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1. Introduction9

Numerical simulation of geotechnical and geological structures, especially10

in the platform of the finite element (FE) method, has attracted much re-11

search interest with the advent of modern computational resources. One cru-12

cial part of an FE simulation is the selection of an appropriate constitutive13

material model, since geomaterials can exhibit many complex and interact-14

ing behaviors. At low confining pressure, localized deformation in the form15

of shear and/or dilation bands or fractures may occur due to the growth16

and coalescence of micro-cracks and pores. At high confining pressure, on17

the contrary, delocalized irreversible deformation may occur in the form of18

shear-enhanced compaction. The latter response, generally accompanied by19

material hardening, is the result of pore collapse, grain crushing, internal20

locking and other microphysical mechanisms.21

Further compounding the complexity of this response, these materials22

typically contain macroscopic inhomogeneities such as natural flaws, cracks,23

joint sets, and bedding planes. The existence of macro-structural hetero-24

geneities in geo-systems renders them vulnerable to catastrophic failures at25

drastically lower loads than those expected for intact structures. Brittle26

faulting can be triggered from these zones and propagate under crack open-27

ing (mode I), sliding (mode II) or a mixture of modes. Notably, in gravity28

dams most of the observed cracks are mixed mode (Kishen and Singh (2001);29

Roth et al. (2015)), and hydraulic fractures propagate in mixed-mode condi-30

tions from the walls of wellbores (Rahman et al. (2002)).31
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Over the past decades, multiple laboratory tests with different config-32

urations (including circular disc (Al-Shayea (2005); Erarslan and Williams33

(2012)), semi-circular disc(Aliha et al. (2010); Aliha and Ayatollahi (2013)),34

round bar, and rectangular-beam (Rinehart et al. (2015))) have been designed35

to investigate the mixed-mode fracture behavior in geomaterials. Among36

these tests is the cracked Brazilian disc (CBD) specimen, which has been37

frequently utilized for rock materials due to the amenity of test specimen38

preparation from the rock cores. Other reasons in adopting the CBD speci-39

men include the relatively straightforward test procedure with regard to the40

application of compressive rather than tensile load and the capability to eas-41

ily replicate various combinations of mode I and II fracture propagation by42

varying the initial crack inclination angle relative to the applied load.43

For many applications, mixed-mode fracture in rocks has been simplified44

to empirical approaches (Yao (2012); Jaeger et al. (2009)) or linear elastic45

fracture mechanics (LEFM). In these approaches conventional fracture the-46

ories (such as the maximum tangential stress criterion (MTS) (Erdogan and47

Sih (1963)), the minimum strain energy density criterion Sih (1974), the max-48

imum energy release rate criterion (Hussain et al. (1974))) have been used to49

predict resistance to and direction of the fracture growth. However, LEFM50

is not always applicable to geomaterials (see, e.g Rubin (1993)), and other51

more advanced methods are often computationally challenging to implement.52

In the case of quasi-brittle materials, cohesive zone models, which may be53

traced to the pioneering work of Dugdale (1960) and Barenblatt (1962), are54
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an appropriate alternatives to describe the micromechanical features under-55

lying the evolution of damage in the FPZ. These models interpret the FPZ56

as an interface along which the displacement jump is related to transfer-57

ring cohesive tractions. Cohesive zone models have been proposed in various58

settings (see Park and Paulino (2013) for a review of models), but the best59

known are the potential-based laws by Tvergaard (1990) and Xu and Needle-60

man (1993) and the linear laws by Camacho and Ortiz (1996) and Ortiz and61

Pandolfi (1999).62

The numerical simulation of crack growth within the finite element method63

may be carried out with different techniques. One early approach is discrete-64

crack model employing interface elements so that the crack is allowed to prop-65

agate along the boundaries of the finite elements. Though several attempts66

have been made in a case of crack paths unknown a priori to generate robust67

and reliable tools for automatic remeshing procedure (see, for example, Ma-68

ligno et al. (2010); Boussetta et al. (2006)), discrete-crack models still suffer69

from some shortcomings, such as spurious stress transferring across crack sur-70

faces and mesh bias. To alleviate these numerical difficulties, fine meshes are71

needed, which lead to large-scale and in computationally expensive systems.72

In recent years, models with cracks embedded in finite elements including73

either nodal enrichment, the eXtended or Generalized finite element method74

(XFEM or GFEM) (Gupta et al. (2015); Wu et al. (2015); Shen and Lew75

(2014); Kramer et al. (2013); Chen et al. (2012); Belytschko et al. (2001)), or76

elemental enrichment, the Embedded finite element method (EFEM) (Weed77
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et al. (2015); Zhang et al. (2015); Linder and Zhang (2014); Wu (2011); Foster78

et al. (2007); Borja and Regueiro (2001); Armero and Garikipati (1996); Simo79

et al. (1993)) have been applied successfully to simulation of fracture propa-80

gation. A comparative study by Oliver et al. (2006b) showed that EFEM is81

computationally more efficient than XFEM, though it cannot accurately cap-82

ture the crack tip stresses. In addition, by focusing on slip patterns, Borja83

(2008) has elucidated that the extended FE solutions require higher-order84

crack tip enhancement in order to fully capture the strain singularity at the85

crack tip and EFEM could predict larger slip (i.e., softer response) compared86

to the XFEM solutions otherwise. Due to some of the appealing features of87

the EFEM, computational efficiency being a primary one, we have chosen to88

adopt this method for the simulation of mixed-mode fracture in CBDs.89

The remainder of this paper is organized as follows: Section 2 reviews a90

recently modified cap plasticity model for geomaterials. In Section 3 first,91

the kinematics of a strong discontinuity are outlined. Second, to capture92

the fracture initiation and its orientation, bifurcation theory is reviewed. At93

the end of Section 3, a cohesive fracture model is summarized to describe94

evolution of the damage with either coupled opening/sliding displacements95

or solely frictional slip mode. In Section 4, the finite element approximation96

using assumed enhanced strain (AES) method is briefly discussed. The nu-97

merical implementation of the models for both strain hardening and softening98

responses is given in Section 5. In Section 6, the numerical efficiency and99

robustness of both constitutive model and post-localization model are briefly100

5



discussed. Finally, Section 7 describes a benchmark example of a CBD speci-101

men to investigate the mixed mode fracture behavior of pre-cracked limestone102

rock, and the finite element solutions are compared with experimental results.103

