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Abstract 

The Stroh formalism is employed to study Rayleigh and Stoneley waves in exponentially 

graded elastic materials of general anisotropy under the influence of gravity.  The 6 6 

fundamental matrix N is no longer real.  Nevertheless the coefficients of the sextic 

equation for the Stroh eigenvalue p are real.  The orthogonality and closure relations are 

derived.  Also derived are three Barnett-Lothe tensors.  They are not necessarily real.  

Secular equations for Rayleigh and Stoneley wave speeds are presented.  Explicit secular 

equations are obtained when the materials are orthotropic.  In the literature, the secular 

equations for Stoneley waves in orthotropic materials are obtained without using the 

Stroh formalism.  As a result, it requires computation of a 4 4 determinant.  The secular 

equation presented here requires computation of a 2 2 determinant, and hence is fully 

explicit.  A Rayleigh or Stoneley wave exists in the exponentially graded material under 

the influence of gravity if the wave can propagate in the homogeneous material without 

the influence of gravity.  As the wave number k , the Rayleigh or Stoneley wave 

speed approaches the speed for the homogeneous material. 
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1. Introduction 

Surface waves in elastic half-space x2 0 in which the material property depends on the 

depth x2 have been of interest in recent years [1-12].  Some of them studied anti-plane 

shear surface waves that are possible only for certain special anisotropic elastic materials.  

For a general graded material, anti-plane shear surface waves for large wave number 

were considered by Achenbach and Balogun [11] for isotropic elastic materials and by 

Ting [12] for anisotropic elastic materials. 

 Rayleigh type surface waves in exponentially graded orthotropic materials were 

investigated by Destrade [3].  He showed that the quartic equation for the Stroh 

eigenvalue p is, after properly modified, a quadratic equation in p2
 with real coefficients.  

He also showed that the displacement and the stress decay at different rates with the 

depth x2 of the half-space.  Vinh and Seriani [7] studied the same problem and added the 

influence of gravity on surface waves.  

 There were several studies on the influence of gravity on Rayleigh waves [7, 13-14], 

Lamb waves [15] and Stoneley waves [16, 17].  Only special anisotropic materials such 

as orthotropic materials have been considered.  Rayleigh waves in exponentially graded 

elastic materials of general anisotropy under the influence of gravity were investigated in 

[18]. 

 In this paper we study Rayleigh surface waves and Stoneley waves in exponentially 

graded anisotropic elastic materials under the influence of gravity.  The influence of 

gravity is an important factor in studying surface waves on the earth generated by an 

earthquake.  Since the earth need not be orthotropic, we consider the materials of general 

anisotropy.  Basic equations for surface waves in an exponentially graded elastic material 

of general anisotropy under the influence of gravity are presented in Section 2 using the 

Stroh’s formalism [19-21].  The 6 6 fundamental matrix N is no longer real.  The 

imaginary parts come from the inhomogeneity of the material and the influence of gravity.  

General solutions for the displacement and the stress function are presented and the Stroh 

eigenrelation for the eigenvalue p is obtained.  In Section 3 we show that the coefficients 

of the sextic equation for p are real even though the matrix N is complex.  The 

orthogonality relations of the right and left eigenvectors are established and the closure 
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relations are obtained from which we re-define the three Barnett-Lothe tensors.  They are 

not necessarily real.   Rayleigh surface waves are considered in Section 4.  With the three 

Barnett-Lothe tensors, the secular equation for the surface wave speed can have several 

different forms.  For the special case of orthotropic materials, explicit secular equation 

for the surface wave speed is obtained.  Stoneley waves are investigated in Section 5.  

Secular equation for the Stoneley wave speed is presented.  Again, explicit secular 

equation for the Stoneley wave speed is obtained when the materials are orthotropic.  

Since the analysis recover the case of homogeneous materials without the influence of 

gravity when the wave number k is very large, if a surface wave or a Stoneley wave exists 

for homogeneous materials without the influence of gravity, it exists also for the 

exponentially graded elastic materials of general anisotropy under the influence of 

gravity when the wave number k is very large.  As k , the wave speed for the 

exponentially graded elastic materials of general anisotropy under the influence of 

gravity approaches the wave speed for the homogeneous materials without the influence 

of gravity.   

 In the paper, all equations are derived in such a way that, when the material is 

homogeneous without the influence of gravity, they recover the known equations in the 

literature. 

