeed 

LFRR (the left branch in Figure 5) and accepts 𝑝𝑠𝑖
1 , then LFRR will immediately achieve payoff 𝑝𝑠𝑖

1 − 𝐶𝑠𝑖
𝐹 . 

If LFRR rejected 𝑝𝑠𝑖
1 , LFRR would propose a payment in Step 4. By Lemma 1 LFRR would pretend to be 

HFRR. Consequently the equilibrium payment proposed by LFRR in Step 4 would be the same as in the 

pooling equilibrium: 𝑝𝐻 =
1

1−𝛿𝐹𝛿𝑃
((1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + 𝛿𝑃(1 − 𝛿𝐹)𝐶�̅�𝑖
𝐹) . At equilibrium, PRA proposes 𝑝𝑠𝑖

∗,𝐿 

such that LFRR is indifferent between accepting and rejecting in Step 2: 𝑝𝑠𝑖

∗,𝐿  − 𝐶𝑠𝑖
𝐹 = 𝛿𝐹(𝑝𝐻 − 𝐶𝑠𝑖

𝐹), 

which yields 
 

 

Because 𝐶�̅�𝑖
𝐹 > 𝐶𝑠𝑖

𝐹 , it can be easily seen that 𝑝𝑠𝑖

∗,𝐿 < 𝑝𝑠𝑖

∗,𝐻 .  

Given 𝑝𝑠𝑖

∗,𝐿 , PRA’s payoff will be 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐿 . 

If FRR is HFRR, then HFRR will not accept 𝑝𝑠𝑖

∗,𝐿. This is because 𝛿𝐹(𝑝𝐻 − 𝐶�̅�𝑖
𝐹) > 𝑝𝑠𝑖

∗,𝐿  − 𝐶�̅�𝑖
𝐹 , which can 

be verified by incorporating (7) and (9) into the inequality. PRA’s payoff, which will be realized in Step 

6, will be 𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝐻). 

In sum, the expected payoff for PRA under the separating equilibrium is (1 − 𝜃)(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐿) +

𝜃𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝐻). 

 

Which of the two equilibria will be realized (i.e., whether PRA proposes 𝑝𝑠𝑖

∗,𝐻 or 𝑝𝑠𝑖

∗,𝐿) depends on the 

extent to which PRA believes FRR is HFRR, i.e., the value of 𝜃. There exists a threshold �̂�𝑠𝑖
 such that if 

𝑝𝐻 =
1

1 − 𝛿𝐹𝛿𝑃

((1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + 𝛿𝑃(1 − 𝛿𝐹)𝐶�̅�𝑖

𝐹) (7) 

𝑝𝑠𝑖

∗,𝐻 =
1

1 − 𝛿𝐹𝛿𝑃

(𝛿𝐹(1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + (1 − 𝛿𝐹)𝐶�̅�𝑖

𝐹) (8) 

𝑝𝑠𝑖

∗,𝐿 =
1

1 − 𝛿𝐹𝛿𝑃

(𝛿𝐹(1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + 𝛿𝐹𝛿𝑃(1 − 𝛿𝐹)𝐶�̅�𝑖

𝐹) + (1 − 𝛿𝐹)𝐶𝑠𝑖
𝐹  (9) 
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PRA’s belief for FRR to be HFRR is greater than �̂�𝑠𝑖
, then PRA will propose 𝑝𝑠𝑖

∗,𝐻; otherwise, PRA will 

propose 𝑝𝑠𝑖

∗,𝐿. The threshold is obtained by equating PRA’s expected payoff in the two equilibria. The 

resulting equilibrium payment proposed by PRA in Step 2 is  
 

𝑝𝑠𝑖|PRA initiates
∗ = {

𝑝𝑠𝑖

∗,𝐻    if 𝜃 ≥ �̂�𝑠𝑖

𝑝𝑠𝑖

∗,𝐿     if 𝜃 < �̂�𝑠𝑖

  (10) 

 

where �̂�𝑠𝑖
=

(𝐶�̅�𝑖
𝐹 −𝐶𝑠𝑖

𝐹 )(1−𝛿𝐹𝛿𝑃)

(1−𝛿𝑃
2 )𝑢𝑠𝑖

𝑃 +(𝛿𝑃
2 −𝛿𝐹𝛿𝑃)𝐶�̅�𝑖

𝐹−(1−𝛿𝐹𝛿𝑃)𝐶𝑠𝑖
𝐹 , which is positive on both the numerator and 

denominator. For the numerator, positivity comes from 𝐶�̅�𝑖
𝐹 > 𝐶𝑠𝑖

𝐹 . For the denominator, it can be 

rewritten as (1 − 𝛿𝑃
2)(𝑢𝑠𝑖

𝑃 − 𝐶�̅�𝑖
𝐹) + (1 − 𝛿𝐹𝛿𝑃)(𝐶�̅�𝑖

𝐹 − 𝐶𝑠𝑖
𝐹), which is also positive as 0 ≤ 𝐶𝑠𝑖

𝐹 < 𝐶�̅�𝑖
𝐹 ≤ 𝑢𝑠𝑖

𝑃 . 

 

Case 2: FRR proposes the payment first 

This payment bargaining also starts with the Nature’s move which realizes FRR’s type. FRR then 
proposes payment 𝑝𝑠𝑖

1 . Should PRA accept the proposal, PRA will immediately realize payoff 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

1 . 

Otherwise, the bargaining proceeds to PRA proposing a payment. Because FRR adopts an unrevealing 
strategy (Lemma 1), PRA will not know FRR’s type when proposing. The subsequent bargaining will 
be the same as Case 1.  

If 𝜃 ≥ �̂�𝑠𝑖
 and PRA rejects FRR’s proposal, then PRA will realize an expected payoff of 𝛿𝑃(𝑢𝑠𝑖

𝑃 − 𝑝𝑠𝑖

∗,𝐻). 

The equilibrium payment proposed by FRR in the beginning should make PRA indifferent between 

accepting and rejecting: 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖|FRR initiates

∗ = 𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐻) , which yields 𝑝𝑠𝑖|FRR initiates
∗ = (1 −

𝛿𝑃)𝑢𝑠𝑖
𝑃 + 𝛿𝑃𝑝𝑠𝑖

∗,𝐻 . 

If 𝜃 < �̂�𝑠𝑖
 and PRA rejects FRR’s proposal, then PRA will realize an expected payoff of 

(1 − 𝜃)𝛿𝑃(𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖

∗,𝐿) + 𝜃𝛿𝑃
2(𝑢𝑠𝑖

𝑃 − 𝑝𝐻). The equilibrium payment proposed by FRR in the beginning 

should make PRA indifferent between accepting and rejecting: 𝑢𝑠𝑖
𝑃 − 𝑝𝑠𝑖|FRR initiates

∗ = (1 − 𝜃)𝛿𝑃(𝑢𝑠𝑖
𝑃 −

𝑝𝑠𝑖

∗,𝐿) + 𝜃𝛿𝑃
2(𝑢𝑠𝑖

𝑃 − 𝑝𝐻), which yields 𝑝𝑠𝑖|FRR initiates
∗ = (1 − 𝛿𝑃)(1 + 𝜃𝛿𝑃)𝑢𝑠𝑖

𝑃 + (1 − 𝜃)𝛿𝑃𝑝𝑠𝑖

∗,𝐿 + 𝜃𝛿𝑃
2𝑝𝐻 . 