2. Three-invariant isotropic kinematic hardening cap plasticity model104

Even though recently various multiscale computational approaches (see105

for example Tonge and Ramesh (2016); Flores et al. (2015); Oliver et al.106

(2015); Liu et al. (2015); Cusatis et al. (2014)) have been developed, inves-107

tigating some micromechanical features of complex geomaterials, continuum108

plastic constitutive models are still the most widely acknowledged method109

to capture material nonlinearities and inelastic behaviors.110

111

Cap plasticity models typically utilized in the modeling of complex me-112

chanical behavior of porous geomaterials capture shear yielding at low mean113

stress and inelastic compaction at higher mean stress. These models can take114

into account one or more other aspects such as pressure-sensitive yielding,115

differences in strength in triaxial compression and extension, dilatancy and116

the Baushinger effect, among others. In this section, the formulation and117

numerical implementation of a nonassociated, three-invariant, isotropic and118

kinematic hardening cap plasticity model are briefly described. The model119

comprises a pressure-dependent shear yield surface, hardening compaction120

cap and newly added elliptical tension cap as shown in Fig. 1. For more121

details and motivation of the model, the reader is referred to Motamedi and122
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Foster (2015).

Figure 1: Cap plasticity model: three dimensional view of the yield surface (the exterior
free mesh surface) and plastic potential surface (the interior blue solid) in principal stress
space.

123

2.1. Yield functions and plastic potentials124

Assuming that the yielding behavior is isotropic, the yield function f and125

plastic potential function g can be expressed in terms of stress invariants126

(e.g. I1, J2 and J3). In the case of kinematic hardening, a deviatoric backstress127

tensor α is presented to capture the Bauschinger effect, such that the relative128

stress tensor can be defined as ξ = σ − α. Given a back stress with an129

appropriate translation rule (Foster et al. (2005)), the yielding of the material130

may be expressed in terms of invariants of the relative stress (I1, J
ξ
2 and Jξ3 ).131

Many cap plasticity models have been proposed, for example Lu and132

Fall (2015); Gamnitzer and Hofstetter (2015); DorMohammadi and Khoei133

(2008); Kohler and Hofstetter (2008); Grueschow and Rudnicki (2005). In134

this work, we follow a smooth cap formulation initially proposed by Fossum135
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and Brannon (2004). The yield function f and conjugated plastic potential136

g take the following form:137

f = Γ(βξ)

√
Jξ2 −

√
Fc(Ff −N) (2.1)

g = Γ(βξ)

√
Jξ2 −

√
F g
c (F g

f −N) (2.2)

where the material parameter N indicates the maximum allowed transla-138

tion of the initial yield surface during kinematic hardening and Γ accounts for139

the difference in triaxial extension vs. compression strength. The Lode an-140

gle βξ is the function of second and third invariants of the deviatoric relative141

stress devξ. The exponential shear failure function Ff and the corresponding142

plastic potential surface F g
f are given as143

Ff (I1 ) = A− C exp(B I1)− θI1 (2.3)

F g
f (I1 ) = A− C exp(L I1)− φI1 (2.4)

The shear failure surface Ff captures the pressure dependence of the shear144

strength of the material where A,B,C and θ are all non-negative material145

parameters determined from peak stress experimental data, using a proce-146

dure described in (Fossum and Brannon (2004)). L and φ are determined147

from experimental measurements of volumetric plastic deformation. The cap148
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function Fc generates two smooth elliptical caps to the yield function in both149

tensile and compressive stress zones. This function couples hydrostatic and150

deviatoric stress-induced deformation of the material. The cap function Fc151

and the corresponding one for plastic potential F g
c are formulated as152

Fc(I1 , κ) = 1−H(κ− I1)

(
I1 − κ

X(κ)− κ

)2

−H(I1 − IT1 )

(
I1 − IT1
3T − IT1

)2

(2.5)

153

F g
c (I1 , κ) = 1−H(κ− I1)

(
I1 − κ

Xg(κ)− κ

)2

−H(I1− IT1 )

(
I1 − IT1
3T − IT1

)2

(2.6)

where κ stands for the branch point in which combined porous/microcracked154

yield surface deviates from the nonporous profile for full dense bodies. The155

function X(κ) is the intersection of the cap surface with the I1 axis in the156

√
J2 versus I1 plane and signifies the position at which pressure under pure157

hydrostatic loading would be sufficient to prompt grain crushing and pore158

collapse mechanisms.159

Furthermore, this plasticity model is furnished with two internal vari-160

ables, α and κ. The translational back stress tensor α is adopted to capture161

kinematic hardening. Additionally, on the cap surface, κ is a scalar isotropic162

hardening parameter, which allows the yield surface to isotropically expand.163

The combined isotropic/kinematic hardening of the cap model is visualized164

by the schematic diagram in Fig. 3. The description of evolution laws for165
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Figure 2: Two-dimensional representation of yield and potential surfaces in meridional
stress space; deviatoric stress

√
J2 versus mean stress I1.

isotropic/kinematic hardening parameters and their correspondence with mi-166

crostructural deformations are discussed in Motamedi and Foster (2015).167

Figure 3: Three dimensional view of initial yield surface (the interior gray solid) evolution
in principal stress space for: (a) isotropic hardening and (b) mixed isotropic-kinematic
hardening.

2.2. Generalized Hooke’s law and flow rule168

The generalized Hooke’s law for linear isotropic elasticity can be written169

as:170

σ̇ = Ce : ε̇; Ce = λ1⊗ 1 + 2µI (2.7)
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where 1 is the second order identity tensor, I is the fourth-order symmetric171

identity tensor, λ and µ are the Lamé parameters and Ce is the fourth-order172

isotropic elasticity tensor. For infinitesimal strain, an additive decomposition173

of the total strain rate ε̇ into the elastic and plastic parts is introduced174

ε̇ = ε̇e + ε̇p (2.8)

A non-associative flow rule is assumed for plastic flow as below175

ε̇p = γ̇
∂g

∂σ
(2.9)

In addition, the continuum elasto-plastic tangent Cep can be derived as176

the following177

σ̇ = Cep : ε̇; Cep =

(
Ce − 1

χ
Ce :

∂g

∂σ
⊗ ∂f

∂σ
: Ce

)
(2.10)

in which178

χ =
∂f

∂σ
: Ce :