 

2. The Stroh formalism 

In a fixed rectangular coordinate system ix  (i=1,2,3), let g be the gravitational 

acceleration that is in the direction of the x2-axis.  The equation of motion can be written 

as [16, 22] 

  11,1 12,2 13,3
ˆ gu2,1

ˆ Ý Ý u 1, 

  21,1 22,2 23,3
ˆ g(u1,1 u3,3) ˆ Ý Ý u 2 , (2.1) 

  31,1 32,2 33,3
ˆ gu2,3

ˆ Ý Ý u 3, 

where ij is the stress, ui is the displacement, ˆ  is mass density which depends on x2, 

the dot denotes differentiation with time t and a comma denotes differentiation with ix . 

The sign convention for g here follows [16, 22].  The sign convention in [13, 14] 

employed the opposite direction for the gravitational acceleration so that the g here is –g 
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in  [13, 14].  For the problem to be studied here, ij  and iu  do not depend on x3 so that 

(2.1) can be written as 
 
  i1,1 i2,2

ˆ gYikuk,1
ˆ Ý Ý u i ,    (i=1,2,3), (2.2) 

 

where Y is an anti-symmetric matrix 
 

  Y

0 1 0

1 0 0

0 0 0

. (2.3) 

 

 Consider a steady wave propagating in the direction of the x1-axis with wave speed v 

so that 

  u u(x1 vt, x2). (2.4) 

This means that 

  Ý Ý u v2u,11. (2.5) 

The equation of motion (2.2) can then be written as 
 

  ( i1
ˆ gYikuk

ˆ v2ui,1),1 ( i2),2 0, (2.6) 
 

assuming that ˆ  is independent of x1.  Equation (2.6) tells us that there exists a stress 

function  such that [20] 
 

  i1
ˆ gYikuk

ˆ v2ui,1 i,2 ,   i2 i,1. (2.7) 
 

The stress-strain relation is 

  ij
ˆ C ijksuk,s , (2.8) 

 

  ˆ C ijks
ˆ C jiks

ˆ C ksij
ˆ C ijsk , (2.9) 

in which ˆ C ijks is the elastic stiffness that depends on x2.  The ˆ C ijks is positive definite 

and possesses the full symmetry shown in (2.9).  The third equality in (2.9) is redundant 

because the first two imply the third ([21], p.32).  From (2.8) we have 
 

  i1
ˆ Q ikuk,1

ˆ R ikuk,2 ,   
   (2.10) 

  i2
ˆ R kiuk,1

ˆ T ikuk,2, 

where 

  ˆ Q ik
ˆ C i1k1,   ˆ R ik

ˆ C i1k2 ,   ˆ T ik
ˆ C i2k2. (2.11) 
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The matrices ˆ Q  and ˆ T  are symmetric and positive definite.  Substitution of (2.10) into 

(2.7) leads to 
 

  
ˆ v2

I ˆ Q 0

ˆ R 
T

I
 

u,1

,1
 ˆ g

Y 0

0 0
 

u ˆ R I

ˆ T 0

u,2

,2
. (2.12) 

 
 
If we multiply both sides by the matrix 
 

  
0 ˆ T 

1

I ˆ R ̂  T 
1

 

we have 

 

  
ˆ N 1

ˆ N 2
ˆ N 3 ˆ v2

I ˆ N 1
T

u,1

,1
ˆ g

0 0

Y 0

u u,2

,2
, (2.13) 

where [23] 

 

  ˆ N 1
ˆ T 1 ˆ R T ,   ˆ N 2

ˆ T 1
,   ˆ N 3

ˆ R ̂  T 1 ˆ R T ˆ Q . (2.14) 
 

ˆ N 2 is symmetric and positive definite while – ˆ N 3 is symmetric and positive semi-definite.  

Equation (2.13) is a matrix differential equation for the displacement u and the stress 

function .  The elastic stiffness ˆ C ijks  and the mass density ˆ  can depend on x2 

arbitrarily.  For elastostatics for which v=0, ˆ C ijks can depend on x1 also ([21], p.150).  If 

g=0, ˆ  can also depend on x1. 

 We assume that the elastic stiffness ˆ C ijks  and the mass density ˆ  depend on x2 

exponentially as 

  ˆ C ijks Cijkse
2 x2 ,   ˆ e 2 x2 , (2.15) 

 

where Cijks,  and  are constants.  The exponential factor  can be positive or negative.  