To summarize, 
 

𝑝𝑠𝑖|FRR initiates
∗ = {

(1 − 𝛿𝑃)𝑢𝑠𝑖
𝑃 + 𝛿𝑃𝑝𝑠𝑖

∗,𝐻                                                        if 𝜃 ≥ �̂�𝑠𝑖

(1 − 𝛿𝑃)(1 + 𝜃𝛿𝑃)𝑢𝑠𝑖
𝑃 + (1 − 𝜃)𝛿𝑃𝑝𝑠𝑖

∗,𝐿 + 𝜃𝛿𝑃
2𝑝𝐻      if 𝜃 < �̂�𝑠𝑖

  (11) 

 

Substituting  𝑝𝑠𝑖

∗,𝐻 and 𝑝𝑠𝑖

∗,𝐿 by (8) and (9), we obtain 

 

𝑝𝑠𝑖|FRR initiates
∗ = {

1

1−𝛿𝐹𝛿𝑃
((1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + 𝛿𝑃(1 − 𝛿𝐹)�̅�𝑠𝑖

𝐹
)                        if 𝜃 ≥ �̂�𝑠𝑖

𝐴𝑢𝑠𝑖
𝑃 + 𝐵�̅�𝑠𝑖

𝐹
+ 𝛿𝑃(1 − 𝛿𝐹)(1 − 𝜃)𝐶

𝑠𝑖

𝐹                            if 𝜃 < �̂�𝑠𝑖

  (12) 

 

where 𝐴 =
1−𝛿𝑃

1−𝛿𝐹𝛿𝑃
(1 + 𝜃𝛿𝑃(1 + 𝛿𝑃)(1 − 𝛿𝐹)); 𝐵 =

𝛿𝑃
2 (1−𝛿𝐹)

1−𝛿𝐹𝛿𝑃
((1 − 𝜃)𝛿𝐹 + 𝜃𝛿𝑃).  

 

5.2.2 Schedule bargaining 

In this subsection we present schedule bargaining initiated by PRA (Figure 6). Schedule bargaining 
initiated by FRR can be derived in a similar fashion. Without loss of generality, we assume that payment 
bargaining begins with FRR. Thus the equilibrium payment follows (12). In the schedule bargaining, 
PRA realizes an expected payoff 𝑈𝑠𝑖

𝑃  for each schedule 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 , as shown in (13). FRR’s payoff 

depends on its type. Let 𝑈𝑠𝑖
𝐹  and 𝑈𝑠𝑖

𝐹  be FRR’s payoff when FRR is LFRR and HFRR. Their expressions 

are given by (14)-(15).  
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𝑈𝑠𝑖
𝑃 = 𝑢𝑠𝑖

𝑃 − 𝑝𝑠𝑖|FRR initiates
∗ = {

𝛿𝑃(1−𝛿𝐹)

1−𝛿𝐹𝛿𝑃
(𝑢𝑠𝑖

𝑃 − 𝐶�̅�𝑖
𝐹)                                                    if 𝜃 ≥ �̂�𝑠𝑖

 (1 − 𝐴)𝑢𝑠𝑖
𝑃 + 𝐵𝐶�̅�𝑖

𝐹 + 𝛿𝑃(1 − 𝛿𝐹)(1 − 𝜃)𝐶𝑠𝑖
𝐹        if 𝜃 < �̂�𝑠𝑖

  (13) 

 

𝑈𝑠𝑖
𝐹 = 𝑝𝑠𝑖|FRR initiates

∗ − 𝐶𝑠𝑖
𝐹 = {

1

1−𝛿𝐹𝛿𝑃
((1 − 𝛿𝑃)𝑢𝑠𝑖

𝑃 + 𝛿𝑃(1 − 𝛿𝐹)�̅�𝑠𝑖

𝐹
) − 𝐶𝑠𝑖

𝐹         if 𝜃 ≥ �̂�𝑠𝑖

𝐴𝑢𝑠𝑖
𝑃 + 𝐵𝐶�̅�𝑖

𝐹 + (𝛿𝑃(1 − 𝛿𝐹)(1 − 𝜃) − 1)𝐶𝑠𝑖
𝐹           if 𝜃 < �̂�𝑠𝑖

  (14) 

 

𝑈𝑠𝑖
𝐹 = 𝑝𝑠𝑖|FRR initiates

∗ − 𝐶�̅�𝑖
𝐹 = {

1−𝛿𝑃

1−𝛿𝐹𝛿𝑃
(𝑢𝑠𝑖

𝑃 − 𝐶�̅�𝑖
𝐹)                                                       if 𝜃 ≥ �̂�𝑠𝑖

𝐴𝑢𝑠𝑖
𝑃 + (𝐵 − 1)𝐶�̅�𝑖

𝐹 + 𝛿𝑃(1 − 𝛿𝐹)(1 − 𝜃)𝐶𝑠𝑖
𝐹          if 𝜃 < �̂�𝑠𝑖

  (15) 

 
In this paper we construct a pooling equilibrium for schedule bargaining with incomplete 

information: regardless of FRR’s type, FRR proposes the same schedule to PRA and PRA also proposes 
the same schedule to FRR. Under this construct, no information is revealed while FRR and PRA make 
alternating proposals. Thus in Steps 2, 5, and 6 in Figure 6, PRA’s belief on FRR’s type remains the 
same. The bargaining is stationary. Suppose that there exists an equilibrium schedule pair (𝑠1

∗, 𝑠2
∗). The 

criteria for PRA and FRR to accept the other’s proposal is as follows: 
 

• PRA accepts any schedule 𝑠2 proposed by FRR if and only if 𝑈𝑠2
𝑃 ≥ 𝛿𝑃𝑈𝑠1

∗
𝑃 ;   

• LFRR (HFRR) accepts any schedule 𝑠1 proposed by PRA if and only if 𝑈𝑠1
𝐹 ≥ 𝛿𝐹𝑈𝑠2

∗
𝐹  (�̅�𝑠1

𝐹 ≥ 𝛿𝐹𝑈𝑠2
∗

𝐹 ).   

 

 
Figure 6: Structure of the schedule bargaining under incomplete information: 

 PRA initiates the schedule bargaining 

 
To obtain the equilibrium schedule pair(s) (𝑠1

∗, 𝑠2
∗) , we examine two related types of schedule 

bargaining under complete information. The first type is between PRA and LFRR; the second type 

between PRA and HFRR. Let 𝐸𝑆 and 𝐸𝑆 denote the sets of equilibrium schedule pairs in these two types 

of bargaining. Obviously, any schedule pair in 𝐸𝑆 ∩ 𝐸𝑆 will be an equilibrium schedule of the original 

bargaining in Figure 6.  
Recall that in the schedule bargaining under complete information, the equilibrium schedule is the 

one that maximizes both PRA’s and FRR’s payoffs, and also the welfare of the bargaining system. For 
schedule bargaining under incomplete information, this finding will only apply to one case that FRR is 
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HFRR and 𝜃 ≥ �̂�𝑠𝑖
. This can be seen in the payoff expressions (13) and (15) for 𝑈𝑠𝑖

𝑃  and 𝑈𝑠𝑖
𝐹  when 𝜃 ≥

�̂�𝑠𝑖
. Both expressions are some constant multiplied by system welfare 𝑢𝑠𝑖

𝑃 − 𝐶�̅�𝑖
𝐹 , as in (5.1)-(5.2) and 

(6.1)-(6.2). Other than this case, a system welfare-maximizing schedules is generally not an 
equilibrium schedule. In fact, in the remaining cases payoffs for PRA and FRR involve both 𝐶�̅�𝑖

𝐹  and 𝐶𝑠𝑖
𝐹 . 