∂g

∂σ
− ∂f

∂α
: hα − ∂f

∂κ
hκ (2.11)

3. Strong discontinuity:179

3.1. Kinematics and governing equations180

For strong discontinuities, the displacement field experiences a spatial181

jump [[u]] = u+−u− across the material surface S separating the subdomains182

Ω− and Ω+ of an otherwise continuous body Ω, see Fig. 4. The displacement183
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field in the context of strong discontinuity kinematics is given by184

u (x, t) := ū (x, t)︸ ︷︷ ︸
continuious part

+ [[u(t)]]HS (x)︸ ︷︷ ︸
jump discontinuity

(3.1)

in which HS (x) is the Heaviside function across the surface defined by the185

conditions186

HS (x) =





1 if x ∈ Ω+

0 if x ∈ Ω−
(3.2)

Figure 4: Body Ω with planar strong discontinuity S fixed at the reference configuration,
(Ω=Ω+∪Ω−∪S, Γ= Γt∪Γg)

.

In this study, it is assumed that the jump discontinuity [[u]] is piecewise187

constant along surface S (i.e. independent of x) so that the gradient ∇ [[u]] is188

ignored. The total strain rate tensor resulting from this field is the symmetric189

component of the displacement gradient tensor, which can be derived in190
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compact form as below191

ε̇ := sym(∇ ˙̄u)︸ ︷︷ ︸
regular part

+ sym
(

˙[[u]]⊗ n
)
δS

︸ ︷︷ ︸
singular part

(3.3)

where n is the unit normal vector to the surface S and pointing in the192

direction of Ω+. The Dirac delta distribution δs indicates unbounded strain193

at the discontinuity interface.194

The local form of quasi-static, isothermal equilibrium for a body with195

strong discontinuity leads to the following set of governing equations196

∇ · σ + b = 0 in Ω (3.4a)

σ · ν = tσ on Γt (3.4b)

u = g on Γg (3.4c)

[[σ]] · n = 0 across S (3.4d)

where σ is the Cauchy stress tensor, b the body force vector, ν the outward197

unit normal vector to Γt, tσ the traction on Γt, g the prescribed displacement198

on Γg, and [[σ]] is the jump in stress across S.199

3.2. Onset of localization: bifurcation analysis200

In the material failure mechanics, there exist different approaches to inves-201

tigate the onset of localized deformation in terms of macrocracks and/or de-202

formation bands. Among them we can point out the local path-independent203
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criterion (Haghighat and Pietruszczak (2015)), bifurcation analysis (Tjioe204

and Borja (2016); Borja et al. (2013); Regueiro and Foster (2011)), criti-205

cal plane framework (Pietruszczak and Mroz (2001)). For inelastic mate-206

rials such as those considered here, linear elastic fracture theory cannot be207

used. Nonlinear theories, such as the J-Integral, have been applied within the208

eXtended Finite Element Method (e.g Duflot (2007); Mohammadi (2008)).209

This theory, however, requires path integration through several elements and210

adapting the integration points to calculate the integral, and may not be path211

independent for complex plasticity models that may experience unloading.212

Bifurcation theory, in contrast, depends solely on the local tangent modulus213

in the small strain case, and hence is often used in conjunction with plasticity214

and damage models.215

In this section, the localization condition is derived in terms of bifurcation216

analysis in conjunction with the cap plasticity model proposed earlier in Sec-217

tion 2. This theory is originated at first by the work of Hill (1962) to explore218

the onset of inelastic behavior in solids using the physics of wave propagation219

through the matter. Later on Rudnicki and Rice (1975) adopted this work220

to develop mathematical framework for detecting shear band localization in221

solids. It has been shown (Regueiro and Foster (2011); Rice and Rudnicki222

(1980)) that continuous bifurcation precedes discontinuous case. For contin-223

uous bifurcation, the plastic loading appears outside and within the discon-224

tinuity band at the instant of localization. Thus for strong discontinuities225
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the plastic consistency parameter reads:226

γ̇ = ˙̄γ + γ̇δδS (3.5)

Similarly, in order for the stress-like internal state variables (ISVs), in-227

cluding the backstress α and the isotropic hardening parameter κ, to be228

bounded (and the plastic dissipation to be well-defined, the hardening mod-229

uli cα and cκ have distributional forms (Simo et al. (1993); Regueiro and230

Foster (2011))231

(cα)−1 = (c̄α)−1 + (cαδ )−1δS

(cα)−1α̇ = γ̇Gα dev

(
∂g

∂σ

)

α̇ = c̄αGα ˙̄γ dev

(
∂g

∂σ

)
= h̄

α ˙̄γ

α̇ = cαδG
αγ̇δ dev

(
∂g

∂σ

)
= hαδ γ̇δ (3.6)

(cκ)−1 = (c̄κ)−1 + (cκδ )
−1δS

(cκ)−1κ̇ = γ̇Gκ tr

(
∂g

∂σ

)

κ̇ = c̄κGκ ˙̄γ tr

(
∂g

∂σ

)
= h̄κ ˙̄γ

κ̇ = cκδG
κγ̇δ tr

(
∂g

∂σ

)
= hκδ γ̇δ (3.7)
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Substitution of Eqs.(3.5), (3.6) and (3.7) in consistency condition, and solving232

for both regular and singular parts of the consistency condition gives233

˙̄γ =
1

χ̄

∂f

∂σ
: Ce : ε̇0 (3.8a)

χ̄ =
∂f

∂σ
: Ce :

∂g

∂σ
− ∂f

∂α
: h̄α − ∂f

∂κ
h̄κ

γ̇δ =
∂f
∂σ : Ce : sym([[u̇]]⊗ n)

∂f
∂σ : Ce : ∂g

∂σ
(3.8b)

In addition, we can write the stress rate on the discontinuity surface σ̇1

and outside that surface σ̇0 as below

σ̇1 =

(
Ce − 1

χ
Ce :

∂g

∂σ
⊗ ∂f

∂σ
: Ce

)

︸ ︷︷ ︸
¯C

ep

: ε̇0+ (3.9a)

(
Cep −

Ce : ∂g
∂σ ⊗

∂f
∂σ : Ce

∂f
∂σ : Ce : ∂g

∂σ

)

︸ ︷︷ ︸
˜C

ep

: sym ([[u̇]]⊗ n) δS

σ̇0 =C̄
ep

: ε̇0 (3.9b)

where C̃
ep

is recognized as the elastic-perfectly plastic tangent modulus.234

On the basis of Eq. (3.4d), imposing the traction continuity across the

discontinuity surface (σ̇1 · n = σ̇0 · n) constitutes the classical condition on
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the localization tensor Ã already identified in Regueiro and Foster (2011).

