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Abstract

A comparative study is performed that investigates numerical features of different sched-

ules, end-of-step vs. within iterations, for updating fracture path by employing the local

and global tracking strategies. Embedded strong discontinuities within an enhanced finite

element framework are used to model propagating discontinuities and fracture behavior of

quasi-brittle materials. It is shown that end-of-step updating, which is a standard, can cause

inaccuracies in peak strength and fracture energy for large time steps. Updating within it-

erations rectifies the accuracy issues, but at the expense of an increased computational cost.

Both schedules yield comparable performance as the step size is refined.

Keywords: cohesive zone modeling, enhanced finite element, fracture path, tracking

strategy, updating schedule

1. Introduction

Materials subjected to a certain loading conditions are predisposed to exhibit considerable

deformation across narrow regions compared to the majority of the body. This phenomenon

is generally termed as localized deformation. Tensile and shear fractures in brittle rocks

and concrete, and shear bands in sands are examples of geomaterials in which this type

of deformation is observed. Much work has been carried out in recent decades aiming to

identify the criteria for onset of localization as well as the mechanics of localizing and fully

localized bands.

The entire spectrum of localized deformation can roughly be classified into two families

based upon their geometry, i.e., the character of the deformation in the localized region. The

first group is characterized by localization bands with narrow but finite width.
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Nomenclature

Latin characters
b body force
B strain-displacement matrix
c prescribed elastic modulus term
C modulus tensor
d prescribed displacement (mm)
d unknown displacement vector
E Young’s modulus (MPa)
f softening function
f1, f2 quantities representing balance equations
ft tensile strength (MPa)
G shear modulus (MPa)
GF fracture energy (N/mm)
H Heaviside function
K stiffness matrix/thermal conductivity tensor
l surface orientation
max maximum
n normal to discontinuity surface
N finite element shape function matrix
q conduction flux-like vector (W/m2)
r localization residual
R standard residual
S discontinuity surface
t time
t traction
T temperature
tol relative convergence tolerance
u displacement field
ū regular displacement
ũ conforming displacement
w displacement jump
w̃ maximum of displacement jump magnitude
x global coordinates of a material point

Greek characters
Γ material boundary
δ Dirac delta distribution
ε isotropic algorithmic conductivity
ε strain field
θ angle
ν Poisson’s ratio
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ν outward normal to material boundary
σ stress field
Ω material domain

Sub/Superscripts, abbreviations, and special functions
+ active domain
− inactive domain
∗ prescribed value
c critical
conf conforming part
conv converged
CST constant stain triangular
dd derivative of standard residual with respect to displacement
dw derivative of standard residual with respect to jump
e (subscript) element
e (superscript) elastic
fh arbitrary smooth function
h finite element discretization
loc localized
n normal component
reg regular part
s (subscript) sliding component
s (superscript) symmetric part of a tensor
wd derivative of localization residual with respect to displacement
ww derivative of localization residual with respect to jump
x along x-axis in a global cartesian coordinate system
xx, xy, yy identifiers for strain tensor components
y along y-axis in a global cartesian coordinate system
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The displacement field throughout the body has no jumps or discontinuities though there is

intense straining at the localized region. The strain field may become discontinuous. This

type of discontinuity is generally termed as weak discontinuity [Simo et al., 1993], which

can be observed in shear, compaction, and dilation bands in ductile materials. The second

group, which is referred to as a strong discontinuity [Simo et al., 1993], includes localization

surfaces with zero thickness. Localized deformations of this type have discontinuities or

jumps in the displacement field at the localization surface that results in unbounded strain.

Tensile fractures in rock, mortar, and concrete are examples of this type.

Modeling localized deformation is recognized to be a challenging task, partially because

the governing equations of equilibrium may lose ellipticity, which results in a spurious mesh

dependence. Different techniques have been developed in recent decades to surmount the

associated issues. Viscous regularization (e.g. [Needleman, 1988]), nonlocal (e.g. [Jirásek and

Rolshoven, 2003]) and gradient plasticity (e.g. [Manzari and Regueiro, 2005]), and Cosserat

continua (e.g. [Cosserat and Cosserat, 1909; De Borst and Sluys, 1991; Khoei et al., 2010])

are all within a class of techniques where auxiliary information is added to the governing

PDEs to ensure ellipticity and remove spurious mesh dependence of the solution. These

techniques require knowledge of a characteristic length scale to complete their formulation.

In addition, several elements across the thickness of the localized region are often necessary

to accurately capture the deformation of the localized region. This requirement can make the

simulation computationally expensive, especially when the location of the localized region is

not known a priori.

An alternative approach is using the other class of techniques where localized region is

treated as a surface with zero thickness. This assumption has some strong physical justi-

fications for geomaterials as pointed out in [Borja and Regueiro, 2001]. Cohesive surface

elements [Regueiro et al., 2005] and continuum strong discontinuity approach [Simo et al.,

1993] are among the developed methods of this class [Foster, 2006]. Studies on other element

technologies within this class can be found in [Jirásek, 2000] and [Oliver et al., 2003]. The

extended finite element method [Belytschko et al., 2001; Moës and Belytschko, 2002; Zi and

Belytschko, 2003; Khoei et al., 2008; Mohammadnejad and Khoei, 2013; Khoei, 2014] and

generalized finite element method [Strouboulis et al., 2000; Duarte et al., 2000, 2001; Bia-
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banaki and Khoei, 2012] are other numerical techniques to mention that provide the tools for

the analysis of problems characterized by discontinuities [Fries and Belytschko, 2010]. Among

other numerical methods developed to model localized deformation, element-free methods,

in which only nodal data and a description of the geometry are required to resolve PDEs [Be-

lytschko et al., 1994], have been used for modeling localization. Like finite element method,

element-free methods without proper physics do not provide formulations for capturing soft-

ening response in a localization phenomenon. However, they are characterized by some

numerical features that make them suitable for modeling strong discontinuities. Within this

class, enriched Element-Free Galerkin formulation [Fleming et al., 1997], the Reproducing

Kernel Particle Method [Liu et al., 1995; Klein et al., 2001; Boyce et al., 2014], the Gradient

Reproducing Kernel Particle Method [Hashemian and Shodja, 2008], and smoothed-particle

hydrodynamics [Batra and Zhang, 2004] are among the developed methods. A number of re-

views regarding these methods can be found in [Belytschko et al., 1996; Liu et al., 1996, 1999;

Chen et al., 2011]. In this study, an enhanced element method closer to the second afore-

mentioned class of methods (continuum strong discontinuity approach) is used, specifically

following the element technology in [Foster et al., 2007].