Below we propose a sorting/elimination-based method to identify 𝐸𝑆 and 𝐸𝑆 separately. Then we put 

forward two conditions for the existence of the pooling equilibrium.  
We focus our description on the sorting/elimination-based method to obtain 𝐸𝑆. Exactly the same 

method applies to finding 𝐸𝑆. We first sort schedules 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 such that 𝑈𝑠𝑖
𝐹  values are in descending 

order. Let 𝑈𝑠𝑜
𝐹  denote the vector containing the sorted payoffs; 𝑈𝑠𝑜

𝐹 (𝑛) denotes the 𝑛𝑡ℎ element in 𝑈𝑠𝑜
𝐹 ; 

𝑈𝑠𝑜
𝑃  the vector of payoffs to PRA such that the 𝑛𝑡ℎ  element 𝑈𝑠𝑜

𝑃 (𝑛)  corresponds to the 𝑛𝑡ℎ  sorted 
schedule. Then we identify elements 𝑗 = 2,3, … , dim (𝑈𝑠𝑜

𝐹 ) for which 𝑈𝑠𝑜
𝑃 (𝑗) < 𝑈𝑠𝑜

𝑃 (𝑗 − 1). Note that by 

sorting, 𝑈𝑠𝑜
𝐹 (𝑗) ≤ 𝑈𝑠𝑜

𝐹 (𝑗 − 1). If 𝑈𝑠𝑜
𝑃 (𝑗) < 𝑈𝑠𝑜

𝑃 (𝑗 − 1), the 𝑗th sorted schedule is Pareto dominated by the 
(𝑗 − 1)th sorted schedule. We therefore remove the 𝑗th schedule and the corresponding payoffs from 
𝑈𝑠𝑜

𝐹  and 𝑈𝑠𝑜
𝑃 . We repeat this until no more schedule can be removed. The resulting payoff vectors 

are 𝑆𝑈𝑠𝑜
𝐹  and 𝑆𝑈𝑠𝑜

𝑃 . Due to eliminations, elements of 𝑆𝑈𝑠𝑜
𝑃  are now in (non-strict) ascending order.  

Let us use a simple example in Figure 7 to illustrate the sorting/elimination process. Consider a set 
of six schedules, each associated with payoffs to LFRR and PRA. First we sort schedules in descending 
order, based on LFRR’s payoff. We then remove schedule 𝑠1 (Pareto dominated by 𝑠2), and 𝑠3 and 𝑠5 
(both Pareto dominated by 𝑠4). None of the remaining schedules 𝑠2, 𝑠4, and 𝑠6 Pareto dominates the 
others.  
 

 
Figure 7: Illustration of the schedule sorting/elimination process  

(those in green are removed in the process) 

 
Based on the accepting criteria mentioned above, any two elements (𝑗, 𝑘) that satisfy 
 

𝑆𝑈𝑠𝑜
𝐹 (𝑗) ≥ 𝛿𝐹𝑆𝑈𝑠𝑜

𝐹 (𝑘) (16.1) 

𝑆𝑈𝑠𝑜
𝑃 (𝑘) ≥ 𝛿𝑃𝑆𝑈𝑠𝑜

𝑃 (𝑗) (16.2) 
 
will give a pair of equilibrium schedules, thus an element in 𝐸𝑆. The schedule corresponding to 𝑗 will 

be one proposed by PRA; the schedule corresponding to 𝑘 will be one proposed by LFRR. It can be 
easily seen that as long as 𝑆𝑈𝑠𝑜

𝐹  is not an empty vector, such a pair always exists. Indeed, any pair of 

schedules for which the corresponding payoffs to FRR are in 𝑆𝑈𝑠𝑜
𝐹  will form an equilibrium schedule 

pair. This is because ∀𝑗, 𝑘 = 1, … , dim (𝑆𝑈𝑠𝑜
𝐹 ) (assuming without loss of generality that 𝑗 < 𝑘 ), 

𝑆𝑈𝑠𝑜
𝐹 (𝑗) ≥ 𝑆𝑈𝑠𝑜

𝐹 (𝑘) > 𝛿𝐹𝑆𝑈𝑠𝑜
𝐹 (𝑘)  and 𝑆𝑈𝑠𝑜

𝑃 (𝑘) ≥ 𝑆𝑈𝑠𝑜
𝑃 (𝑗) > 𝛿𝑃𝑆𝑈𝑠𝑜

𝑃 (𝑗) . In particular, any schedule 

involved in 𝑆𝑈𝑠𝑜
𝐹  will form an equilibrium schedule pair with itself. Proposition 3 below shows that 

𝑆𝑈𝑠𝑜
𝐹  cannot be empty. Then it follows from the above discussions that 𝐸𝑆 is non-empty. 

 
Proposition 3: The schedule bargaining between PRA and LFRR (or HFRR) always has at least one 
equilibrium pair.  
Proof: During the elimination process, the first element in 𝑈𝑠𝑜

𝐹  remains intact. Therefore, 𝑈𝑠𝑜
𝐹 (1) will 

always be in 𝑆𝑈𝑠𝑜
𝐹 . 𝑆𝑈𝑠𝑜

𝐹  is non-empty. Following the above discussion, 𝐸𝑆  is non-empty. Thus an 

equilibrium schedule pair exists. ∎ 

Original  

Schedule 𝑈𝑠𝑖
𝐹  𝑈𝑠𝑖

𝑃  

𝑠1  11 7.5 

𝑠2  12.5 8 

𝑠3  8.5 6 

𝑠4  10 13 

𝑠5  4.5 9 

𝑠6  13 7 
 

After sorting 

Schedule 𝑈𝑠𝑜
𝐹  𝑈𝑠𝑜

𝑃  

𝑠6  13 7 

𝑠2  12.5 8 

𝑠1  11 7.5 

𝑠4  10 13 

𝑠3  8.5 6 

𝑠5  4.5 9 
 

After elimination 

Schedule 𝑆𝑈𝑠𝑜
𝐹  𝑆𝑈𝑠𝑜

𝑃  

𝑠6  13 7 

𝑠2  12.5 8 

𝑠4  10 13 
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Although 𝐸𝑆  and 𝐸𝑆  are never empty, 𝐸𝑆 ∩ 𝐸𝑆  may be empty. Proposition 4 provides two 

conditions under which 𝐸𝑆 ∩ 𝐸𝑆 ≠ ∅, i.e., a pooling equilibrium exists. 

 
Proposition 4: If either of the following two conditions is met, then schedule bargaining under 
incomplete information has a pooling equilibrium:   

a) There exists a schedule 𝑠𝑗 ∈ 𝐹𝑃𝑇𝑆 which Pareto dominates all other schedules in the bargaining 

between PRA and LFRR, and the same schedule 𝑠𝑗  Pareto dominates all other schedules in the 

bargaining between PRA and HFRR; 
b) For any two schedules 𝑠𝑚 , 𝑠𝑘 ∈ 𝐹𝑃𝑇𝑆|𝑠𝑚 ≠ 𝑠𝑘 , if 𝑈𝑠𝑚

𝐹 > 𝑈𝑠𝑘
𝐹  then 𝑈𝑠𝑚

𝐹 > 𝑈𝑠𝑘
𝐹   also holds. 

Proof: Proofs are intuitive: 
a) The Pareto dominance suggests that 𝑈𝑠𝑗

𝐹 > 𝑈𝑠𝑖
𝐹 , 𝑈𝑠𝑗

𝐹 > �̅�𝑠𝑖
𝐹 , 𝑈𝑠𝑗

𝑃 > 𝑈𝑠𝑖
𝑃 , ∀𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆|𝑠𝑖 ≠ 𝑠𝑗 . As a 

result, the sorting/elimination process will have 𝑠𝑗  as the only element in 𝐸𝑆  and 𝐸𝑆 . The 

bargaining between PRA and LFRR has one and only one equilibrium schedule pair (𝑠𝑗 , 𝑠𝑗). 