(n · C̃ep · n)︸ ︷︷ ︸
˜A

[[u̇]] δS = 0

⇒ detÃ = 0 for [[u̇]] 6= 0
¯

(3.10)

in which n indicates the most critical orientation of the discontinuity surface235

in the localized element. The above equation states that a nontrivial solution236

for the traction continuity condition is, of course, possible only when Ã is237

singular.238

For discontinuous bifurcation, we assume that the plastic loading is lo-239

calized to the discontinuity band (x ∈ S), whereas the material points im-240

mediately adjacent to the band transfer into an elastic unloading state. As241

a result, the consistency parameter takes the form of242

γ̇ = γ̇δδS (3.11)

Similarly, the hardening moduli would bifurcate in order to have well-defined243

plastic dissipation.244

(cα)−1 = (cαδ )−1δS and (cκ)−1 = (cκδ )
−1δS (3.12)

Furthermore, by imposing traction continuity requirement, again we can ar-245

rive at the localization condition manifested in Eq.(3.10). Following the246
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Foster et al. (2007), we use a numerical algorithm to solve detÃ = 0 for the247

band normal n and then Ã [[u̇]] = 0 for the deformation directions at the248

inception of localization.249

3.3. Evolution of the displacement jump: post-localization model250

In this section, a post-localization model is introduced to describe the

softening response of the material after localization detection. In particular,

a novel cohesive traction-separation law recently presented in Weed et al.

(2015) is utilized to characterize the macro-crack evolution in terms of the

displacement jump on the slip surface S . Therefore, similar to the concept

of cohesive zone models for quasi-brittle materials (see Camacho and Ortiz

(1996); Carol et al. (1997); Sancho et al. (2006); de Borst et al. (2006)), a

damage-like function F is proposed in two forms of the tensile and compres-

sive regime as below:

Ftension =

√
(τs)

2 + (ασ 〈σn〉)2

︸ ︷︷ ︸
σeq

−ceq (3.13a)

Fcompression = |τs − ceq · sign (ζs) | − 〈−σn〉 tanφ′ (3.13b)

where the normal traction σn and tangential traction τs attribute to the slip251

surface. The notation 〈•〉 represents the Macaulay brackets, taking into ac-252

count the positive portion, ασ is a normal stress weighting factor and φ′ is the253

friction angle on the slip surface. In addition, the non-negative parameters254

σeq and ceq indicate the equivalent traction and equivalent cohesive strength255
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of the band, respectively. Notably, the term sign (ζs) devised in Eq. 3.13b256

would imply that the cohesion on the slip surface operates as a restoring force,257

i.e. the force ceq always acts in the opposite direction of the displacement258

jump (or separation) vector. The initial cohesion c0 is computed in a manner259

to be balanced with the bulk stress state at the moment of localization.260

In the literature, various softening relations have been proposed for a261

wide range of materials, such as trapezoidal function for a high-strength-262

low-alloy (HSLA) steel (Scheider and Brocks (2003)); exponential function263

for a C-300 steel (Ortiz and Pandolfi (1999)); linear softening function for a264

polycrystalline brittle materials (Espinosa and Zavattieri (2003); Benedetti265

and Aliabadi (2013)); and linear, bilinear, and exponential softening func-266

tions for concrete (Galvez et al. (2002); Bazant (2002)). Here, however, a267

linear softening curve is adopted for the sake of simplicity. Furthermore, for268

rock materials like limestone, a linear model has been found to be adequate269

(Rinehart et al. (2015)). Therefore as depicted in Fig. 5, for the tensile270

regime the elliptical damage surface F = 0 shrinks to the origin while ceq271

decreases linearly toward zero as the equivalent displacement jump increases.272

ceq = c0

(
1− ζmax

ζc

)
(3.14)

where ζc denotes to the characteristic slip (or separation) distance, beyond273

which complete failure occurs in the sense that the crack surface entirely loses274

its cohesive strength. The scalar ζeq indicates the equivalent jump magnitude275
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and takes the form of276

ζeq =
√
ζ2
s + (αζζn)2 (3.15)

in which the variables ζn and ζs are normal opening and tangential (in-plane277

sliding) slip on the localization band. The parameter αζ is a coefficient weigh-278

ing the relative contribution of the opening and sliding modes in the damage279

process. Following the spirit of damage mechanics in the unloading/reloading280

case, we assume ceq unloads elastically to the origin. Likewise, the reload-281

ing path is also considered elastic until the point of maximum equivalent282

separation ζmax attained up until the current time. Beyond this point the283

softening process will resume. The slope of the unloading-reloading curve284

can be thought of as the stiffness of the cohesion force and derived as285

kc =
c

ζmax
= c0

(
1

ζmax
− 1

ζc

)
(3.16)

Subsequently, the equivalent stress on the band can be rewritten as (Weed286

et al. (2015))287

σeq = kc ζeq (3.17)

In a number of previous studies, (for example Borja et al. (2013); Foster288

et al. (2007); Chen et al. (2011)), only one degree of freedom is incorporated289

into the model which represents sliding displacement with a jump dilation290

angle ψ′ with respect to the discontinuity surface for non-associated plastic-291
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ity models. It should be remarked that the single sliding degree of freedom292

may cause spurious hardening and/or a geometric locking effect during non-293

smooth crack propagation. Particularly, in the mixed mode fracture where294

crack kinking phenomena are frequently observed, using the one-dimensional295

separation law could trigger slippage impedance in the deformation band,296

ultimately resulting in significant convergence problem for numerical imple-297

mentation. The model proposed in this study tackles this issue allowing298

the crack surfaces to separate in a coupled opening and sliding mode in the299

tensile regime.300

Figure 5: Cohesive fracture law: (a) isotropic softening of the damage-like surface F = 0 in
traction (σn, τs) space (b) equivalent traction-separation relationship with corresponding
loading-unloading paths. ζmax indicates the maximum attained equivalent separation.