Within the class of inter-element discontinuities in finite elements, there should be a

mechanism to trace the propagation of the localized deformation. Different methods have

been proposed for such purpose, which can be generally classified into two main groups: The

local tracking strategy, as elaborated by [Foster et al., 2007] and the global tracking strategy,

as described by [Oliver et al., 2002]. These two approaches are referred to as band tracking

strategies or simply tracking strategies throughout the paper, and will be described in more

detail in Section 5.

In addition to setting up a framework for detecting the onset of localization, determining

surface orientation, finding the displacement jumps, and selecting a tracking strategy, one

needs to decide at what points of the simulation the tracking algorithm should be carried

out. This is often chosen to be at the end of each time step. While such scheduling is well

recognized as an approximation, the magnitude of the approximation has not been quantified,

nor many alternatives investigated. Typical reasons for making such selection are simpler

implementation and more robustness, since all tracking estimations will then be based upon
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the converged displacement solution of each time step. This scheduling is capable of handling

band evolution analysis accurately provided that step size is controlled to be small enough

for the given evolution of the crack pattern. Inaccurate predictions may occur for complex

evolution patterns, for example, intense changes in band orientation or rapid propagation

of the band. An alternative approach will then be performing the tracking algorithm, along

with updating band information by the end of each global iteration within a given time step.

This updating schedule is relatively more complicated to implement; however, it allows the

evolution of localization bands to be determined within the iterations. This technique enables

the algorithm to track the band evolution more accurately, but in expense of an increased

computational cost. Creating a robust framework to model a localized deformation is an

essential part of its computational simulation. The objective of this study is to examine

accuracy and robustness of the band evolution algorithms and the aforementioned updating

schedules. The question to be answered is that how the timing of performing a band tracking

strategy should be selected; either based on incrementing the simulation time (at the end

of each time increment), or emerging from nonlinear iterative solution algorithm for a given

time interval (at the end of each global iteration within a given time increment). These two

approaches are referred to as band updating schedules or simply updating schedules within

this study.

In this article, localization is initiated when the maximum principal stress exceeds a given

value, the tensile strength. The orthogonal direction to maximum principal stress is taken as

the orientation of the localized surface. Finally, a traction-separation relationship in the spirit

of damage mechanics is implemented to determine displacement jumps along localization

bands. The bulk material away from the localized surface is assumed to be linear elastic.

This model is simple but robust enough to allow us to focus on the numerical evolution

and updating schedules. Formulations are developed for quasi-static problems under the

assumption of infinitesimal deformation to keep resulting algorithms within a simple context.

Although the continuum strains generally remain small, the finite strain formulation properly

accounts for the local large strains and rotations accompanying separation of discontinuity

surface interfaces. Examining robustness, quantifying accuracy, and evaluating simulation

time for each updating schedule are carried out. The comparative study, therefore, provides a
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framework for understanding observed differences between the implemented schedules, along

with advantages and drawbacks of each.

Throughout the paper, vector and tensor quantities are written in boldfaced symbolic

notation. Scalar quantities are not boldfaced. The inner product of two vectors or two

second-order tensors is written as a · b. The contraction of the innermost two indices of two

tensors is written as c : d. The outer product is denoted as e⊗f . Tensor operators are also

used, including ∇s for symmetric gradient.

The remainder of the paper is structured as follows: kinematics for small strain deforma-

tion with embedded strong discontinuities are reviewed in Section 2. The traction-separation

model is presented in Section 3. Implementation of the model within an enhanced finite ele-

ment context is elaborated in Section 4, along with some calculation procedures for element-

level displacement jumps. Band tracking strategies are discussed in Section 5. Numerical

simulations, comparative studies, and concluding remarks are provided in Sections 6 and 7.

Finally, Appendix A provides the residual expression for balance on the discontinuity sur-

face in matrix form for numerical implementation purposes and derivation of its derivatives

with respect to jump terms, needed for nonlinear numerical solution of governing equations.

Flowcharts are also presented in this appendix that describe the implementation of different

updating schedules for a given tracking strategy.

2. Kinematics

The kinematics of a body Ω with displacement jumps added to the smooth displacement

field across a discontinuity surface S as depicted in Fig. 1a require implementing auxiliary

enhancements to capture the introduced jumps. The reader is referred to [Simo et al.,

1993; Armero and Garikipati, 1996; Borja, 2000] for detailed mathematical formulations of

such enhancements. For the purpose of this paper, the formulations are developed under

the assumption of infinitesimal deformation. The discontinuous displacement may then be

defined as

u = ū+HSw (1)
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where ū represents the regular part of the displacement conforming to the smooth defor-

mation without discontinuities. HS is a Heaviside function across discontinuity surface S

defined as

HS(x) =

 1 if x ∈ Ω+

0 if x ∈ Ω−

(2)

where x is the global coordinates of a given material point on Ω . Material points that are on

one side of the surface S, in the subdomain Ω+ will be termed as active points, and the rest

as inactive, Fig. 1a. The vector w is the displacement jump vector across the discontinuity

surface S. Equation 1 can be modified by adding and subtracting a jump-related term as in

[Foster et al., 2007], making it more convenient for later finite element implementation. The

term is a product of the jump vector w by an arbitrary smooth function fh. This function

has zero values at material points on Ω−\Ωh
−, and unity values at material points on Ω+\Ωh

+

with a smooth transition between these points. Ωh
+ represents active part of the element bulk

for elements intersected by the discontinuity, and Ωh
− indicates the inactive part. Superscript

h corresponds to the finite element discretization of body Ω . Accordingly, for a given set

of localized elements in a discretized body Ωh , S h
+ consists of the corresponding nodes and

element sides not intersected by the discontinuity surface and connecting those nodes located

on the active side, and S h
− on the inactive side, Fig. 1b. The function fh, in a finite element

approximation, is characterized by element nodal values of unity and zero (conforming to the

Heaviside function), for active and inactive parts, respectively, see Fig. 2. The displacement

(a) (b)

Figure 1: (a) Body Ω with displacement jumps added across a discontinuity surface S. Ω\S is divided into
active and inactive parts (Ω+ and Ω−, respectively), (b) Sh

+ and Sh
− for a given set of localized elements

(highlighted in gray); black circles indicate active nodes and white-filled circles represent inactive ones.
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is then reformulated as

u = ū+ fhw +HSw − fhw. (3)

Taking an appropriate form of fh , e.g., sum of shape functions of the active nodes for a

(a) (b)

(c) (d)

Figure 2: (a) Constant stain triangular (CST) element showing a potential discontinuity surface (dashed
line), (b) the Heaviside function HS , (c) arbitrary smooth function fh, (d) HS − fh.

given finite element, makes the first two terms of the right-hand side of Eq. 3 conform to

the standard finite element shape functions. Hence, rewriting the equation gives

u = ũ+
(
HS − fh

)
w (4)

where ũ can be referred to as the conforming part of the displacement, see Fig. 3, and the

last term of Eq. 4 represents the enhanced part.