The same for bargaining between PRA and HFRR. Thus 𝐸𝑆 ∩ 𝐸𝑆 = (𝑠𝑗 , 𝑠𝑗). 

b) Under this condition, all 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆  will be ordered in the same way in 𝑈𝑠𝑜
𝐹  and 𝑈𝑠𝑜

𝐹 , which 

means 𝑈𝑠𝑜
𝐹 (1)  and 𝑈𝑠𝑜

𝐹 (1)  are associated with the same schedule. Recall that 𝑈𝑠𝑜
𝐹 (1) and 

𝑈𝑠𝑜
𝐹 (1) will remain intact after the elimination process. 𝑈𝑠𝑜

𝐹 (1) will be 𝑆𝑈𝑠𝑜
𝐹 (1) and 𝑈𝑠𝑜

𝐹 (1) will 

be 𝑆𝑈̅̅ ̅̅
𝑠𝑜
𝐹 (1). The schedule corresponding to 𝑆𝑈𝑠𝑜

𝐹 (1) will form an equilibrium schedule pair 

with itself for bargaining between PRA and LFRR. Because the same schedule is associated 
with 𝑆𝑈̅̅ ̅̅

𝑠𝑜
𝐹 (1), this schedule and itself also form an equilibrium schedule pair for bargaining 

between PRA and HFRR. Thus this schedule and itself give an equilibrium schedule pair under 
the pooling equilibrium. ∎ 

When 𝐸𝑆 ∩ 𝐸𝑆 is empty, a separating equilibrium may exist: LFRR and HFRR propose different 

schedules to PRA. Investigation of the separating equilibrium, however, is left for future research. 

6. Numerical analysis 

This section presents numerical experiments of the bargaining model. We first describe the 
problem to be investigated and model parameters. Then, results in both complete and incomplete 
information settings are presented and discussed. The bargaining model is coded in MATLAB 2013b, 
while FPTS and freight train schedules are generated using IBM ILOG CPLEX Optimizer V12.6. The 
numerical experiments are executed on a desktop computer with Windows 8.1 OS, Intel Core i7 3.4 
GHz processor and 12 GB memory. 

6.1 Setup 

We consider a single-track, shared-use rail line presented in Talebian and Zou (2015). The line 
consists of 11 blocks, five of which are equally distanced, double-track blocks. Each double-track block 
is two miles long. The remaining six single-track blocks are each 18 miles long, except for the first and 
last blocks which are 19 miles. This line has two OD pairs, one for each direction (i.e., from one end to 
the other end). We consider 1-5 passenger trains running in each direction in a day. A maximum 
demand of 15 freight trains is desired in each direction on the line. Passenger and freight train speeds 
are 120 and 60 mph respectively. The planning horizon in a day is 5 am – 9:30 pm. Time is discretized 
into 5-minute intervals. For a given number of passenger trains, the baseline passenger train schedule 
𝑠𝑏 is the same as the optimal schedule solved in Talebian and Zou (2015). 

There exist many feasible schedules for passenger trains. We restrict our attention to passenger 
train schedules that are not too far from the optimal schedule. Specifically, for any schedule 𝑠𝑖 ∈ 𝐹𝑃𝑇𝑆 
of a given passenger train, its departure is at most 30 minutes earlier than the train’s departure time 
in 𝑠𝑏; its arrival is at most 30 minutes later than the train’s arrival time in 𝑠𝑏 . 

Recall that we allow passenger trains to stop en route. In generating FPTS, we introduce a maximum 
en-route delay (MED) time that each train can have during a trip. A large MED can affect PRA to FRR in 
at least three possible ways. First, a large MED grants passenger trains greater operational flexibility, 
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which may reduce passenger schedule delay, leading to higher passenger demand and revenue. 
Second, a large MED may result in increased passenger en-route delay cost and passenger train 
operating cost, both lowering PRA’s utility. Third, by allowing passenger trains to stop more en route, 
a large MED may permit more freight trains to run on the line, thus reducing the loss-of-demand cost 
to FRR. To numerically investigate the net effect, many of the results in the numerical analysis are 
plotted against MED. 

The Populate feature of CPLEX is employed to enumerate feasible passenger train schedules 
generated from the hypergraph-based scheduling model in Appendix A. For a given MED value, we 
randomly collect up to 10,000 feasible passenger train schedules (note that when the number of 
passenger trains and MED are both small, there can be less than 10,000 feasible passenger train 
schedules). Using the Matlab Parallel Computing Toolbox, the average time required to generate a 
feasible passenger train schedule and the associated freight train schedule, and to compute the 
associated PRA’s utility and FRR’s cost is about 0.15 second.  

6.2 Model parameters 

Model parameter values are mostly drawn from the literature. On the passenger side, we construct 
PDT profiles following the one that is empirically developed by Cascetta and Coppola (2012). We 
consider passenger values of schedule delay and en-route delay to be $52/hr and $67/hr, as used by 
Corman and D’Ariano (2011) and Vansteenwegen and Van Oudheusden (2007). Rail fare is assumed 
$30 per trip. Following Levinson et al., (1997), we estimate that the train unit operating cost while en-
route stopping is $255.5/hr.  

On the freight side, the unit costs while a freight train is moving, delayed at departure, delayed en-
route, and foregone (i.e., loss of demand) are $1814.6/hr, $3424.1/hr, $5057.2/hr, and $14856 
respectively, based on Talebian and Zou (2015) and AAR (2012). Recall that track maintenance cost is 
a linear combination of passenger and freight train miles. Grimes and Barkan (2006) report an average 
track maintenance cost of $2507 per million gross ton miles on Class I Railroads in 2001. Multiplying 
this number by the average tonnage hauled by a freight train (3585 tons, according to (AAR 2012)) 
and dividing it by 106 lead to an estimated track maintenance cost of $8.99/train-mile, or $11.73/train-
mile after updating it 2010 value (using a 3% inflation rate). For passenger trains, we use the estimate 
from Zambreski (2004) and convert it to 2010 value, which amounts to $3.51/train-mile. 

In the bargaining model, we consider the discount factors to be 𝛿𝑃 = 0.9 and 𝛿𝐹 = 0.8 Later we also 
investigate the sensitivity of the bargaining outcome to different discount factors. In the incomplete 
information setting, we assume that the FRR is HFRR, and PRA believes that FRR has equal probability 
for being HFRR and LFRR (i.e., 𝜃 = 0.5). The value of 𝐶�̅�𝑖

𝐹  equals the corresponding 𝐶𝑠𝑖
𝐹  in the complete 

information setting; whereas the value of 𝐶𝑠𝑖
𝐹  is set to be the product of 𝐶�̅�𝑖

𝐹  and a random number 

drawn from the uniform distribution in [0.8, 0.9] for each schedule 𝑠𝑖 . 