Equation (2.13) reduces to   

 

  
N1 e2 x2N2

e 2 x2 (N3 v2
I) N1

T

u,1

,1
ge 2 x2

0 0

Y 0

u u,2

,2
, (2.16) 

 

where N1, N2 and N3 are constants.  Let 
 

  =e 2 x2 . (2.17) 
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Equation (2.16) simplifies to 

 

  
N1 N2

N3 v2
I N1

T

u,1

,1
g

0 0

Y 0

u u,2

,2 2
, (2.18) 

 

which is a system of partial differential equations in u and  with constant coefficients.  

A general solution is 
 

  u aeik[ x1 vt (p i )x2 ], 
   (2.19) 

  beik[ x1 vt (p i )x2 ], 
 

in which p,  a and b are constant, k is the real wave number and 
 
  /k . (2.20) 

Substitution of (2.19) into (2.18) leads to 
 
  N p , (2.21)  

   

  N
N1 i I N2

N3 XI ihY N1
T i I

, 
a

b
. (2.22) 

 

In the above, 

  X v2 ,   h g /k . (2.23) 

When =0 and h=0, (2.21) recovers the Stroh eigenrelation for homogeneous materials 

without the gravity.  However, unless  and h both vanish, the 6 6 matrix N is complex. 

 From (2.17) and (2.19)2, the stress function is 
 

  beik[ x1 vt (p i )x2 ]. (2.24) 

 

Equations (2.19)1 and (2.24) tell us that the displacement and stress decay exponentially 

at different rates with the factors k[Im(p)– ] and k[Im(p)+ ], respectively.  This was first 

discovered by Destrade [3] for orthotropic materials.  For the displacement and stress to 

vanish at x2  we must have 
 

  Im( p) . (2.25) 

 It is not difficult to show that exponentially graded materials are the only ones for 

which the matrix differential equation (2.13) has a closed form solution. 
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3. The Barnett-Lothe tensors 

Despite the fact that the 6 6 matrix N is complex, it is shown in [18] that the coefficients 

of the sextic equation in p are real.  Introducing the 6 6 symmetric matrix 
 

  J
0 I

I 0
, (3.1) 

it can be shown that 
 

  JN (JN )T    or   N JN 
T

J  , (3.2)  
     

where the over bar denotes the complex conjugate that applies to the terms i  and ih only.   

We then have 

  N pI J(N T pI)J (3.3) 
 

so that the sextic equation for p is 
 

  N pI N 
T pI N pI 0 . (3.4) 

 

It tells us that the sextic equation has no imaginary part. This completes the proof. 

 The  in (2.21) is the right eigenvector.  Let  be the left eigenvector of N, i.e. 
 

  
T N p T

   or   NT p . (3.5) 
 

Since the coefficients of the sextic equation in p are real, if a complex p is an eigenvalue 

so is its complex conjugate p .   Let  
 

  N p , (3.6) 
 

where  is not necessarily identical to .  Taking the complex conjugate of (3.6) and 

using (3.2) we have 
 

  NT (J ) p(J ). (3.7) 
 

In view of (3.5)2 we may take 

  J
b 

a 
. (3.8) 
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Likewise, if  is the left eigenvector associated with p , we have 
 

  ( )T N p ( )T    or   NT p . (3.9) 
 

Taking the complex conjugate of (2.21) and pre-multiplying the result by J we obtain 
 

  JN p J . (3.10)  

Again, use of (3.2) leads to 
 

  NT (J ) p (J ) . (3.11) 

In view of (3.9)2 we may take 
 

  J
b 

a 
. (3.12) 

 

When =0 and h=0, a , b , ,  are a , b , , , respectively.
 

 Assuming that all eigenvalues are complex, let pn (n=1,2,3) be the eigenvalues with 

a positive imaginary part.  The associated right and left eigenvectors are n  and n 

(n=1,2,3).  The remaining eigenvalues are p n (n=1,2,3) and the associated right and left 

eigenvectors are n  and n  (n=1,2,3).  The right and left eigenvectors associated with 

different eigenvalues are orthogonal to each other.  We can normalize the eigenvectors 

such that 

  i
T

j = ij ,   i
T

j= 0,   ( i )T j= 0,   ( i )T j= ij , (3.13) 
 

where ij  is the Kronecker delta.  Let 
 

  A a1, a2, a3 ,   B b1, b2, b3 , 

   (3.14) 

  A a1 , a2, a3 ,   B b1 , b2, b3 . 