The symmetric gradient of the displacement field, considering spatially constant jumps

in each element, results in the strain field

ε = ∇su = ∇sũ+
[
w ⊗

(
δSn−∇fh

)]s
(5)

where [•]s denotes the symmetric part of the tensor. The gradient of the step function HS

is δSn, where δS is the Dirac delta distribution across S, and n the normal to S pointing

towards Ω+. Accordingly, one may refer to the first term of the right-hand side of Eq. 5 as

conforming strain, since it corresponds to the conforming displacement, and the last term as
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strain enhancement as it corresponds to the displacement enhancement. For finite element

implementation, strain terms can be rearranged and labeled as

ε = ∇sũ−
(
w ⊗∇fh

)s︸ ︷︷ ︸
regular

+ (w ⊗ n)s δS︸ ︷︷ ︸
singular

(6)

where regular part corresponds to bounded strain terms, and singular part represents the

unbounded term, inheriting its singularity from the Dirac delta’s singularity across the dis-

continuity surface S. In the regular part, the jump effects are being subtracted from the

conforming part, as conforming part had already those effects included. The singular part

can be ignored in calculation of stress field since the stress in the continuum is considered

to be only a function of the strain in that region. Thus, for linear elasticity,

σ = Ce : εreg (7)

where Ce is the fourth-order elastic modulus tensor, and superscript “reg” denotes the

regular part. Computed stress is then in accordance with analyzing the balance of linear

momentum, which implies traction continuity along discontinuity surface interfaces, without

involving any unbounded term from within the surface, as in [Regueiro and Foster, 2011].

The traction continuity is given explicitly by

(
σS+ − σS−

)
· n = 0 (8)

(a) (b)

Figure 3: (a) Constant strain triangular (CST) element showing a potential discontinuity surface (dashed
line) and the displacement jump vector w, (b) a localized element with undeformed shape (fine lines), total
deformed shape (bold lines), regular deformation (dotted lines), and conforming deformation (dash-dotted

lines).
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where σS+ is the stress tensor at a given material point adjacent to the discontinuity surface

S on the active side, and σS− on the inactive counterpart.

Figure 4 illustrates a schematic description of the displacement and strain fields captured

by Eqs. 4 and 6.

(a) (b)

Figure 4: (a) Displacement field exhibiting jump along the discontinuity surface S, (b) strain field
representing unbounded terms at the point of displacement discontinuity.

3. Traction-separation model

The constitutive response of a localized deformation is generally formulated in terms of

a traction-separation model. This model will be suitable to a broader range of materials,

in terms of ductile or brittle fracture, if it is able to capture the constitutive response not

only for a fractured region, but also the process zone before any fracture is formed. This

idea can be extended to the concept of weak and strong discontinuity mentioned earlier,

i.e., a more general model is one that is capable of representing weakening characteristics of

a localized region even without a displacement discontinuity. Such model can then play a

significant role in a comprehensive analysis that spans the entire range of material behaviors

from linear elastic to fully plastic. Hence, the two extremes of brittle fracture and plastic

collapse [Anderson, 2005] along with the behaviors in between can be accounted for within

one model provided that the model is equipped with a set of appropriate and accurate

material parameters. The reader is referred to [Elices et al., 2002; Planas et al., 2003;

De Borst, 2003] among others for further reviews and generalizations. Such a model, which

can potentially raise numerical complexities, is beyond the scope of this work; instead, a
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simple traction-separation model is adopted to provide a relatively simple framework for

focusing on some of the numerical aspects of strain localization modeling. More advanced

models can be found in [Camacho and Ortiz, 1996; Carol et al., 1997; Gálvez et al., 2002;

Weed et al., 2015] among others.

3.1. Cohesive crack model

As a modification of the strip-yield model pioneered by Dugdale [Dugdale, 1960] and

Barenblatt [Barenblatt, 1962], cohesive crack models were first adopted for concrete by

Hillerborg and co-workers [Hillerborg et al., 1976]. These models were also initially termed

as fictitious crack models, and later labeled as cohesive zone models, cohesive process zone

models, and damage zone models [Hillerborg, 1991]. Cohesive crack models are proven to

be an appropriate tool to model fracture formation in materials that experience nonlinear-

ities due to pre-failure micro-cracking and having a linear stress-strain relation before any

localized failure mechanism starts to dominate the overall constitutive response [Hillerborg,

1991]. Concrete is a good example of such materials, though the model has been shown to

be applicable to a wide range of other materials as well, as shown in [Elices et al., 2002].

Cohesive crack models are well known to provide a formulation with a physical logic

behind and within a simple framework [Cendón et al., 2000]. Tensile fracture in quasi-brittle

and ductile materials with local mode I fracture dominating the overall medium response are

problems where these models provide admissible results [Elices et al., 2002]. They estimate

cohesive forces along surfaces where material particles are being pulled apart and cohesive

strength is degrading. Therefore, they are able to describe the behavior of uncracked areas

undergoing localized deformation. In this study, a cohesive crack model similar to the model

used in the work of [Sancho et al., 2007] is adopted. The model allows for tangential as

well as normal separation, and is a simple generalization to mixed mode fracture with the

assumption that the traction vector is parallel to the displacement jump vector across the

discontinuity interfaces.

The traction-separation relationship is defined as

t =
f(w̃)

w̃
w (9)
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(a) (b)

Figure 5: (a) Exponential softening curve, (b) traction-separation curve.

where t is the traction vector and w represents the displacement jump vector. The quantity

w̃ is the historical maximum of the magnitude of the displacement jump vector throughout

the simulation defined as

w̃ = maxt (|w(t)|) = maxt

(√
w2

n + w2
s

)
. (10)

The quantities wn and ws are normal and sliding components of the displacement jump

vector, respectively. The softening function f(w̃) in this study is defined as an exponential

function as

f(w̃) = ft exp

(
−w̃ft
GF

)
(11)

where the tensile strength ft is the stress at which the crack forms and starts to open, and

the cohesive fracture energy GF is the external energy required to form and fully break a unit

surface area of the cohesive crack. Typically, cohesive crack models, including the one used

here, determine the work of separation (fracture energy) required for the complete formation

of a discontinuity surface. This value corresponds to the area under the softening curve, Fig.