6.3 Results  

Let us first look at results with complete information. We consider the case that PRA initiates 
schedule bargaining and FRR initiates payment bargaining. Figure 8 shows the equilibrium payment 
from PRA to FRR, in terms of both the total amount (left) and the amount per train (right). Each line 
represents the payment for a given passenger train frequency, plotted against MED values from 0 to 6 
time periods (intervals). String lines representing train schedules at two extreme values of MED are 
presented in Appendix B. Generally, increasing passenger train frequency leaves less capacity for FRR. 
FRR’s cost will increase, suggesting that greater payment from PRA to FRR be required. This results in 
a higher amount of total payment. However, the payment does not exhibit a clear changing pattern 
with the increase in MED. Explanations for this are presented in Appendix C. On the other hand, total 
payment increases at a lower rate than the passenger train frequency, as indicated by the per train 
payment. Comparing the calculated payment values with the reported track usage payment made by 
Amtrak (US DOT 2010), which is $4.44/train-mile, or $532 for the 120-mile rail line, Amtrak seems to 
undercompensate the host FRR. One possible reason is that the current payment focuses on 
incremental cost to track maintenance (US DOT 2010), whereas our bargaining model encompasses 
also the delay and loss-of-demand costs to the host FRR. 
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Figure8: Total and per train payment from PRA to FRR with complete information  

 

We further compare the average payment from PRA to FRR on a per passenger basis, with rail fare 
($30). Table 1 reports the payment per passenger with different passenger train frequencies and MEDs. 
The values range from $13.5 to $28.5, or 45.1% to 94.9% of rail fare. Thus a significant portion of PRA’s 
revenue would be used to pay to the host FRR, which puts pressure on PRA to cover its own operating 
expenses. To further investigate this, we lower rail fare from $30 to $10 with an increment of $5, and 
plot the payment from PRA to FRR with four passenger trains in Figure 9. We find that, if rail fare is 
$20, no equilibrium will be reached for MED being zero or one time period, because PRA’s utility would 
become lower than FRR’s cost. The state of no equilibrium expands as we decrease rail fare. With a $10 
rail fare, only one equilibrium exists when MED equals five periods. Therefore, to achieve a bargaining 
agreement under low fare, external revenue sources (e.g., government subsidies) would be necessary. 

 
Table 1: Payment from PRA to FRR on a per passenger basis (in $) with complete information  

Number of passenger 
trains in each direction 

Maximum en-route delay (MED) 

0 1 2 3 4 5 6 

1 14.6 16.6 16.3 23.2 22.1 25.3 28.5 

2 16.6 15.4 19.8 19.1 18.2 15.2 22.4 

3 20.5 15.8 21.2 20.1 19.6 20.3 16.0 

4 22.2 20.6 19.6 22.8 21.2 16.8 13.5 

5 19.5 20.7 22.9 19.5 24.8 18.2 18.5 
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Figure 9: Payment from PRA to FRR under different rail fare with complete information 

 (four passenger trains scheduled) 

 
On the FRR side, Figure 10 presents FRR’s payoff as a function of MED with different passenger 

train frequencies. Given a passenger train frequency, FRR’s payoff generally increases with MED. Recall 
our discussions on MED in subsection 6.1 and Equation (6.2). This suggests that the MED effects of 
reducing passenger schedule delay and allowing more freight trains to run on the line, which 
contribute to increasing 𝑢𝑠𝑖

𝑃  and reducing 𝐶𝑠𝑖
𝐹 , respectively, dominate the potential effect of greater 

passenger en-route delay and passenger train operating cost (which decrease 𝑢𝑠𝑖
𝑃 ). Despite the 

payment from PRA, FRR’s payoff decreases with more passenger trains. Given that FRR’s payoff is 
linearly correlated with system welfare, the finding implies that more shared-use operations reduce 
system welfare. 

 

 
Figure 10: FRR’s payoff with complete information  

 

In subsection 5.1.1 we find that although who initiates the payment bargaining does not change the 
equilibrium schedule, it does affect the amount of payment from PRA to FRR. Figure 11 plots the 
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percentage increase in total payment when the payment bargaining is initiated by FRR vs. by PRA. The 
percent increase can be up to 17.7%, which occurs when only one passenger train is scheduled and 
MED is two time periods. This percent increase in payment diminishes as more passenger trains are 
scheduled. 

 

 
Figure 11: Percent increase in total payment from PRA to FRR, if the  

payment bargaining is initiated by FRR as opposed to by PRA  

 
Recall that the discount factors 𝛿𝑃 and 𝛿𝐹 capture the time-value of money for PRA and FRR, which 

can be alternatively viewed as the patience of PRA and FRR. Figure 12 plots the payment as a function 
of 𝛿𝑃 and 𝛿𝐹, for both cases of PRA and FRR initiating the payment bargaining. Five passenger trains 
are scheduled with MED=1. (For other combinations of passenger train frequencies and MED values, 
similar trends are observed.) Two points are worth highlighting here.  

 
PRA initiates the payment bargaining  

 

FRR initiates the payment bargaining 

 
Figure 12: Payment from PRA to FRR (in $000) as a function of PRA and FRR’s discount factors  

 

First, if the initiator of the payment bargaining is extremely patient, then depending on whether 
the payment bargaining is initiated by PRA (in which case 𝛿𝑃 ≅ 1) or FRR (in which case 𝛿𝐹 ≅ 1), the 
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payment will be the lowest or the highest. For example, when an extremely patient PRA initiates the 
payment bargaining, the PRA will demand the lowest possible payment regardless of FRR’s discount 

factor. Referring back to Equation (4.1), this payment would collapse to 𝐶𝑠∗
𝐹  (where 𝑠∗  denotes the 

equilibrium schedule), which means that the payment just covers FRR’s cost so that FRR still wants to 
participate in the bargaining. Similarly, if it is an extremely patient FRR who initiates the payment 
bargaining, then the FRR will demand the highest possible payment, which is 𝑢𝑠∗

𝑃  according to Equation 
(4.2), regardless of PRA’s type. In this way, FRR will extract the entire PRA’s utility, while keeping PRA 
in the bargaining. 

Second, if the receiving end of the initial payment proposal is extremely impatient, the initial 
proposer can take advantage of this impatience. When PRA initiates the payment bargaining and FRR 
is extremely impatient (𝛿𝐹 ≅ 0), then the payment will be the lowest. The amount, again, collapses to 
𝐶𝑠∗

𝐹  according to Equation (4.1). When it is FRR who initiates the payment bargaining and PRA is 

extremely impatient (𝛿𝑃 ≅ 0), the payment will be the highest, equal to 𝑢𝑠∗
𝑃  according to Equation (4.2). 

On the contrary, if the receiving end of the initial payment proposal is extremely patient, the payment 
will be the highest when PRA initiates (or the lowest when FRR initiates). 

Turning now to bargaining with incomplete information, Figure 13 illustrates �̂�𝑠∗, the threshold 
value for 𝜃 with different passenger train frequencies and MED values (here we consider that PRA 

initiates the schedule bargaining, and FRR initiates the payment bargaining). In general,  �̂�𝑠∗  increases 
with passenger train frequency. The intuition is as follows. As shown in Talebian and Zou (2015), 
increasing passenger train frequency leads to higher passenger side benefit but also higher FRR cost, 

with FRR cost increase at a faster rate. This suggests that the numerator in the �̂�𝑠𝑖
 expression (under 

Equation (10)) may increase more than the denominator as we add more passenger trains. In contrast 

to this, �̂�𝑠∗ does not exhibit a clear changing trend with respect to MED. 

Since we set PRA’s prior belief 𝜃=0.5, which is always greater than �̂�𝑠∗  in Figure 13, the payment 
from PRA to FRR will correspond to the pooling equilibrium, and equal the first line of Equation (12), 
which is the same as in the complete information setting, except that 𝐶𝑠𝑖

𝐹  is replaced by 𝐶�̅�𝑖
𝐹  (see 

Equation (4.2)). 
 