 

The orthogonality relations (3.13) can be written as, using (3.8) and (3.12), 
 

  
(B )T (A )T

B 
T

A 
T

A A

B B
I, (3.15) 

or 

  (B )T A (A )T B I B 
T

A A 
T

B , 

   (3.16) 

  (B )T A (A )T B 0 B 
T

A A 
T

B. 
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The two 6 6 matrices on the left of (3.15) are the inverse of each other.  Their products 

commute so that 
 

  
A A

B B

(B )T (A )T

B 
T

A 
T

I, (3.17) 

or 

  A(B )T A B 
T

I B(A )T B A 
T , 

   (3.18) 

  A(A )T A A 
T

0 B(B )T B B 
T . 

 

These are the closure relations. 

 Extending the definition of Barnett-Lothe tensors [24, 25], let 
 

  S i[2A(B )T I] i[2A B 
T

I], 
 

  H 2iA(A )T 2iA A 
T , (3.19) 

 

  L 2iB(B )T 2iB B 
T . 

 

They are not necessarily real.  It can be shown that 
 

  H H
T ,       L L

T , (3.20) 

so that H and L are hermitian.  We can re-write (3.19) as 
  

  S i[A(B )T A B 
T ], 

 

  H i[A(A )T A A 
T ], (3.21) 

 

  L i[B(B )T B B 
T ] , 

or 
 

  
S H

L S 
T

A A

B B

iI 0

0 iI

(B )T (A )T

B 
T

A 
T

. (3.22) 

It is readily shown that, using (3.15) and (3.17), 
 

  
S H

L S 
T

S H

L S 
T

I 0

0 I
, (3.23) 

or 

  HL SS I LH S 
T

S 
T , 

   (3.24) 

  SH HS 
T

0 LS S 
T

L .  
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If H and L are non-singular, the last two equations in (3.24) can be written as 
 

  H
1
S S 

T
H

1
0 SL

1
L

1
S 

T . (3.25) 
 

It can be shown that SH, LS, H 1
S and SL

1 are skew-hermitian.  If they are real, they 

are skew-symmetric. 

 When A is non-singular, we write the last equation in (3.16) as 
 

  (B A 
1)T BA

1
0 . (3.26) 

Hence the impedance tensor 

  M iBA
1  (3.27) 

is hermitian.  Writing (3.27) as 

  M i(A B
T )T [A(A )T ] 1 (3.28) 

and using (3.19) we obtain 

  M H
1(I iS) , (3.29) 

where use has been made of (3.25)1. 

 

4.  Rayleigh surface waves 

4.1 General anisotropic materials. 

The stresses computed from (2.7) using (2.15), (2.19)1 and (2.24) are 
 

  i1 ik[ (p i )bi Xai iYikak ]eik[ x1 vt (p i )x2 ] , 
   (4.1) 

  i2 ikbie
ik[ x1 vt (p i )x2 ]. 

On the other hand, the stresses obtained from (2.10) using (2.15) and (2.19)1 are 
 

  i1 ik[Qik (p i )Rik ]akeik[ x1 vt (p i )x2 ], 
   (4.2) 

  i2 ik[Rki (p i )Tik ]akeik[ x1 vt (p i )x2 ]. 

 

Equations (4.1) and (4.2) are consistent if 

 

  b [RT (p i )T]a , (4.3) 

and 

  (D iW)a 0, (4.4) 
 

 D Q XI 2T p(R RT ) p2T. (4.5) 
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In (4.4), W is an anti-symmetric matrix 
 

  W (R R
T ) hY

0 w3 w2

w3 0 w1

w2 w1 0

.   (4.6) 

 

For a non-trivial solution of a from (4.4) the determinant of (D–iW) must vanish.  It can 

be shown ([21], p.23) that 
 

  D iW D wT Dw 0, (4.7) 
 
where, from (4.6), 

 

  w

w1

w2

w3

(C46 C25)

(C56 C24 )

(C12 C66) h

, (4.8) 

 

and C  is the contracted notation of Cijks.  Equation (4.7) provides an alternate proof 

that the coefficients of the sextic equation in p are real [18]. 

 For a surface wave propagating in the direction of the x1-axis in the half space x2 0, 

the surface traction at x2 0 must vanish.  The surface traction i2  at x2 0 can be 

obtained by superimposing three solutions of (4.1)2 associated with three pn (n=1,2,3).  

We have 

  ( i2)x2 0 ik(Bq)i e
ik(x1 vt), (4.9a) 

where q is a constant to be determined.  Likewise, the displacement at x2 0 can be 

obtained by superimposing three solutions of (2.19)1 associated with three pn (n=1,2,3).  