5a, as

GF =

∫ wc

0

f(|w|) dw (12)

where wc is the critical crack displacement, which corresponds to the state that the dis-

continuity interfaces are fully separated and cohesive strength is zero [Elices et al., 2002].

Theoretically, in this softening function, cohesion reaches zero at w̃ = ∞, but practically

the cohesive force can be made to reach a very small value relatively quickly. Figure 5a
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represents a schematic curve for the exponential softening function at which ft corresponds

to the maximum cohesive strength. Figure 5b depicts the traction-separation curve for a

sample softening function. During unloading the traction decreases towards the origin in a

linear fashion. On reloading the traction follows the same linear path until w = w̃, where it

begins again to soften.

Remark 1. A connection can be made between the cohesive crack model parameters and the

concept of weak/strong discontinuity, roughly speaking. This analogy will be more reasonable

and accurate if the given cohesive model is complex enough to effectively take into account

the constitutive response qualities of fracture process zone or the localization phenomenon

is more characterized by strong discontinuity features. In that case, the tensile strength ft

can be considered as the stress at which the localized deformation initiates and hence the

discontinuity starts to form. The cohesive fracture energy GF is then the energy required for

a unit surface area of weak discontinuity at initiation stage to be fully fractured. This energy

is basically consumed in the straining of the localized region and the formation of the two

new fracture surfaces.

4. Finite element implementation

The finite element implementation follows the approach of assumed enhanced strain

method as in [Simo et al., 1993; Borja and Regueiro, 2001; Foster et al., 2007] among others.

The reader is referred to those works for detailed mathematical formulations and derivations.

The primary steps include the development of the weak form of the governing equilibrium

equations and the discretized variational equations (the Galerkin form), which are not derived

here to avoid repetition. Provided below are the relevant finite element matrix equations

developed for quasi-static problems under the assumption of infinitesimal deformation. All

equations are in matrix form except for Eqs. 14 and 15. Matrix forms are adopted for

computational efficiency.

4.1. The governing equilibrium finite element matrix equations

The standard residual statement for balance of linear momentum of element e (with

domain Ωh
e and boundary Γ h

e ) for the quasi-static small strain kinematics takes the matrix
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form of

Re =

∫
Ωh

e

Be
T ·
{
σh

e

}
dΩ −

∫
Ωh

e

Ne
T · b dΩ −

∫
Γh
e t

Ne
T · the dΓ = 0 (13)

whereBe is the standard finite element strain-displacement matrix,
{
σh

e

}
, the element stress

in vector form, Ne, the standard finite element shape function matrix, b, the prescribed body

force vector, and the denotes the prescribed surface traction vector over the element boundary

Γ h
e t. Equation 13 is valid for all elements; however, for the case of a localized element, an

additional residual equation is needed to express the weak form for traction continuity on

the discontinuity surface S. For a given localized element whose constitutive response is

characterized by cohesive crack model, this traction vector is formed using both the stress

tensor evaluated at integration points within the bulk of the element and projected onto

the discontinuity surface, and the element-level traction-separation relationship imposed on

S. In the case of the linear triangular element used here, the stress is constant within an

element and therefore the projection is trivial. From Eq. 6, we can write the bulk stress of

a localized element as a function of regular strain, ignoring the singular part similar to Eq.

7 as

σh
e = Ce : εhe

reg
= Ce :

[
∇sũe −

(
we ⊗∇fh

e

)s]
(14)

where Ce represents the fourth-order elastic modulus tensor, and superscript “reg” denotes

the regular strain. The corresponding traction vector te on the discontinuity surface can

then be written as

te = ne · σh
e = ne ·Ce : εhe

reg
= ne ·

[
Ce : εhe

conf −Ce :
(
we ⊗∇fh

e

)s]
(15)

where n is the unit normal to the discontinuity surface S pointing towards Ω+, Fig. 1, and

superscript “conf” represents the conforming strain. On the other hand, Eq. 9 gives the

other estimation for traction vector explicitly as a function of displacement jump vector w.

Traction continuity, using Eqs. 9 and 15, in matrix form then implies

[
f (w̃e)

w̃e

]
we = [ne] · [Ce] ·

{
εhe

conf
}
−
(
[ne] · [Ce] ·

[
∇fh

e

])
·we (16)
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where different notations in the form of [Ce] and
{
εhe

conf
}

are used to represent the matrix

and vector forms of the tensors Ce and εhe
conf

, respectively. The vector ne in Eq. 15 is also

adjusted as [ne] in Eq. 16 to conform to the matrix form of the equation. More details

are provided in Appendix A.1. Equation 16 gives the residual expression for balance on the

discontinuity surface S as

re =

(
f (w̃e)

w̃e

1 + [ne] · [Ce] ·
[
∇fh

e

])
·we − [ne] · [Ce] ·

{
εhe

conf
}

= 0 (17)

where 1 is a 2-by-2 identity matrix, and those terms involvingw are factored out and grouped

together. Equation 17 is a nonlinear balance equation, arising from the strong discontinuity,

which can be solved for the displacement jump vector we using an element-level Newton-

Raphson iterative solution algorithm.

4.2. Consistent stiffness matrix

A consistent stiffness matrix is needed for each localized element to solve for the global

Newton-Raphson iteration. To form a consistent stiffness matrix for a given localized element

with a known displacement jump vector, Eqs. 13 and 17 must be met. Linearization of these

equations by taking a variation for solution by the Newton-Raphson method, following the

procedure in [Borja and Regueiro, 2001], results in

δRe = Kdd
e · δde +Kdw

e · δwe (18)

δre = Kwd
e · δde +Kww

e · δwe (19)

where

Kdd
e =

∂Re

∂de

(20)

Kdw
e =

∂Re

∂we

(21)

Kwd
e =

∂re
∂de

(22)

Kww
e =

∂re
∂we

. (23)

16



Equation 20 is simply the standard element stiffness matrix as

Kdd
e =

∫
Ωh

e

Be
T · [Ce] ·Be dΩ (24)

and subsequent quantities are calculated by taking derivatives, which are given explicitly in

matrix form by

Kdw
e = −

∫
Ωh

e

Be
T · [Ce] ·

[
∇fh

e

]
dΩ (25)

Kwd
e = − [ne] · [Ce] ·Be (26)

Kww
e =


f(w̃e)
w̃e

1 + [ne] · [Ce] ·
[
∇fhe

]
−
[
f(w̃e)

(
w̃eft
GF

+1
)

w̃3
e

]
we ⊗we if |we| > w̃e

f(w̃e)
w̃e

1 + [ne] · [Ce] ·
[
∇fhe

]
if |we| ≤ w̃e.