  
Figure 13: Threshold 𝜃 values as a function of passenger train frequency and MED values 

(PRA initiates schedule bargaining and FRR initiates payment bargaining) 

 
Finally, to investigate how PRA’s prior belief influences the payment from PRA to FRR, we vary 𝜃 

from 0 to 1 with an increment of 0.05. The amounts of payment for three and five passenger trains 
with MED=0 are plotted in Figure 14. When 𝜃 is less than its threshold value, PRA will propose payment 
according to the separating equilibrium. Having a low belief that FRR is HFRR, PRA would propose a 
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low payment to FRR when it is PRA’s turn to propose. Recognizing this, FRR will also propose a low 
equilibrium payment. As PRA’s belief of FRR being HFRR becomes stronger, FRR increases the 
equilibrium payment proposed. After PRA’s belief exceeds the threshold value, the payment proposed 
by FRR, as expressed in the first line of Equation (12), will be the same as if PRA knows with certainty 
that FRR is HFRR (Equation (4.2)). The payment gap between low and high PRA beliefs accounts for 
up to 14% of the payment under high belief, when three passenger trains are scheduled. The payment 
gap becomes insignificant (less than 2%) when five passenger trains are scheduled. 
 

               3 passenger trains 

 

                  5 passenger trains 

 
Figure 14: Payment from PRA to FRR as a function of PRA’s prior belief about FRR’s type 

(PRA initiates schedule bargaining and FRR initiates payment bargaining) 

 
Finally, we investigate the payment from PRA to FRR when FRR initiates schedule bargaining and 

PRA initiates payment bargaining. To illustrate, we examine the payment for the scenario with 3 

passenger trains in each direction and MED=0. The value of threshold 𝜃 (i.e., �̂�𝑠∗) is 0.248. For any value 
of 𝜃 < 0.248, PRA proposes a payment to FRR according to (9). However, FRR rejects the proposed 
payment and instead proposes 𝑝𝐻 = $24761.7  in the second bargaining period. The amount of 
payment under the complete information setting will be $23721.5 which is 4.2% less than with 
incomplete information. For any value of 𝜃 ≥ 0.248, PRA proposes a payment to FRR according to (8). 
In sum, the payment under incomplete information is always greater that the payment under complete 
information when 1) PRA initiates payment bargaining; and 2) PRA’s prior belief is incorrect.  

 

7. Conclusion 

The continuous growth of rail traffic, both passenger and freight, on shared-use rail lines calls for 
better understanding of the ways line capacity is allocated between passenger and freight operations. 
The focus of the present paper is on vertically integrated systems where the host freight railroad owns 
the track infrastructure and the passenger rail agency pays for using the infrastructure. We propose a 
bargaining approach to determine passenger and freight train schedules and the associated payment 
from the passenger rail agency to the host freight railroad. In the bargaining, the passenger rail agency 
aims to maximize its revenue minus operating cost, passenger schedule delay cost, and passenger en-
route delay cost; the freight railroad considers its cost due to departure delay, en-route delay, loss of 
demand, and track maintenance. The bargaining proceeds in two steps: first, the two sides bargain 
over payment for each possible schedule; with a price tag given to each possible schedule, bargaining 
in the second step seeks a mutually agreed-upon schedule. The first-step bargaining would be a 
fictitious play that is performed in each side’s mind. We consider two information settings in the 
bargaining: 1) both sides know precisely the utility/cost information of the other side; 2) the passenger 
rail agency does not possess full cost information about the freight railroad, but instead has a 
probabilistic belief. The latter situation is plausible when private freight railroads hold their cost 
information confidential. 
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Analytically solving the bargaining leads to several major findings. In the complete information 
setting, although the equilibrium payment proposed by the passenger rail agency and the freight 
railroad will each be invariant to who initiates the bargaining, the actual payment does depend on who 
is the initiator. The initiator will take the first-mover advantage by raising/lowering the payment. The 
equilibrium schedule is the one that maximizes system welfare, which is invariant to who initiates the 
bargaining or discount factors. In the incomplete information setting, we consider pooling and 
separating equilibria to characterize two possible ways for the passenger rail agency to propose 
payment. Which way to choose depends on the strength of the prior belief of the passenger rail agency 
about the freight railroad’s cost type. For schedule bargaining, we construct a pooling equilibrium, in 
which a sorting/elimination-based method is first used to identify equilibrium schedule pairs given 
the type of the freight railroad. We then provide two conditions for the existence of a pooling 
equilibrium schedule pair. 

Further policy-relevant insights are obtained through numerical analysis. Under our experiment 
setting, we find that the payment from the passenger rail agency to the host freight railroad holds a 
significant portion of the rail fare in the complete information setting. If rail fare is not high enough, 
the bargaining cannot lead to an agreement and the passenger rail agency would need to require 
external revenue sources. Although the computed payment is much higher than Amtrak actually pays 
to host freight railroads, accommodating passenger trains still decreases the host freight railroad’s 
payoff as well as system welfare. For the latter, while it is based on a specific rail line configuration, it 
should provoke further thinking on shared-use vs. dedicated-line operations. In the incomplete 
information setting, the payment from the passenger rail agency will be lower than with complete 
information, if the passenger rail agency’s belief that the freight railroad has high cost is not strong 
enough. The difference, however, would be insignificant with more passenger trains scheduled on the 
line. 

In terms of extending the current work, further efforts are suggested in a few directions. First, 
alternative objectives of PRA and FRR could be considered. Since PRA is assumed public, we may look 
at maximizing social welfare as PRA’s objective. Doing so would require further specification of a 
passenger demand function and computation of consumer surplus (e.g., by performing integral along 
the passenger demand curve). On the FRR side, we may refine the characterization of FRR’s pricing 
behavior, so that profit maximization of FRR can be explicitly modeled. Second, it would be interesting 
to explore the existence of a separating equilibrium for schedule bargaining in the incomplete 
information setting. Third, it is possible that the freight railroad does not have full information about 
the passenger rail agency. In this case, a bargaining with two-sided incomplete information would be 
more appropriate. Lastly, how to use the payment and system welfare as a signal to direct future rail 
infrastructure investment would be an area of both research interests and practical importance. 
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Appendix A: Hypergraph-based train scheduling model to generate FPTS 

This appendix provides additional information on using a hypergraph-based train scheduling 
model, initially introduced by Harrod (2011), to generate feasible passenger train schedules. 
Specifically, we modify the upper-level model in Talebian and Zou (2015) to allow passenger trains to 
stop en route. Parameters, sets, and decision variables in the model are documented in Table A.1.  

Each feasible passenger train schedule is a set of conflict-free train paths specified on a hypergraph. 
The hypergraph-based modeling of train paths is capable of explicitly capturing train transitions 
between blocks. This is not the case with discrete time-block dynamic graphs, which is commonly used 
in modeling train timetables. Following Talebian and Zou (2015), we assume that each physical train 
can be composed of multiple subtrains, each moving between two consecutive train stations. A 
subtrain is indexed by 𝑟𝑤

𝑛  (n = 1, … , 𝑁; 𝑤 ∈ 𝑊) , which denotes the  𝑛𝑡ℎ  subtrain traveling from the 
origin block of station pair 𝑤 to the destination block of station pair 𝑤.  