The result is 

  (u)x2 0 Aqeik(x1 vt) . (4.9b) 

The surface traction vanishes if 

  Bq=0. (4.10) 
 

Equation (4.10) has a non-trivial solution for q if 
 

  B 0. (4.11) 

This is the secular equation for the wave speed v. 
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 As in the case of homogeneous materials without the influence of gravity, (4.11) is 

not the only secular equation available [20, 21].  From (3.19), (3.27) and (3.29) alternate 

secular equations are 

  L 0,   M 0 ,   I iS 0. (4.12) 

The secular equations are the vanishing of a 3 3 determinant for general anisotropic 

materials and 2 2 determinant for orthotropic materials.  

 Equation (4.9) shows that there are three components for the surface wave solution 

associated with q1, q2, q3.  If the surface traction can vanish by superimposing two 

solutions, we have a two-component surface wave.  Surface waves in an orthotropic 

elastic material are two-component surface waves.  There are special anisotropic elastic 

materials for which a surface wave can propagate with only one component in a 

homogenous material without the influence of gravity [26, 27].  It is shown in [18] that 

one-component surface waves can propagate in an exponentially graded anisotropic 

material under the influence of gravity.  

 It should be pointed out that the surface wave solutions for anisotropic elastic half-

space with exponentially graded materials under the influence of gravity involve two 

parameters = /k and h= g/k.  =0 when =0, which means that the material is 

homogeneous.  However, =0 also when k= .  Likewise, h=0 when there is no 

gravitation, but h=0 also when k= .  Thus the solution recovers the solution for a 

homogeneous material without the influence of gravity when the wave number k is 

infinity.  It tells us that, if a surface wave exists for a homogeneous material without the 

influence of gravity, it exists also for the exponentially graded elastic material of general 

anisotropy under the influence of gravity when the wave number k is very large.  It also 

tells us that, as k , the surface wave speed approaches the surface wave speed for the 

homogeneous material without the influence of gravity. 

 We next apply the above results to orthotropic materials. 

 

4.2 Orthotropic materials. 

 In the special case of orthotropic materials we can ignore the anti-plane deformation.  

For the in-plane deformation (4.4) has a non-trivial solution for a if 
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 D iW
C11 X C66

2 C66 p2 (C12 C66)p i[(C12 C66) h]

(C12 C66)p i[(C12 C66) h] C66 X C22
2 C22 p2

0.  

   (4.13) 
 

By inspection, it is obvious that (4.13) is a quadratic equation in p2 with real coefficients.  

We have 

  p4 Ep2 P 0 , (4.14) 
 

 P {(C11 X C66
2)(C66 X C22

2) [(C12 C66) h]2}/(C22C66) . (4.15a) 
 

  E [C22(G0 X) C66(2C12 X)]/(C22C66) 2 2, (4.15b) 

where 

  G0 (C11C22 C12
2 ) /C22. (4.16) 

 

When h=0, this recovers the eigenrelation given in [3].  If p1 and p2  are the eigenvalues 

with a positive imaginary part, 
 

  p1
2 p2

2 E ,   p1p2 P . (4.17a) 

Hence 

  p1 p2 i 2 P E . (4.17b) 
 

P>0 when p1 and p2 are complex.  If one of p1, p2  is purely imaginary while the other 

one is real, P<0.  This can happen to one-component waves and supersonic waves.  We 

do not consider P<0 here. 

 To derive the secular equation using (4.11) we need to find the eigenvectors b1 and 

b2 associated with p1 and p2.  The matrix B=[b1,b2] is a 2 2 matrix.  One way is to 

compute b from (4.3) after finding a from (4.4).  This approach would lead to a 

polynomial in p of degree three for b.  Another way is to find the eigenvector  from 

(2.21).  For orthotropic materials, (2.21) has the expression 
 

  (N pI)

(p i ) 1 1/C66 0

C12 /C22 (p i ) 0 1/C22

X G0 ih (p i ) C12 /C22

ih X 1 (p i )

a1

a2

b1

b2

0. (4.18)  
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Let K
T
 be the adjoint matrix of (N–pI).  This means that Kij is the cofactor of (N–pI)ij.  

We can choose 

  a
Ki1

Ki2

,   b
Ki3

Ki4

, (4.19) 

in which  is an arbitrary factor and i = 1, 2, 3 or 4.  If we choose  = –1 and  i=2 we have 
 

  b
ihp2 G1p iG2

Xp2 G3

, (4.20) 

where 

  G1 G0 (1 C12 /C22)X , 
 

  G2 [G0 (1 C12 /C22)X] h( 2 C12 /C22), (4.21) 
 

  G3 (G0 X)(1 X /C66) 2X h(2 h /C66) . 
 