The specific fracture energy G is the amount of external energy required301

to form a unit surface area of the fully-separated (or damaged) crack. This302

softening property can be simply computed from the area under the traction-303

separation function in Fig. 5b. In view of this fact, we can assign different304

specific fracture energies to each of the respective failure modes (I and II) by305
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assigning ασ, αζ 6= 1.306

ασαζ =
GII

GI

(3.18)

In this work, we will assume ασ = αζ , hence307

ασ = αζ =

(
GII

GI

) 1
2

(3.19)

It is worth noting that in the compressive case (i.e., crack closure), the fric-308

tional resistance always operates on the crack surface independently of the309

softening process. Indeed, once the cohesion strength completely degrades310

(ζmax = ζc), the cohesive crack surface evolves to a Coulomb friction surface311

with friction coefficient µ = tanφ′. In this work, we consider a static coeffi-312

cient of friction, though to get more realistic results a variable coefficient, as313

in Borja and Foster (2007); Foster et al. (2007), can be used.314

4. Finite element implementation: the AES method315

In order to incorporate strong discontinuity analysis into the platform of316

finite element simulation, the assumed enhanced strain (AES) method based317

on the Hu-Washizu principle is invoked (Borja (2008); Foster et al. (2007);318

Simo et al. (1993)). In this approach, the displacement discontinuity is con-319

ceptualized as an appropriate incompatible mode and added to the standard320

FE solutions. Note that the AES method is numerically appealing tech-321

nique since the enhancements for discontinuities are condensed out locally322
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and hence no additional global degrees of freedom are added to the calcula-323

tions. In doing so, the standard static condensation algorithm is considered324

to confine the enhancement within the element level.325

Figure 6 demonstrates the underlying idea behind the finite element im-326

plementation. As shown, a constant strain triangle (CST) element is traced327

by a discontinuity surface S e . In addition, we postulate a piecewise constant328

interpolation of the displacement jump, i.e. [[u]] = ζm.329

Figure 6: Enhancing a CST finite element: (a) element breaks into two parts (triangle
with bold lines represents the conforming deformation.); Vectors n and s indicate the
normal and tangential separations across the S e , respectively. (b) displacement field with
a jump across a slip plane.

The strain rate tensor for infinitesimal deformation is written as330

ε̇ = ∇su̇ = ∇s ˙̃u︸ ︷︷ ︸
conforming

+
(
− ˙[[u]]⊗∇f h

)s
+
(

˙[[u]]⊗ n
)s
δS

︸ ︷︷ ︸
enhanced

(4.1)
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which can be regularized in a form of331

ε̇ = ∇su̇ = ∇s ˙̃u+
(
− ˙[[u]]⊗∇f h

)s
︸ ︷︷ ︸

ε̇reg

+
(

˙[[u]]⊗ n
)s
δS

︸ ︷︷ ︸
singular

(4.2)

The function fh(x) is a smooth blending function for localized elements332

that may be conveniently defined as the sum of the shape functions attributed333

to the active nodes.334

f h =
nen∑

A=1

NAHS (xA) (4.3)

where nen is the number of nodes for a localized element, and NA are the335

standard finite element shape functions. Using such a kinematic description336

affords the formulation the ability to allow the essential boundary conditions,337

Γg in Figure 4, to be applied exclusively on the conforming displacement term338

ũ(x, t). As a result, the nodal displacements calculated at the global level339

can be realized as the final displacements. Eventually, the finite element340

stress for localized elements can be obtained from the regular part of the341

strain ε̇reg. The relevant mathematical background is discussed in Borja and342

Regueiro (2001). Thus, for elastic unloading we have343

σ̇ = Ce : ε̇reg (4.4)

For further details of the AES method, including its variational and ma-344

trix formulation, the reader is referred to Borja (2008) and the references345
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therein.346

5. Numerical implementation347

Numerical integration of the constitutive models plays a pivotal role in348

successfully modeling boundary value problems in engineering. Herein, a well349

established integration technique called the implicit return mapping algo-350

rithm is invoked. This algorithm affords first-order accuracy while satisfying351

the conditions for unconditional stability.352

5.1. Cap plasticity model353

To solve the non-linear material model proposed in Section 2, we employ354

the well-known Newton-Raphson (N-R) iterative method. This method basi-355

cally constructs the residual vector R as a function of the unknown variables356

X as below:357

R(X) =





∆σ + ∆γ[Ce] · ( ∂g
∂σ )−Ce : ∆ε

∆α−∆γhα(α)

∆κ−∆γhκ(κ)

f (σ,α, κ)





in which X =





σ

α

κ

∆γ





(5.1)
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where [Ce] is the linear elastic stiffness matrix in the Voigt form and ∆γ358

is the discrete consistency parameter. Here σ and α are the Voigt form of359

the Cauchy stress and backstress tensors, respectively. The implicit stress-360

integration algorithm is summarized in the Appendix Box 1.361

5.2. Post-localization model362

Regarding the nonlinear formulation proposed for the combined opening-

sliding fracture evolution Eq. 3.13a, we use the standard N-R algorithm

to solve for displacement jump ζ = (ζn, ζs) on the band. As a result, the

residual vectors can be defined based on traction balances on the band taking

the form of:

Φ1 = 〈σn〉 − kcζn = 0 (5.2a)

Φ2 = |τs − kcζs| − 〈−σn〉 tanφ′ = 0 (5.2b)

It is worth it to mention that in the tensile regime, the residual Φ2 can be363

reattained as τs − kcζs = 0. On the other hand, in the compression case, we364

can solve only the second residual Φ2 with no need for any iterative methods.365

Implicit integration of slip values in terms of whether the slip band is newly366

detected or if the displacement jump evolution has already been activated367

on the band is presented in the Appendix (Box 2 and Box 3, respectively).368
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6. Numerical efficiency and robustness369