(27)

The quantity w̃e is the historical maximum of the magnitude of the displacement jump vector

of the localized element e throughout the simulation. The condition for Eq. 27 is checked

at each element-level (local) Newton-Raphson iterating. The term ∇fh
e can be represented

in Voigt notation as

[
∇fh

e

]
=


fh
e ,x 0

0 fh
e ,y

fh
e ,y fh

e ,x

 (28)

where fh
e ,x and fh

e ,y are summation of gradient of shape functions for the active nodes of

element e in x and y directions, respectively.

Since the displacement jump vectorwe is assumed to be discontinuous across elements (an

element-level quantity with no effects on neighbor elements), it can be statically condensed

out of the equations at that level. The resulting condensed element stiffness matrix following

the procedure in [Foster et al., 2007] then reads

Ke = Kdd
e −Kdw

e ·Kww
e

−1 ·Kwd
e . (29)

Considering Kdd
e as the standard stiffness matrix for a non-localized element, Eq. 29 reveals

how stiffness is modified for a localized element by a softening component Kdw
e ·Kww

e
−1 ·Kwd

e

that is characterized primarily by the introduced jump along the discontinuity surface S. As a
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result of this condensation procedure, nodal displacements are the only remaining unknowns

to solve for at global-level finite element approximation. By using this strategy, the assumed

enhanced strain method can be incorporated quite easily into any available finite element

algorithm with few further global-level modifications.

Remark 2. Given a localized element, Eq. 16 reveals the constitutive response softening

nature of the weakening element. The right-hand side of the equation is from the kine-

matics of the assumed enhanced strain method within finite element framework. The left

side, originated from the exponential cohesive crack model, is the key term in characterizing

the material softening characteristics of a localized element. This term can be replaced by

more sophisticated traction-separation relationships, material plasticity- or damage-like mod-

els (generally any macroscopic level displacement-softening model) to provide a rheologically

more accurate and suitable solution for a strain localization problem at hand with a specific

material type.

5. Tracking the evolution of localized deformation

The evolution of localized deformation, either with an instantaneous appearance, e.g., in

homogeneous strain localization problems or in the form of a relatively gradual propagation of

the localized region, may require an auxiliary tracking algorithm to trace the discontinuity

path as it evolves. Employing such an algorithm becomes a necessity within the class of

inter-element discontinuities in finite elements.

The classical approach for such tracking purpose lies on detecting the most critical ele-

ment (based on the criteria used to find the initiation of localization at each material point)

and propagating the localization band from that critical element (root element) and tracing

the band from element to element. This method in which the discontinuity surface evolution

is traced element by element is referred to as the local tracking. One algorithm for local

tracking is outlined in more detail in [Foster et al., 2007]. An alternative approach, which

is developed relatively recently, is referred to as the global tracking. In this approach, all

potential discontinuity surfaces are detected at once. Then, based on single- or multi-band

nature of the localization problem, the active surface or surfaces are identified [Oliver et al.,

2002].
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5.1. Local tracking

Conducting a tracking algorithm requires identifying the set of localized elements. Such

a set, at each point of the simulation, consists of the elements that can be potentially crossed

by a discontinuity surface. The identification process is considered as a preliminary step that

includes checking the whole discretized body to find elements that pass the criteria for the

onset of localization. If at least one localized element is found, the tracking starts. The

next step then is to find the most critical element (in this case the element with the largest

maximum tensile stress) among the set of localized elements. If there is only one localized

element detected, that element will be the critical one. This search process identifies the

first root element (seed element) from which the first discontinuity surface initiates.

The local tracking algorithm needs two essential ingredients for a given localized element

to propagate the band. The spatial coordinates of one material point on the discontinuity

surface, either within the domain of the localized element Ωh
e, loc or on its boundary Γ h

e, loc

(element edges) are required to locate the band. This point is chosen to be the centroid for

the root element, and the intersection of an element edge with the approaching discontinuity

surface from an adjacent element for other elements. The second piece of information comes

from the localization orientation. The orientation follows from the localization criterion, in

this study, the direction orthogonal to the maximum principal stress.

As depicted in Fig. 1b, the element edges crossed by the discontinuity surfaces are

those having an active node on one side, and an inactive one on the other side. The need for

determining the status (in terms of being active or inactive) for the nodes of elements crossed

by the discontinuity surfaces has two aspects. First, it is used by the tracking algorithm to

identify the element edges that will be crossed. Second, it affects the kinematics of those

intersected elements by embedding different localization modes into displacement and strain

formulations using fh (sum of shape functions of the active nodes for a given finite element)

and ∇fh, via Eqs. 4 and 6. The determination is subsequently needed in forming ∇fh
e

to express the residual expression for balance on the discontinuity surface S, Eq. 17, for a

localized element e. This determination can be performed by the use of one material point

on the discontinuity surface and the normal to the surface pointing towards the active side

of the element.

19



Using the aforementioned information as input data, the local tracking algorithm traces

the first discontinuity surface. If a multi-surface localization problem is of interest, the al-

gorithm continues the search process to detect other surfaces. Searching for root elements,

except for the first one, should be performed within the set of untraced localized elements

for a given tracking procedure. This prevents the formation of trivial bands located at the

position of previously traced surfaces. Box 1 represents a rough algorithmic summary of the

local tracking algorithm. The reader is referred to [Foster et al., 2007] for detailed formula-

tions and algorithmic implementation procedure.

Box 1: Summary of the local tracking algorithm.

Step 1 : Check the onset of localization for all elements. If no localized element is
detected, then exit.

Step 2 : If the band has not been traced yet, find the root element with the largest
maximum tensile stress among the set of localized elements. Otherwise, go to Step
4.

Step 3 : Propagate the band from the centroid of the root element to get its
intersection with the element edges.