There is no need to normalize the eigenvector in computing the secular equation, which is 
 

  B
ihp1

2 G1p1 iG2 ihp2
2 G1p2 iG2

Xp1
2 G3 Xp2

2 G3

0 , (4.22) 

or, after using (4.17) and deleting the common factor ( p1– p2),  
 

  G1(X P G3) (XG2 hG3) 2 P E 0 . (4.23) 
 

We will not consider the degenerate case p1= p2  here.  The degenerate case can be 

studied separately [28, 29].  It should be noted that (4.23) is real even though the 

eigenvectors b1 and b2 employed in computing (4.23) are complex.  It should also be 

noted that the secular equation (4.23) is fully explicit.  The X, which is v2, is the only 

unknown.  The wave is dispersive because it depends on the wave number k.  In the 

special case h=0, (4.23) reduces to (2.15) in [3]. 

 When the material is homogeneous without the influence of gravity, =h=G2=0 so 

that (4.23) simplifies to 

  X P G3 0 , (4.24) 

or 

  C22X C66(C11 X) (C11C22 C12
2 C22X) C22(C66 X) . (4.25) 
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This recovers the secular equation (12.10-17) in ([21], p. 481).  It is a cubic equation in X 

when both sides of (4.25) are squared.  

 

5. Stoneley waves 

5.1 General anisotropic materials. 

Interfacial waves in two joined elastic half-spaces are known as Stoneley waves [30].  

The analyses presented so far apply to the half-space x2 0.  The same analyses apply to 

the half-space x2 0  if we replace p by its complex conjugate p  because the 

displacement and the stress must vanish at x2 .  The eigenvectors associated with p  

are, according to (3.6), =( a , b ). For the Stoneley waves, the displacement and the 

surface traction at x2 0 must be continuous. 

 The surface traction and displacement at x2 0 for the half-space x2 0 are given in 

(4.9a,b).  We write (4.9a,b) are 
 

  ( i2)x2 0 ik(B(1)q(1))i e
ik(x1 vt), (5.1a) 

 

  (u)x2 0 A(1)q(1)e
ik(x1 vt) , (5.1b) 

where the subscript (1) denotes the material in the half-space x2 0 .  The surface 

traction and displacement at x2 0 for the half-space x2 0 are 
 

  ( i2)x2 0 ik(B(2)
*

q(2))i e
ik(x1 vt) , (5.2a) 

 

  (u)x2 0 A(2)
*

q(2)e
ik(x1 vt) , (5.2b) 

 

where the subscript (2) denotes the material in the half-space x2 0.  The continuity of 

surface traction and displacement at x2 0 demands that 
 

  B(1)q(1) B(2)
*

q(2) ,   A (1)q(1) A (2)
*

q(2). (5.3) 
 

Equation (3.27) for the material (1) can be written as 
 

  B(1)q(1) iM(1)A(1)q(1) . (5.4a) 

The corresponding equation for the material (2) is 
 

  B(2)
*

q(2) iM(2)
*

A (2)
*

q(2) , (5.4b) 

where 
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  M(2) iB(2)(A (2))
1 . (5.5) 

 

Imposition of the continuity condition (5.3) leads to 
 

  M(1) M(2)
*

A (1)q(1) 0 . (5.6) 

 

A non-trivial solution for A(1)q(1)  exists if 
 

  M(1) M(2)
* 0. (5.7) 

This is the secular equation for a Stoneley wave to propagate.  When =0 and h=0, 

M(2)
*

M (2) and (5.7) recovers the secular equation for Stoneley waves in homogeneous 

materials without the influence of gravity [31].  Since the matrix M(1)+ M (2)
*  is hermitian, 

its determinant is real.  Thus the secular equation (5.7) has no imaginary part.  Again, 

(5.7) for Stoneley waves is the vanishing of a 3 3 determinant for general anisotropic 

materials and 2 2 determinant for orthotropic materials.  We discuss the latter below. 

 

5.2 Orthotropic materials. 

 In the special case of orthotropic materials we will show below that the secular 

equation (5.7) is explicit in which the wave speed v is the only unknown. 

 For the material (1) we have to compute M= iBA
1 from (3.27).  This means that 

we have to find the matrices A=[a1, a2] and B=[b1,b2] and the inverse of A.  They are 

all 2 2 matrices.  Since the inverse of the matrix A is required, it is best if the elements of 

A have simple expressions.  Again, there is no need to normalize the eigenvectors in 

computing BA
1.  Choosing i=3 and C22C66 in (4.19) we have, 

 

  a
C22 p2 f

(np im)
,   b

e2 p3 ie2 p2 d1p id0

e2 p2 ie1p e0

, (5.8) 

 
where 

  f C66 X C22
2
,   n C12 C66,   m (C12 C66) h , 

 
  d0 C66( f m),   d1 C66(n f ),  (5.9) 
 
  e0 C12 f C22 m,   e1 C22( n m) ,   e2 C22C66. 