6.1. Cap plasticity model370

Particular mathematical treatments can be exploited to improve the ef-371

ficiency and robustness of the integration procedure. The first remedy is372

reducing the number of unknowns in the system of nonlinear equations as373

the cap plasticity model can be as large as 13 (6 for stress components, 5 for374

kinematic hardening, 1 for isotropic hardening and 1 for consistency param-375

eter). This number can be reduced to 7 using the spectral decomposition376

method and sometimes to 6 when the priori shear/cap surface determination377

technique is applied as well.378

In addition to this, the consistent tangent modulus Calg
n+1 = ∂σn+1/∂εn+1379

is computed in order to gain the quadratic rate of convergence within the380

framework of implicit integration algorithm. To this end, another remedy381

which can be applied is recasting the residual vectors with a uniform dimen-382

sionality. This feature could enhance the robustness and tractability of the383

Newton-Raphson procedure as improves the conditioning of the local tangent384

matrix DR/DX and also reduces the number of iterations required to reach385

the convergent solutions for X. For further elaboration of these algorithms386

the interested reader is referred to Motamedi and Foster (2015) and Foster387

et al. (2005).388

27



6.2. Post-localization model389

6.2.1. Spurious solutions390

Since there is no guarantee whether a trial guess for the state of the391

band (being in tension or compression) stays valid during the integration392

procedure, the N-R iteration may converge to a spurious solution for slip393

value(s). To overcome this drawback, once a change in the sign of the normal394

traction is detected, the slip on the band should be instead calculated using395

the appropriate formulation with regard to the new state of the band. Owing396

to this, a standard linear interpolation is utilized to find a new slip value as397

the starting point of the subsequent N-R.398

ζs = ζ is − σin ·
(
ζfs − ζ is
σfn − σin

)
(6.1)

where (σin, ζ
i
s) are the initial normal traction and slip values at the beginning399

of the N-R iteration,
(
σfn, ζ

f
s

)
are the spurious converged values and ζs is the400

interpolated shear slip value corresponding to the critical point (σn, ζn) =401

(0, 0) in which the sign of the normal traction changes.402

6.2.2. Impl-Ex integration scheme403

In the finite element simulation of materials undergoing strain softening404

behavior, even if the nonlinear problem is mathematically well posed and405

features a unique solution, it is well known that the classical implicit approach406

may suffer from a lack of robustness during a given iterative procedure. As407

discussed in detail by Oliver et al. (2006a), if material failure propagates408
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through the solids, the tangent constitutive operatorCalg
n+1 progressively loses409

its positive definite character which is eventually accompanied by the loss of410

positive definiteness of the global stiffness matrix.411

In order to ameliorate the shortcomings of the fully implicit schemes,412

we apply an implicit/explicit (Impl-Ex) integration technique adopted from413

Oliver et al. (2006a). Using this semi-implicit algorithm to seek solution at414

time step tn+1 , the slip values ζ are explicitly approximated based on their415

implicitly updated values from prior time steps tn and tn−1 .416

ζ̃n+1 = ζn +
∆tn+1

∆tn

(
ζn − ζn−1

)
(6.2)

The semi-implicit stress is then calculated417

σ̃n+1 = σn + ce : ∆εconf
n+1 − ce :

(
ζ̃n+1 ⊗∇fh

)s
(6.3)

since ζ̃n+1 is postulated as a predetermined vector, we can easily derive the418

effective algorithmic operator Ceff
n+1 as below419

Ceff
n+1 =

∂σ̃n+1

∂εn+1

= Ce (6.4)

Hence, for linear elasticity, the tangent modulus is constant. The modifica-420

tion of taking the entire slip vector, rather than the magnitude as used in421

Oliver et al. (2006a) was proposed in Weed et al. (2015). This approach, at422

minor cost of accuracy, improved the efficiency of the simulation by creating423
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Figure 7: Flowchart for the numerical integration algorithm within a FE code: (a)Implicit
scheme, (b)Impl-Ex scheme.

a linear solution in this part. It should be commented that unconditional424

stability is lost in the system. At the end of the time step, once the con-425

vergent solution of the global displacements is obtained, the stress σ and426

slip values ζ will be implicitly updated to be used as a reference point for427

the next time step. A flowchart given in Fig. 7 schematically illustrates the428

difference between the new semi-implicit scheme and the conventional fully429

implicit algorithm.430
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7. Numerical benchmark problem:431

The cracked Brazilian disc (CBD) test is one of the most acknowledged432

methods in evaluating mixed-mode fracture behavior of brittle geomaterials.433

Among the numerous experimental tests that have been conducted in this434

specimen for different rock materials, we can mention to Keochang gran-435

ite (Chang et al. (2002)), Yeosan marble (Chang et al. (2002)), Saudi Ara-436

bian limestone (Al-Shayea (2005)), Guiting limestone (Aliha et al. (2010)),437

Dionysos marble (Kourkoulis et al. (2012)), and Neyriz marble (Ayatollahi438

and Akbardoost (2014)). In this study, the material properties listed in Ta-439

ble 1 were fit to Salem limestone rock by Fossum and Brannon (2004) and440

frequently reported in Regueiro and Foster (2011), Sun et al. (2013) and441

Motamedi and Foster (2015). For the specific fracture energy ratio GII/GI ,442

varied values are calculated experimentally dependent on the specific mate-443

rial of the interest and the fracture test chosen. In this paper, we use the444

empirical value of GII/GI = 4.8. This value is given in Al-Shayea (2005)445

for a Saudi Arabian limestone rock tested under the ambient condition us-446

ing CBD configuration. For the characteristic slip distance ζc, the value 0.4447

(mm) is assumed (Borja and Foster (2007)).448

The generic configuration of the test is illustrated in Fig.(8) and the same449

as one utilized in the experimental test by Al-Shayea (2005). The circular450

disk contains a radius R=49mm as well as the crack length ratio a/R = 0.3.451

The angle β stands for orientation of the crack with respect to the loading452

direction u.453
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Table 1: Material parameters for Salem limestone rock used in the CBD test

Parameter Value

Young’s Modulus (E ) 22547 (MPa)

Poisson’s Ratio (ν) 0.2524 (dimensionless)

isotropic tensile strength (T ) 5 (MPa)

tension cap parameter (IT1 ) 0.0 (MPa)

compression cap parameter (κ0) -8.05 (MPa)

shear yield surface parameter (A) 689.2 (MPa)

shear yield surface parameter (B) 3.94e-4 (1/MPa)

shear yield surface parameter (L) 1.0e-4 (1/MPa)

shear yield surface parameter (C ) 675.2 (MPa)

shear yield surface parameter (θ, φ) 0.0 (rad)

aspect ratios (R,Q) 28.0 (dimensionless)

isotropic hardening parameter (W ) 0.08 (dimensionless)

isotropic hardening parameter (D1 ) 1.47e-3 (1/MPa)

isotropic hardening parameter (D2 ) 0.0 (1/MPa2)

kinematic hardening parameter (cα) 1e5 (MPa)

kinematic hardening parameter (N ) 6.0 (MPa)

stress triaxiality parameter (ψ) 0.8 (dimensionless)
localized friction angle (φ′) 40◦(degree)

characteristic slip distance (ζc) 0.4 (mm)

specific fracture energy ratio (GII /GI ) 4.8 (dimensionless)