 
Table A.1: notations used in generating feasible passenger train schedules 

Type Component Description 

Decision 
variables 

𝑥𝑖,𝑗,𝑢,𝑣
𝑟   Occupancy arc denoting if (sub)train r enters into block i at u, occupies block i in 

time interval [u,v), and the exits into block j at time  𝑣 

𝑦𝑡,�̂�
𝑟,�̂�  

Artificial linking arc denoting if the arrival of subtrain 𝑟 at its destination at time 

t is linked to the departure of its continuation subtrain �̂� departing at time �̂� 

Parameters 

𝑜𝑤  Origin block of station pair 𝑤  

𝑑𝑤   Destination block of station pair 𝑤 

𝐸𝐴𝐷𝑇𝑟  Earliest allowed departure time (EADT) from origin of (sub)train r 

𝐿𝐴𝐴𝑇𝑟  Latest allowed arrival time (LAAT) at destination of (sub)train r 

𝑙𝑚𝑎𝑥
𝑟   Maximum allowable layover time at a station for passenger subtrain r 

𝑙𝑚𝑖𝑛
𝑟   Minimum allowable layover time at a station for passenger subtrain r 

𝑏𝑡
𝑖   Capacity (number of trains) of block i at time t 

𝑣𝑡
𝑖   Capacity (number of trains) of cell i at time t 

휀  Leading transition time margin 

𝛾  Lagging transition time margin 

𝑓𝑛   Maximum en-route delay time for 𝑛𝑡ℎ physical train  

ℎ𝑟  Minimum gap between train (or subtrain) r and following trains 

Sets 

𝑇  The discrete-time horizon, ordered with starting value 1   

𝑅𝑝  The subset of passenger subtrains 

𝑅𝑝,𝑁  
The set of passenger subtrains traveling in the direction with increasing track 
block index 

𝑅𝑝,𝑆  
The set of passenger subtrains traveling in the opposite direction with 
decreasing track block index, 𝑅𝑝,𝑁 ∪ 𝑅𝑝,𝑆 = 𝑅𝑝  

𝐵  
The set of all track blocks, ordered by a common reference of travel such as 
“North” or “South” 

𝑍𝑝  
The set of linked passenger subtrains ({(𝑟, �̂�)}where 𝑟 is a terminating subtrain 

and  �̂� is an originating subtrain at the same location. Both subtrains refer to the 
same physical train) 

Ψ𝑝,𝑟
  The set of all feasible arcs (𝑖, 𝑗, 𝑢, 𝑣) for passenger subtrain r  

Ψ𝑝
  The union of all sets Ψ𝑝,𝑟

, i.e., Ψ𝑝 = ⋃ Ψ𝑝,𝑟
𝑟∈𝑅𝑝  
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Type Component Description 

𝒯  The set of network cells 

𝐿
𝑟𝑛

𝑤,𝑟𝑛
�̂�

𝑝
  

The set of valid pairs of arrival times for passenger subtrain r and departure of 

its continuation subtrain 𝑟𝑛
�̂�: {𝑡, �̂� ∈ 𝑇|(𝑖, 𝑑𝑤, 𝑢, 𝑡) ∈ 𝜏𝑝,𝑟𝑛

𝑤
, (𝑜�̂�, 𝑗, �̂�, 𝑣) ∈ 𝜏𝑝,𝑟𝑛

�̂�
, 𝑡 +

𝑙𝑚𝑖𝑛
𝑟 ≤ �̂� ≤ 𝑡 + 𝑙𝑚𝑎𝑥

𝑟 } 

𝑊  Set of all station pairs (𝑊 = 𝑊𝑁 ∪ 𝑊𝑆) 

 
A hypergraph is composed of two types of nodes: blocks and cells. Cells are introduced to capture 

train transitions between neighboring blocks. To describe train paths on a hypergraph, we use 0-1 

binary decision variables 𝑥𝑖,𝑗,𝑢,𝑣
𝑟  and 𝑦

𝑡,�̂�

𝑟𝑛
𝑤,𝑟𝑛

�̂�

. 𝑥𝑖,𝑗,𝑢,𝑣
𝑟  denotes whether subtrain r enters into block i at 

period u, occupies block i in time interval [𝑢, 𝑣),  and exits into block j at period 𝑣. 𝑦𝑡,�̂�
𝑟,�̂�  is an artificial 

arc which links subtrain 𝑟 arriving at its station at time t to its continuation subtrain �̂� departing from 
the same station at �̂�.  

Recall that for a given passenger train, its departure is at most 30 minutes earlier than the train’s 
departure time in 𝑠𝑏 . Let 𝐸𝐴𝐷𝑇𝑟  denote this earliest allowed departure time for train r.  We further 
allow train r to arrive at its destination at most 30 minutes later than the train’s arrival time in 𝑠𝑏 . Let 
𝐿𝐴𝐴𝑇𝑟  denote this latest arrival time for train r. Using 𝐸𝐴𝐷𝑇𝑟  and 𝐿𝐴𝐴𝑇𝑟 , we can conveniently 
generate the set of feasible hyperarcs for each subtrain, i.e., Ψ𝑝,𝑟 .  

We use the set of constraints (A.1)-(A.13) to enumerate feasible passenger train schedules which 
are built on the set of all feasible hyperarcs Ψ𝑝. For each subtrain, constraints (A.1) and (A.2) ensure 
unique departure of each subtrain from its origin and unique arrival at its destination. Constraint (A.3) 
guarantees the continuity of each train path. Constraints (A.4) and (A.5) capture train flow 
conservation at intermediate stations. Constraint (A.6) indicates that decision variables are binary. 
Constraint (A.7) regulates capacity limit for each block. Constraint (A.8) controls the transitions 
conducted within the transition window [𝑡 + 1 − ε, 𝑡 + 1 + 𝛾]. Following Harrod (2013), we assume 
휀 = 𝛾 = 0. Constraints (A.9) and (A.10) manage train headway (ℎ𝑟) in both running directions, which 
is defined as the minimum separation distance between a pair of leading and following trains 
measured in blocks. Constraints (A.11) and (A.12) maintain the order of passenger trains while they 
are running. Constraint (A.13) guarantees that total en-route delay for each physical train is less than 
a pre-specified maximum en-route delay (MED).  
 
Linear network constraints  

∑ 𝑥𝑜𝑤,𝑗,𝑢,𝑣
𝑟𝑛

𝑤

(𝑜𝑤,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛
𝑤

= 1      ∀𝑛 = 1: 𝑁, ∀𝑤 ∈ 𝑊 
(A.1) 

∑ 𝑥𝑖,𝑑𝑤,𝑢,𝑣
𝑟𝑛

𝑤

(𝑖,𝑑𝑤,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛
𝑤

= 1      ∀𝑛 = 1: 𝑁, ∀𝑤 ∈ 𝑊 
(A.2) 

∑ 𝑥𝑎,𝑖,𝑢,𝑡
𝑟

(𝑎,𝑖,𝑢,𝑡)∈Ψ𝑝,𝑟

= ∑ 𝑥𝑖,𝑗,𝑡,𝑣
𝑟

(𝑖,𝑗,𝑡,𝑣)∈Ψ𝑝,𝑟

      ∀ 𝑟 ∈ 𝑅𝑝, 𝑖 ∈ {𝐵|𝑖 ≠ 𝑜𝑤, 𝑑𝑤}, 𝑡 ∈ 𝑇 (A.3) 

∑ 𝑥𝑖,𝑑𝑤,𝑢,𝑡
𝑟

(𝑖,𝑑𝑤,𝑢,𝑡)∈Ψ𝑝,𝑟

= ∑ 𝑦𝑡,�̂�
𝑟,�̂�

(𝑡,�̂�)∈𝐿𝑟,�̂�
𝑝

     ∀𝑟, �̂� ∈ 𝑅𝑝, (𝑟, �̂�) ∈ 𝑍𝑝 , 𝑡 ∈ 𝑇 
(A.4) 

∑ 𝑥
𝑜�̂�,𝑗,�̂�,𝑣
�̂�

(𝑜�̂�,𝑗,�̂�,𝑣)∈Ψ𝑝,𝑟

= ∑ 𝑦𝑡,�̂�
𝑟,�̂�

(𝑡,�̂�)∈𝐿𝑟,�̂�
𝑝

     ∀𝑟, �̂� ∈ 𝑅𝑝, (𝑟, �̂�) ∈ 𝑍𝑝 , 𝑡 ∈ 𝑇 
(A.5) 