Step 4 : Check the untraced elements at the end of the existing band for local-
ization. If localized, propagate the band. (The propagation continues until either
the untraced adjacent elements of all bands are not localized or boundary Γ h is
reached.)

Step 5 : If the algorithm is carried out at the end of a time step, fix localization
orientation for elements crossed by the discontinuity surface(s).

Step 6 : If allowing for multiple bands: If a new potential band has not been traced
yet, find the root element with the largest maximum tensile stress among the set
of untraced localized elements, and go to Step 3. Otherwise, go to Step 4. If single
band is expected, then exit.

5.2. Stabilizing crack tip technique

5.2.1. Motivation

A stabilizing crack tip technique is proposed to fix incorrect discontinuity surface evolu-

tion in some strain localization problems, especially those with notched sides introduced on

the boundary. One may observe such an issue by estimating localization orientation based

upon maximum principal direction. The incorrect localization orientation, and subsequently
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(a) (b)

Figure 6: (a) Element-level localization orientations represented as inter-element vectors within the
discretized body with a side notch introduced on its boundary, (b) returning pattern of surface evolution

due to an inaccurate estimation of principal directions.

the inaccurate surface evolution, which typically occurs at a crack tip zone is considered to

be a result of the bad estimation of principal directions due to high stress gradients at the

tip area [Sancho et al., 2007]. Furthermore, using the maximum principal stress criterion

means making the (simplifying) assumption of local mode I fracture being dominant at the

crack tip zone. Inaccurate crack evolution can then occur when mode II fracture becomes

significant in case of a mixed mode loading or unstable crack growth [Cendón et al., 2000].

To illustrate the issue, one may consider all potential discontinuity surfaces within a body,

Fig. 6a. Adjacent potential surfaces are usually similar in orientation, having a gradual

change in orientation throughout the body. These roughly parallel lines, along with the

inaccurate principal directions estimation mentioned earlier, results in a returning pattern

in surface propagation. As sketched in Fig. 6b, one critical surface starts from the root

element (highlighted in gray), then jumps to an adjacent potential surface and returns.

5.2.2. Implementation

The steps needed to implement the stabilizing crack tip technique are summarized in

Box 2. These steps can be embedded within Step 4 of the main local tracking algorithm,

Box 1. Figure 7 demonstrates a schematic representation of implementing the technique

to improve the accuracy of surface evolution and avoiding a returning propagation pattern.

The quantity (θallowed) is usually taken to be π/2 radians.
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Figure 7: Stabilizing crack tip technique. Discontinuity surface (fine solid line) approaching two adjacent
elements with surface orientation getting modified (bold solid line).

Box 2: Summary of the stabilizing crack tip technique implementation.

Step 1 : Check surface orientation change as it evolves from a host element to an
adjacent element, thin solid line in Fig. 7. If the change is greater than a prescribed
allowable value (θallowed), perform stabilizing crack tip technique. Otherwise, go to
Step 5.

Step 2 : Propagate the surface towards the host element, instead of the adjacent
element, using the localization orientation of the adjacent element (dashed line).

Step 3 : Update the new surface orientation for the host element. In Fig. 7,
bold solid line represents the updated surface path. The adjacent element remains
untraced.

Step 4 : Check the host element for localization at the new imposed direction. If
localized, trace the element and go to Step 5. Otherwise, leave the host element as
untraced, then exit. (The host element remains as a localized element for further
tracking.)

Step 5 : Continue surface propagation.

5.3. Global tracking

An essential part of a global tracking algorithm consists of a solution of a steady-state

heat conduction-like problem with no internal heat source and null heat flux input, Fig. 8.

The boundary value problem to be solved (with domain Ω and boundary Γ = Γq ∪ ΓT ) can

Figure 8: The steady-state heat conduction-like problem.
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be represented as

Find T (x), such that:

∇ · q = 0 in Ω (a)

q = −K ·∇T in Ω (b)

q · ν = 0 on Γq (c)

T = T ∗ on ΓT (d) (30)

where T (x) is the temperature of a material point represented by its spatial coordinates x;

hence, the solution of the boundary value problem above provides the temperature field

throughout the domain Ω . The term q is the conduction flux-like vector, ν, the outward

normal to the boundary Γ , T ∗, the prescribed temperature over the boundary ΓT , and K

denotes a material point dependent anisotropic thermal conductivity tensor which is given

explicitly by

K (l(x)) = [l⊗ l] . (31)

The vector l(x) represents the discontinuity surface orientation at material point x (following

from the localization criterion, i.e., the direction orthogonal to the maximum principal stress)

in the form of a unit vector signaling the direction of the localization evolution. In order to

overcome the singularity of the conductivity tensor, an isotropic algorithmic component of

the conductivity, ε, is added. Therefore, the thermal conductivity tensor gets modified as

K (l(x)) = [l⊗ l] + ε1. (32)

where 1 is the identity tensor. The reader is referred to [Oliver and Huespe, 2004] for detailed

formulations, derivations, and discretized equations in a finite element setting.

In a finite element context, the solution of the heat conduction-like problem above pro-

vides the nodal temperature values of the discretized body. Now, the potential discontinuity

surfaces denoted by Si can be considered as isothermal lines of the heat conduction problem,

i.e., sets of material points with each set having an identical temperature. These disconti-
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nuity surfaces can be represented as

Si := {x ∈ Ω ; Tx = TSi
} . (33)

After identifying the potential surfaces, the next step then is to find the most critical element

(the element with the largest maximum tensile stress) among the set of localized elements.

This search process identifies the first root element (seed element), and the isothermal line

passing through this element reveals the first discontinuity surface. The temperature of the

isothermal line is simply the average nodal temperature of the root element. This choice

is in accordance with taking the centroid of the root element as the initiation point of the

discontinuity surface in a local tracking algorithm. If a multi-surface localization problem

is of interest, the algorithm continues the search process to detect other surfaces. Searching

for root elements, except for the first one, should be performed within the set of untraced

localized elements for a given tracking procedure. This search continues until there are

no more critical elements left within the body. Box 3 represents a summary of the global

tracking algorithm. In order to increase computational efficiency, a simplified version of

the global tracking algorithm was used throughout this study by avoiding the detection of

all potential discontinuity surfaces based on the knowledge of the number of bands being

formed. Such detection process is helpful in a multi-surface localization problem, but trivial

for the simulations performed here. Therefore, time tables provided in Section 6 represent

underestimated simulation times for the global tracking strategy compared to the general

algorithm illustrated here in Box 3.