𝜷 

u 

𝑹

Figure 8: Geometry and loading conditions of CBD specimen subjected to mixed mode
I/II loading.
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The displacement-controlled loading test is replicated via applying the454

vertical displacement on the three nodes of top surface of the disk. The455

three nodes at the bottom surface are fixed in the vertical direction. In order456

to maintain the global stability of the example, the two nodes located at the457

crest and trough of the disk are restricted from lateral movement as well.458

To investigate the effect of mode mixity on crack growth path and failure459

pattern, the example is performed with three different crack inclination angles460

(β = 15
◦
, 30

◦
, and 55

◦
). In view of the fact that all aforementioned CBD461

tests captured a clear, continuous fracture surface for rock specimens, we462

check the localization condition only for tip elements. Hence, the new crack463

surface will be traced from the crack tip at one edge of the tip element to the464

opposite edge with the orientation obtained from discontinuous bifurcation465

analysis described in Section 3.2. This algorithm is visualized schematically466

in Figure 9. The detection algorithm is only performed at the end of each467

time step for simplicity. While this introduces some error, it has been shown468

that the error disappears as the time step is refined Parvaneh and Foster469

(2016).470

To perform the FE simulation, a mesh with 512 CST elements is em-471

ployed, Figure 10. Deformations are assumed to be infinitesimal. Several472

theoretical and experimental studies conducted in the past on rock samples473

with various thicknesses suggest that the specimen thickness has negligible474

effect on fracture behavior of rock materials (see for example Whittaker et al.475

(1992) and Khan and Al-Shayea (2000)). As a result, this example is ana-476
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standard element enhanced element tip element

Figure 9: Strategy for tracing the crack propagation path.

lyzed under plane strain condition.477

The initial central cracks are introduced in the FE model as a fully dam-478

aged part of the specimen using the specific embedded discontinuity surfaces479

inside the elements as graphically shown in Figure 10. This interface in-480

cludes zero initial cohesive strength and localized friction angle so that the481

pre-cracked elements immediately fail when loaded in tension, shear or any482

of their combinations. These elements can, however, still endure compressive483

loads.484

The paths of crack propagation for three inclination angles are depicted485

in Figure 10. This plot indicates that the fracture propagation initiates from486

both ends of the pre-existing cracks, and kinks into a new direction. Subse-487

quently the crack growth continues along a curved path toward the direction488

of loading. This numerical prediction is quite similar to experimental ob-489

servations in several laboratory studies, see for example Al-Shayea (2005),490
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Aliha et al. (2010) and Haeri et al. (2014), among others.491

The reaction force-versus-downward displacement response is presented492

in Figure 11. The numerical procedure adequately converges until the end493

of the curves, to practically null load u. For inclination angles β equal to494

30 and 55 degrees, there is a convergence issue as the crack approaches the495

displacement boundaries. As pointed out by Chen et al. (2011) in the AES496

method, discontinuities which propagate into essential boundary conditions497

will have difficulty converging. In order to avoid this, they suggest rotating498

the discontinuity surface slightly so that there is at least one element between499

the localized elements and the elements which have the assigned boundary500

conditions. But for β=10 degrees, the entire simulation finishes successfully501

and a complete softening curve is obtained. Furthermore, the end of the502

softening curve displays a slight rise in the residual force, which is most503

likely due to friction effects on the discontinuity surface. There is a noticeable504

discrepancy between β = 30 degrees and the two other inclinations angles505

(10 and 55 degrees) with regard to the maximum reaction force. From the506

simulation results, the 30 degree angle produces a stress state, within the507

tip elements, which is more critical for bifurcation analysis than the other508

two angles. Aliha et al. (2010) carried out different CBD tests for Guiting509

limestone to investigate the geometry and size effects on fracture trajectory510

under mixed mode loading. They show that the β = 27 degrees produces a511

minimum fracture load, which is in close accord with our simulation results.512

According to their analytical calculations, derived based on GMTS criterion,513
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this discrepancy could be attributed to the magnitude and sign of the T-514

stress.515

The crack initiation angle θ′ is the angle by which the crack extension516

deviates from the direction of the initial crack inserted inside the specimen.517

The values of θ′ are derived based on bifurcation analysis for tip localized518

elements and shown in Table 2 . Results are compared with the experimen-519

tal data provided in Al-Shayea (2005). For lower inclination angles, β=15520

and 30 degrees, numerical results accords well with the experiment. But for521

β = 55
◦
, there is a gap between the results. The main reason for this differ-522

ence is that the model could not consider the influence of the crack closing523

which indeed observed in the laboratory tests. However, If the crack initia-524

tion angle is recalculated for the first two tip elements, the θ′ approaches to525

the corresponding experimental value. In other words, numerical simulation526

adjusts its crack path orientation shortly after the slip evolution proceeds in527

initial cracks.528

Table 2: Crack initial angle θ′ for CBD test

Inclination angle β = 15
◦

β = 30
◦

β = 55
◦

Experimental test (Al-Shayea (2005)) 26
◦

70
◦

81
◦

Numerical simulation 27
◦

66
◦

58
◦
(77.5

◦
)∗

∗ The average crack initial angle for the first two tip elements

529

In the study of the fracture behavior of the disk specimen, additional insights530

can be gained by comparing the kinematics of deformation. Accordingly, the531
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deformed meshes generated by the AES solution are displayed in Figures532

12-14. When the disc is loaded under diametral compression, for lower in-533

clination angles β = 10
◦

and 30
◦

the two faces of the initial coplanar crack534

simultaneously open and slide relative to each other. For inclination an-535

gle β = 55
◦
, by contrast, the results demonstrated in-plane sliding of the536

central crack faces. This numerical observation compares with experimen-537

tal data reported by Al-Shayea (2005) in which a crack extensometer was538

attached to the pre-existing cracks with a perpendicular position to its ori-539

entation. As illustrated by the author, for crack angles of β ≤ 45
◦
, the540

sensor recorded positive values. This observation validates the presence of541

crack opening deformation at the crack mouth. Conversely, by increasing the542

crack inclination, the crack closure becomes more pronounced which would543

be characterized in our model as a pure shear sliding mode. While there is544

some difference between the saw cut of finite width in the experiment and545

the crack modeled here, the model is more typical of the type of flaws seen546

in real geosystems.547

548
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Figure 10: Crack propagation path simulation for CBD specimen with different inclination
angle (β=10, 30 and 55). Initial cracks are represented by the dash thick lines through
the finite element mesh.
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Figure 11: Load-displacement plots for CBD specimen with different inclination angle
(β=10, 30 and 55).
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(a) Horizontal displacement contour
(b) Vertical displacement contour

Figure 12: Deformed mesh with enhanced solution for inclination angle (β=10).