𝑥𝑖,𝑗,𝑢,𝑣
𝑟  , 𝑦𝑡,�̂�

𝑟,�̂� ∈ {0,1} (A.6) 

 
Side constraints 

 

∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝

(𝑖,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟
| 𝑢≤𝑡< 𝑣

≤ 𝑏𝑡
𝑖      ∀𝑖 ∈ 𝐵, 𝑡 ∈ 𝑇 

(A.7) 
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∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑁

𝑣∈{𝑡+1−  ,….,𝑡+1+γ}

(𝑖,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟|𝑗=𝑎+1,𝑗≠𝑖

+ ∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑆

 𝑣∈{𝑡+1−  ,….,t+1+γ}

(𝑖,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟|𝑗=𝑎,𝑗≠𝑖

≤ 𝑣𝑡
𝑎      ∀(𝑎, 𝑡) ∈ 𝒯 

(A.8) 

∑ 𝑥𝑎,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑁|ℎ𝑟≥1
𝑎∈{𝑖−ℎ𝑟,….,𝑖−1}

(𝑎,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟
|𝑢≤𝑡< 𝑣,𝑎≠𝑗

+ ∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑁

(𝑖,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟|𝑢≤𝑡< 𝑣

≤ 𝑏𝑡
𝑖      ∀𝑖 ∈ 𝐵, 𝑡 ∈ 𝑇 

(A.9) 

∑ 𝑥𝑎,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑆|ℎ𝑟≥1
𝑎∈{𝑖+1,….,𝑖+ℎ𝑟}

(𝑎,𝑗,𝑢,𝑣)∈𝜏𝑝,𝑟| 𝑢≤𝑡<𝑣,𝑎≠𝑗

+ ∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟

𝑟∈𝑅𝑝,𝑆

(𝑖,𝑗,𝑢,𝑣)∈𝜏𝑝,𝑟|𝑢≤𝑡< 𝑣

≤ 𝑏𝑡
𝑖      ∀𝑖 ∈ 𝐵, 𝑡 ∈ 𝑇 

(A.10) 

∑ 𝑢 ∗

(𝑜𝑤,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛−1
𝑤

𝑥
𝑜𝑤,𝑗,𝑢,𝑣

𝑟𝑛−1
𝑤

≤ ∑ 𝑢 ∗

(𝑜𝑤,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛
𝑤

𝑥𝑜𝑤,𝑗,𝑢,𝑣

𝑟𝑛
𝑤

 

∀𝑤 ∈ 𝑊 , {∀𝑛 = 2: 𝑁} 

(A.11) 

∑ 𝑣 ∗

(𝑖,𝑑𝑤,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛−1
𝑤

𝑥
𝑖,𝑑𝑤,𝑢,𝑣

𝑟𝑛−1
𝑤

≤ ∑ 𝑣 ∗

(𝑖,𝑑𝑤,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛
𝑤

𝑥𝑖,𝑑𝑤,𝑢,𝑣

𝑟𝑛
𝑤

 

∀𝑤 ∈ 𝑊 , {∀𝑛 = 2: 𝑁} 

(A.12) 

∑ 𝑥𝑖,𝑗,𝑢,𝑣
𝑟𝑛

𝑤

𝑤∈𝑊

(𝑖,𝑗,𝑢,𝑣)∈Ψ𝑝,𝑟𝑛
𝑤

|𝑖=𝑗

≤ 𝑓𝑛                                        ∀𝑛 = 1: 𝑁 
(A.13) 

 
 

Appendix B: String lines representing train schedules under the two extreme 
values of MED 

This appendix presents train schedules for different numbers of passenger trains (from one to five, 
in each direction) with MED equal to 0 and 6 time periods. Red and black lines are for passenger and 
freight train schedules respectively. 
 

B.1 Train paths with one passenger trains and MED=0 

 

B.2 Train paths with one passenger trains and MED=6 
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B.3 Train paths with two passenger trains and MED=0 

 

B.4 Train paths with two passenger trains and MED=6 

 

B.5 Train paths with three passenger trains and MED=0 

 

B.6 Train paths with three passenger trains and MED=6 

 

B.7 Train paths with four passenger trains and MED=0 

 

B.8 Train paths with four passenger trains and MED=6 

 

B.9 Train paths with five passenger trains and MED=0 

 

B.10 Train paths with five passenger trains and MED=6 
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Appendix C: Explanations for payment not exhibiting a clear changing pattern 
with increase in MED 

Intuitively, a larger MED could drive down the cost to both PRA and FRR, which means a larger 
PRA’s utility 𝑢𝑠𝑖

𝑃  and a small FRR’s cost 𝐶𝑠𝑖
𝐹 . However, according to payment expression (Eq. (4.1) and 

(4.2) depending on who initiates the payment bargaining), the changes in 𝑢𝑠𝑖
𝑃  and 𝐶𝑠𝑖

𝐹  will have 

opposing effects on the payment. So it is unclear whether a larger MED will reduce payment or not. 
More systematically, by allowing for a larger MED, the set of possible train schedules will be 

enlarged (at least not reduced). As a result, max
𝑠𝑖

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) , where 𝑠𝑖  is a feasible passenger train 

schedule, will be non-decreasing. Recall from Proposition 1 that a bargaining equilibrium schedule 𝑠𝑖
∗ 

maximizes 𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹 , i.e., 𝑠𝑖
∗ = argmax𝑠𝑖

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹). Three cases could occur after increasing MED: 

  
1. max

𝑠𝑖

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) remains the same with the same equilibrium schedule 𝑠𝑖
∗. Then according to 

Eq. (4.1) and (4.2), the payment will not change. 
 

2. max
𝑠𝑖

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) remains the same but associated with a different equilibrium schedule 𝑠𝑖
∗′.  As 

long as 𝑢
𝑠𝑖

∗′
𝑃 − 𝐶

𝑠𝑖
∗′

𝐹 = 𝑢𝑠𝑖
∗

𝑃 − 𝐶𝑠𝑖
∗

𝐹 , it can be 𝑢
𝑠𝑖

∗′
𝑃 > 𝑢𝑠𝑖

∗
𝑃  and 𝐶

𝑠𝑖
∗′

𝐹 > 𝐶𝑠𝑖
∗

𝐹   which results in a larger 

payment according to Eq. (4.1) and (4.2); or 𝑢
𝑠𝑖

∗′
𝑃 < 𝑢𝑠𝑖

∗
𝑃  and 𝐶

𝑠𝑖
∗′

𝐹 < 𝐶𝑠𝑖
∗

𝐹  which results in a 

smaller payment.  
 

3. max
𝑠𝑖

(𝑢𝑠𝑖
𝑃 − 𝐶𝑠𝑖

𝐹) is increased with a different equilibrium schedule 𝑠𝑖
∗′′. Similar to case 2, there 

are more than one possibility for the changing directions of 𝑢𝑠𝑖′′
𝑃  and 𝐶𝑠𝑖′′

𝐹  such that 𝑢
𝑠𝑖

∗′′
𝑃 −

𝐶
𝑠𝑖

∗′′
𝐹 > 𝑢𝑠𝑖

∗
𝑃 − 𝐶𝑠𝑖

∗
𝐹 . Again according to Eq. (4.1) and (4.2), the changing direction for payment is 

indeterminate. 
 
Furthermore, please note that up to 10,000 feasible train schedules are randomly collected for each 

MED value (as mentioned in section 6.1, the actual number of feasible train schedules is less than 
10,000 when MED is small, but exceeds 10,000 as MED increases). The randomness in collecting 
feasible train schedules could be another factor that contributes to the non-monotonic changing 
pattern of payment with respect to MED. 

Based on the above arguments, it is not necessary that higher MED is always associated with 
reduced payment in Figure 8. 