Determining the status (in terms of being active or inactive) for the nodes of elements

crossed by the discontinuity surface within the global tracking algorithm may be carried out

in a different way compared to the local tracking. The isothermal line temperature (the

average nodal temperature of the root element) can be used for such purpose. Nodes having

greater nodal temperatures than the isothermal line are termed as active, and others as

inactive, or vice versa depending on the direction of the unit normal to the surface.
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Box 3: Summary of the global tracking algorithm.

Step 1 : Check the onset of localization for all elements. If no localized element is
detected, then exit.

Step 2 : Solve the steady-state heat conduction-like problem for the discretized
body Ωh.

Step 3 : Identify the sets of potential discontinuity surfaces Si.

Step 4 : If the band has not been detected yet, find the root element with the
largest maximum tensile stress among the set of localized elements.

Step 5 : Determine the discontinuity surface, which would be in accordance with
the isothermal line passing through the root element.

Step 6 : If the algorithm is carried out at the end of a time step, fix nodal tem-
perature for elements crossed by the discontinuity surface(s).

Step 7 : If allowing for multiple bands: If a new potential band has not been
detected yet, find the root element with the largest maximum tensile stress among
the set of untraced localized elements, and go to Step 5. Otherwise, go to Step 5
without searching for the root element. If single band is expected, then exit.

Remark 3. The local and global tracking strategies have differences in implementation and

performance. One advantage factor can be the information about potential discontinuity sur-

faces that each approach is equipped with at the time of tracking an active surface. The local

tracking has no information on those still untraced surfaces, while the global tracking detects

all potential surfaces before starting to identify the active ones. This key difference gives

the global tracking approach a superior performance in multi-surface localization problems.

One may also find the global tracking strategy simpler to implement for three-dimensional

problems.

6. Numerical simulations

In this section, some numerical simulations are presented in order to investigate the

performance of the two updating schedules for tracking the band propagation over time;

either at the end of each time increment, or during each iteration within a given time

increment. The numerical algorithm capturing the strain localization response, along with

the band tracking strategies, are adopted to model the subsequent examples, which helps

us, for each updating schedule, in:
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• Examining robustness. To compare robustness, the ability of the algorithm to success-

fully arrive at a solution for a complete simulation is considered.

• Quantifying accuracy. This is measured in terms of inter-element spatial location and

orientation of localization surface paths, along with comparing the force-displacement

curves for each updating schedule.

• Evaluating simulation time. In addition to total simulation time, two aspects of the

simulations are examined. One factor is the rate of convergence for a sequence of succes-

sive approximations for Newton-Raphson’s iterative algorithm. Generally, a quadratic

rate is expected as the method converges, since Newton-Raphson is used for numerical

solution of governing equations. The other factor is the number of times a tracking

subroutine is called within a given time step. Tables are provided that present the sim-

ulation time and computational cost (by implication) for different tracking strategies

and updating schedules employed.

6.1. Stretching of a homogeneous block

The first simulation is a plane strain stretching of a rectangular block, as shown in Fig.

9a. The material is linear elastic and isotropic with Young’s modulus E = 5.5E+03 MPa

and Poisson’s ratio ν = 0.25. The parameters used to describe the exponential softening

function, Eq. 11, are tensile strength ft = 5.0E+01 MPa and fracture energy GF = 5.0E+01

N/mm. A displacement-controlled approach is carried out by applying d = 0.01 m upward

prescribed displacement on the top side of the specimen. The constraints are provided on

the bottom side such that the strain field and hence the stress become homogeneous. The

homogeneity holds throughout the elastic part of the simulation, until strain localization

initiates.

Two types of meshing have been developed using a standard constant strain triangle

(CST) finite element: a 36-element coarse structured mesh, Fig. 9b, and a 70-element coarse

unstructured mesh, Fig. 9c. The main local tracking algorithm, Box 1, was used for tracking

purpose. The stabilizing crack tip technique was not required for this example. There are

no side notches introduced in this simulation. Instead, seed elements are introduced to the

tracking algorithm, since the problem is homogeneous. As a result, the block experiences
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(a) (b) (c)

Figure 9: Stretching of a homogeneous block. (a) Dimensions, loading, and boundary conditions, (b) coarse
structured finite element meshing, (c) coarse unstructured finite element meshing. Seed elements are

shaded.

one localization band. Otherwise, all elements would surpass the tensile strength limit (the

criterion for the onset of localization) at the same time due to homogeneity, creating multiple

parallel bands within the body. Allowing only one band form is in accordance with what

often happens in reality. Local imperfections, dislocations or micro cracks/voids commonly

lead to one dominant discontinuity surface, letting the rest of the body unload elastically.

The entire localization band forms instantly at the onset of localization without any band

evolution throughout the simulation, since all elements localize at the same time. Seed

element selection for an individual band is of no significance within the corresponding set of

localized elements forming that band, i.e., choosing any of those localized elements as the

root element results in a similar localization path. This property typically does not hold in

a non-homogeneous problem.

The discontinuity surface paths and the deformed finite element meshes with vertical

displacement distribution are illustrated in Figs. 10 and 11 for coarse structured and coarse

unstructured mesh types, respectively. Across this section, the discontinuity surface paths,

which are illustrated by dashed lines, only represent those localized elements that are in

the loading phase, i.e., the unloading elements are not shown. The two cases have similar

seed element elevations. The softening response is captured throughout a row of localized

elements forming a horizontal strain localization band. This is the place where most of the

block stretching is developed throughout the body.
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(a) (b)

Figure 10: Stretching of a homogeneous block. Structured mesh, (a) dashed line represents the
discontinuity surface path (only for elements in the loading phase), (b) deformed finite element mesh along

with vertical displacement distribution.

(a) (b)

Figure 11: Stretching of a homogeneous block. Unstructured mesh, (a) dashed line represents the
discontinuity surface path (only for elements in the loading phase), (b) deformed finite element mesh along

with vertical displacement distribution.

Both simulations experience elastic behavior at the first stage of the process, while ma-

terial failure occurs after some prescribed tensile strength is reached. Figures 12 and 13

provide the graphs for reaction forces versus imposed displacement for the unstructured

meshing with the local tracking algorithm for 50 and 100 steps, respectively. The graph

patterns for structured meshing and the global tracking algorithm are similar. Each figure

compares the two cases of performing updating at the end of each time increment and within

iterations in a given time increment. In both graphs, the former case gives a higher peak

reaction force, which is an inaccurate estimation. This inaccuracy comes from the fact that

updating is performed at the end of the step. Therefore, the localization initiation is delayed

until the end of the time increment, whereas an earlier detection and softening occurs while

performing the updating within iterations. This difference in peak reaction forces becomes

smaller as time step size is refined, as shown in Fig. 13. For this example, which is considered
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Figure 12: Stretching of a homogeneous block. Force-displacement graph for the unstructured mesh with
the local tracking algorithm using 50 time steps for the two cases of performing end-of-step updating and

updating within iterations.