(a) Horizontal displacement contour (b) Vertical displacement contour

Figure 13: Deformed mesh with enhanced solution for inclination angle (β=30).
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(a) Horizontal displacement contour (b) Vertical displacement contour

Figure 14: Deformed mesh with enhanced solution for inclination angle (β=55).

8. Conclusion549

In this paper, a finite element simulation of a mixed-mode fracture prop-550

agation for CBD is created. Localized failure is detected by a loss of el-551

lipticity condition, and subsequent post-localization softening is modeled in552

the framework of an enhanced strain finite element schema. These elements553

include additional internal degrees of freedom which track both opening and554

shear displacement on a critically orientated surface determined by bifurca-555

tion theory.556

Due to the fact that the accuracy of bifurcation prediction is fundamen-557

tally dependent on the constitutive model used in the analysis, a three-558

invariant cap plasticity model based on a non-associated flow rule and com-559

bined isotropic/kinematic hardening is adopted. The newly added tension560

cap to the constitutive model enables us to investigate the inception of dila-561

tion bands in addition to shear bands.562
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To simulate the CBD specimen test, an initial crack is introduced into563

the model by inserting frictionless interfaces within pre-cracked elements.564

In addition, assigning a negligible initial cohesion for those cracks leads to565

the immediate appearance of localized deformations in a form of combined566

shear/opening fracture. Nevertheless, those pre-localized elements still carry567

compressive loads as crack closure occurs. The plane strain simulation of the568

CBD specimen shows good agreement with experimental results contained569

in the referenced literature. Specifically, the simulation accurately captures570

the kinking nature of the crack and the overall crack path orientation.571

For future work, in order to more precisely replicate load transfer, we572

consider implementing a contact mechanics formulation to model the inter-573

face between the boundary constraints (loading platens in the experiments)574

and the CBD specimen.575
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Appendix579

Here, implicit integration algorithms are provided, demonstrating how580

stress state and displacement jump values are calculated for cap plasticity581

model and post-localization model, respectively.582
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Box 1: implicit stress-point algorithm for cap plasticity model.

Step 1 : Compute trial state variables: σtrn+1 = σn + ce : ∆εn+1, αtrn+1 = αn,
κtrn+1 = κn.

Step 2 : Check the yielding condition: f tr
n+1 > 0 ?

If no, set σn+1 = σtrn+1, αn+1 = αn, κn+1 = κn and exit.
If yes, Go to step 3

Step 3 : Apply particular mathematical treatments to reduce the number of
unknowns and hence improve the computational efficiency (see Section 6.1):

Step 4 : Initialize X0 = 0 and use N-R scheme to solve for converged solution:

δX(k+1) = [DR/DX]−1R(Xk)
X(k+1) = X(k) + δX(k+1)

Until ||R(X)||/||R(X0)|| < tolX
where k + 1 refers to the current iteration.

Step 5 : Update state variables σn+1, αn+1, κn+1 and consistency parameter
γn+1 then exit.
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Box 2: Implicit algorithm for a newly localized element.

Step 1 : Compute trial state variables: σtrn+1 = σn + ce : ∆εreg,
σn

tr
n+1 = σtrn+1 : (n⊗ n) and τs

tr
n+1 = σtrn+1 : (s⊗ n).

Step 2 : Check for yielding on the band: F tr
n+1 > 0 ?

If no, band is inactive. Set σn+1 = σtrn+1 and ζn+1 = 0 then exit.
If yes, band is active. Go to Step 3.

Step 3 : Solve for slip values ζn+1 = (ζn, ζs)n+1 on the band:

If σtrn > 0 (tension), If ζ = 0 then initialize ζ0 = tol [σn, τs]
T
n and use

N-R scheme to solve for converged solution:

δζ(k+1) = [DΦ/Dζ]−1Φ(ζk)
ζ(k+1) = ζ(k) + δζ(k+1)

Until ||Φ(ζ)||/||Φ(ζ0)|| < tolζ
where k + 1 refers to the current iteration.

Step 3.1 : Check to avoid spurious solution (see Section 6.2.1).

Else σtrn < 0 (crack closure) then solve for ζs using 5.2b.

Step 3.2 : Check to avoid spurious solution (see Section 6.2.1).

Step 4 : Update ζn+1, kc,n+1, and σn+1 then exit.
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Box 3: Slip algorithm for an element which has pre-existing slip on the band.

Step 1 : Compute trial state variables: σtrn+1 = σn + ce : ∆εreg,
σn

tr
n+1 = σtrn+1 : (n⊗ n) and τs

tr
n+1 = σtrn+1 : (s⊗ n).

Step 2 : Assume elastic unloading/reloading phase on the band,

hence hold kc as a constant. Set kcn+1 = c0

(
1

ζmax,n
− 1

ζc

)
then:

If σtrn > 0 (tension) solve for slip values ζn+1 = (ζn, ζs)n+1 using the
balance equations 5.2a and 5.2b.

Else (σtrn < 0, hence compression)

First, check for slip on the band:

If |τs − kcζs| < 〈−σn〉 tanφ

No slip on the band due to frictional lock,
exit with trial stress.

Else
Solve for ζs using: 5.2b.

Step 2.1 : After slip value(s) calculated, evaluate elastic unloading/reloading
assumption: ζeff n+1 < ζmax,n?

If yes, update σn+1 and set ζmax ,n+1 = ζmax ,n and exit.
If no, the band is in the softening phase,
set kc as a decreasing variable and use Box 2 to solve for slip value(s).

Step 3 : Update ζn+1, kc,n+1 and σn+1 then exit.

44
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