Hence 
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  A
C22 p1

2 f C22 p2
2 f

(np1 im) (np2 im)
, (5.10a) 

    

  B
e2 p1

3 ie2 p1
2 d1p1 id0 e2 p2

3 ie2 p2
2 d1p2 id0

e2 p1
2 ie1p1 e0 e2 p2

2 ie1p2 e0

. (5.10b)  

 

It can be shown that 

  A (p1 p2)(F F0) , (5.11a) 
  
 

  F n(C22 P f ),   F0 mC22 K , (5.11b) 

 

  K 2 P E . (5.11c) 
 

in which use have been made of (4.17).  Therefore 
 

  A
1 1

A

(np2 im) (C22 p2
2 f )

np1 im C22 p1
2 f

. (5.12) 

The impedance tensor for M given in (3.27) can now be computed.  The result is 
 

  M11
U U0

F F0

,   M22
V V0

F F0

   M21 M12 i
Z Z0

F F0

, (5.13) 

where 
 

 U e2(n P m) K ,   U0 e2(m n) P m(d1 e2E) d0n ,  
 

  V (e2 f e0C22) K ,  V0 e1( f C22 P) , (5.14) 
 

  Z e2n P (e0n e1m),  Z0 e2m K .  
 

M11  and M22  are real while M21 M12  are purely imaginary, proving that M is 

indeed hermitian. 

 For material (2), we have to compute M
*  from (5.5).  The derivations from (5.8) 

through (5.14) for material (1) hold for material (2) if we replace p1, p2 by the complex 

conjugate p 1, p 2.  The result is 
 

  M11
* U U0

F F0

,   M22
* V V0

F F0

   M21
* M12

* i
Z Z0

F F0

. (5.15) 

 

Again, M11
*

 and M22
*

 are real while M21
* M12

*
 are purely imaginary, proving that M

*  

is hermitian. 
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 With (5.13) and (5.15), the secular equation (5.7) is 
 

        
U U0

F F0 (1)

U U0

F F0 (2)

V V0

F F0 (1)

V V0

F F0 (2)

 

                                                    
Z Z0

F F0 (1)

Z Z0

F F0 (2)

2

0 . (5.16) 

This is an explicit secular equation.  It has no imaginary parts.  The only unknown in the 

secular equation is the wave speed v, which is implicit in X(1)  and X(2)  where 

X(1) (1)v
2 and X(2) (2)v

2.  Different secular equations have been presented in [16, 

17] where the secular equations are the vanishing of a 4 4 determinant.  They are not as 

explicit as (5.16).  Moreover, as we will show below, (5.16) recovers easily the secular 

equation for the special case of homogeneous isotropic materials without gravity.  

 When the material is homogeneous without the influence of gravity, =h=0 so that 

m= d0= e1=0.  F0 , U0, V0 and Z0 all vanish.  The secular equation (5.16) simplifies to  
 

  
U

F (1)

U

F (2)

V

F (1)

V

F (2)

Z

F (1)

Z

F (2)

2

0 , (5.17) 

where 

  
U

F

C66 C22(C11 X) K

C22(C11 X) C66(C66 X)
, 

 

  
V

F

C22 C66(C66 X) K

C22(C11 X) C66(C66 X)
, 

   (5.18)  

  
Z

F

C66 C22(C11 X) C12 C66(C66 X)

C22(C11 X) C66(C66 X)
,  

 

  K
1

C22C66

C22(C11 X) C66(C66 X)
2

(C12 C66)2 . 

 

With (5.18), (5.17) provides an explicit secular equation for Stoneley waves in two 

homogeneous orthotropic half-spaces without the influence of gravity. 

 It should be noted that, for orthotropic materials, only the elastic stiffness C11, C12 , 

C22  and C66  are needed in the secular equations.  No simplification is gained for 

hexagonal materials if x1 or x2 is the symmetry axis.   
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 For cubic materials we set C11 C22 in the secular equations. 

 For isotropic materials (also for hexagonal materials with x3 being the symmetry axis) 

we impose the conditions C11 C22 and 2C66 C11 C12 .  Equation (5.18) simplifies to 
 

    
U

F

C11C66 ( )

C11 C66

X

1
,    

 

  
V

F

C11C66 ( )

C11 C66

X

1
,   (5.19) 

 

  
Z

F

C66[C11 (C11 2C66) ]

C11 C66

2C66

X

1
, 

 
where  
 

  1 (X /C11) ,    1 (X /C66 ) . (5.20) 
 

The (U/F), (V/F), (Z/F) in (5.19) are the elements of the 2 2 hermitian matrix M.  The 

first equalities in (5.19) are deduced from (5.18) that were computed from the M shown 

in (3.27).  The second equalities in (5.19) are obtained from the first equalities by 

multiplying the denominator and the numerator by ( ).  They recover the expressions 

of M given in [31] who employed the M shown in (3.29) in which the Barnett-Lothe 

tensors H and S are computed from the integral formalism [24].  Let 
 

          1 ,   R [2 (X / )]2 4 ,   C66. (5.21) 
 

Substituting the second expressions of (U/F), (V/F), (Z/F) in (5.19) into (5.17) and 

deleting the non-zero common factor – ( 1 2) 1
 we obtain 

 

                           1
2R1 2 2

2R2 1 X1X2( 1 2 2 1)  
 

                                  2 1 2[2 (X / )]1[2 (X / )]2 0. (5.22)                      
 

In the above, the subscripts 1 and 2 refer to materials (1) and (2), respectively.  This 

recovers the explicit secular equation for Stoneley waves in two homogeneous isotropic 

elastic half-spaces presented in [31 - 33]. 

 We introduced R in the secular equation (5.22) for Stoneley waves to call readers’ 

attention that R=0 is a secular equation for Rayleigh waves [33].  A Stoneley wave 

becomes a Rayleigh wave when material (2) in the half-space x2 0 is a void.  In this 

case M(2)
*

=0, and the secular equation (5.7) for Stoneley waves reduces to the secular 
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equation (4.12)2 for Rayleigh waves.  In the special case of homogeneous isotropic 

materials without the gravity, M(2)
* =0 means that all terms in (5.22) vanish except the 

first term.  The vanishing of the first term demands that R1 0 or, from (5.21)2, 
 

         [2 (X /C66)]2 4 1 (X /C11) 1 (X /C66) 0 ,  (5.23a) 
 

for material (1) in the half-space x2 0.  This is one of the expressions for the secular 

equation for Rayleigh waves ([21], p.482).  If we multiply (5.23a) by ( )  we obtain 
 

         (X /C66 ) 1 (X /C11) [4(1 C66 /C11) X] 1 (X /C66) 0 . (5.23b). 
 

This is another expression for the secular equation for Rayleigh waves in homogeneous 

isotropic elastic half-space ([21], p.482).  Equation (5.23b) can be deduced from the 

secular equation (4.25) for orthotropic materials by specializing it to isotropic materials.  

   

6. Concluding remarks 

We have extended the analysis presented in the literature for Rayleigh waves and 

Stoneley waves in exponentially graded orthotropic elastic materials with the influence of 

gravity to general anisotropic elastic materials.  The analysis involve two parameters 

= /k and h= g/k that are related to the inhomogeneity of the materials and the influence 

of gravity, respectively.  When =0 and h=0, all equations recover the known equations 

in the literature for homogeneous anisotropic elastic materials without the influence of 

gravity.  Since =0 and h=0 when the wave number k , if a Rayleigh wave exists for 

homogeneous anisotropic elastic materials without the influence of gravity, a Rayleigh 

wave exists for the exponentially graded elastic materials of general anisotropy with the 

influence of gravity at least for a very large k.  The same can be said of the Stoneley wave. 

 We presented secular equations for Rayleigh wave speed and Stoneley wave speed 

for exponentially graded elastic materials of general anisotropy with the influence of 

gravity.  For the special case of orthotropic materials, explicit secular equations are 

obtained in (4.23) for Rayleigh waves and in (5.16) for Stoneley waves.  The 

corresponding secular equations when the materials are homogeneous without the 

influence of gravity are deduced in (4.24) and (5.17), respectively. 
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 It is known that one-component surface wave can propagate in a special homogenous 

anisotropic elastic material without the influence of gravity [26, 27].  It is also known that 

one-components Stoneley wave can propagate in an anisotropic elastic bimaterial [34].  

The problem of one-component surface waves in an exponentially graded anisotropic 

material with the influence of gravity has been addressed in [18].  The question is open if 

one-component Stoneley waves can propagate in an exponentially graded anisotropic 

bimaterial under the influence of gravity. 
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