Figure 13: Stretching of a homogeneous block. Force-displacement graph for the unstructured mesh with
the local tracking algorithm using 100 time steps for the two cases of performing end-of-step updating and

updating within iterations.

as a homogeneous problem with instantaneous band propagation, the difference in estimated

reaction forces appears only at the time that localization initiates (which also corresponds to

the time that the entire band forms). The two force-displacement curves agree very closely

both before and afterwards. Both updating schedules reveal identical localization surface

paths in terms of inter-element spatial location and orientation.

In the homogeneous problem, both updating schedules complete the simulation without

trouble. Hence, there are no robustness issues. Both band tracking algorithms produce

identical results in this case as well.

Table 1 provides the simulation time for the adopted tracking strategies and updating
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Table 1: Stretching of a homogeneous block. Simulation time for different tracking strategies and updating
schedules using 50 time steps.

Mesh type Tracking strategy Updating schedule
Simulation time

(sec.)

36-element
structured mesh

Local tracking
End of step 86.07

Within iterations 107.88

Global tracking
End of step 84.26

Within iterations 107.02

70-element
unstructured mesh

Local tracking
End of step 250.49

Within iterations 313.55

Global tracking
End of step 242.23

Within iterations 312.98

schedules. It takes relatively more time and computational cost when updating is carried out

within the iterations, as expected. The tracking subroutine is called for every single iteration

for updating within iterations while end-of-step updating calls the tracking subroutine only

once; at the end of the step. Not much difference is observed comparing the local and global

tracking strategies. Another factor affecting the simulation time is the rate of convergence.

A faster convergence rate than quadratic was observed for performing updating at the end

of each time step. However, for the case of performing updating within iterations, a slower

rate than quadratic occurred. This slower convergence is observed only at the step where

localization starts. After the localization initiates and the band forms, the set of localized

elements remains identical for the two cases (without further band evolution), and quadratic

convergence is then recovered. Embedding the set of softening elements within the global-

level governing equations during the iterative solution is considered as the reason for such a

relatively slower rate in converging.

Therefore, investigating the simulation time for the two updating schedules shows two

causes for an increased computational cost of updating within iterations: one factor is the

additional computations arising from the extra number of times that the tracking subroutine

is called, and the other corresponds to the slower rate of convergence for a given evolving

localization that results in additional iterations before a converged solution is reached.

6.2. Double-edge notched specimen under tension

The second example consists of a plane stress double-edge notched specimen under ten-

sion. Two cases are considered; notch offset values of 5 mm and 15 mm, as shown in Figs.
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(a) (b)

Figure 14: Double-edge notched specimen under tension. Dimensions, loading, and boundary conditions,
(a) 5-mm notch offset, (b) 15-mm notch offset.

14a and 14b. These examples follow the simulations provided in [Alfaiate et al., 2002], based

on experimental data from [Shi et al., 2005]. The offset values are measured in vertical

direction and symmetric with respect to a horizontal axis passing through the center of the

specimen. The material is linear elastic and isotropic with Young’s modulus E = 2.4E+04

MPa and Poisson’s ratio ν = 0.2. The parameters used to describe the exponential softening

function, Eq. 11, are tensile strength ft = 2.0 MPa and fracture energy GF = 5.9E−02

N/mm. The model has a thickness of 10 mm. A displacement-controlled approach is car-

ried out by applying d = 0.2 mm upward prescribed displacement on the top side of the

specimen.

6.2.1. Notch offset value of 5 mm

The model is discretized using a standard constant strain triangle (CST) finite element.

The coarse unstructured meshing with blunt notch tips is developed using 198 elements, as

shown in Fig. 15. The root elements are detected automatically by the tracking algorithm

based on the most critical status of elements, i.e., the element having the largest maximum

principal stress. This is in accordance with what typically happens in reality, where no

manual imperfections are embedded at notch tip areas. The main local tracking algorithm,

Box 1, was used for tracking purpose. The stabilizing crack tip technique was not required
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Figure 15: Double-edge notched specimen under tension (5-mm notch offset). Coarse unstructured meshing
with automatic detection of the root elements.

for this simulation.

The simulation is carried out using 100 and 500 time steps. The discontinuity surface

paths and the deformed finite element mesh with vertical displacement distribution are

illustrated in Fig. 16 for the case of using 100 time steps. Figures 16a and 16c depict

band paths for performing end-of-step updating and updating within iterations, respectively.

For both cases, two separate bands start to evolve from the seed elements at the time

of localization initiation. However, as the simulation continues, it reaches a point where

one dominant band forms. Similar elevations of the root elements is the key parameter in

capturing one dominant band for this simulation. For the case of end-of-step updating, the

first band (lower one) evolves from the element located right by the notch tip at the left-hand

side of the specimen until it reaches an element adjacent to the second root element on the

right-hand side. The second band (upper one) then starts to evolve without any propagation

(a) (b) (c) (d)

Figure 16: Double-edge notched specimen under tension (5-mm notch offset). Using 100 time steps and the
local tracking algorithm, (a) dashed line represents the discontinuity surface paths (only for elements in the
loading phase) for performing end-of-step updating, (b) deformed finite element mesh along with vertical
displacement distribution, (c) surface path for performing updating within iterations, (d) deformed finite

element mesh along with vertical displacement distribution.
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Figure 17: Double-edge notched specimen under tension (5-mm notch offset). Using 100 time steps,
force-displacement curve with the local tracking algorithm for the two cases of performing end-of-step

updating and updating within iterations.

Figure 18: Double-edge notched specimen under tension (5-mm notch offset). Using 500 time steps,
force-displacement curve with the local tracking algorithm for the two cases of performing end-of-step

updating and updating within iterations.

beyond the root element since it reaches a previously traced band element. However, the

localized deformation is captured across a continuous row of elements, as shown in Fig. 16b.

For the case of updating within iterations, one dominant band forms that includes the two

elements with the most critical status, Fig. 16d. The tracking algorithm traces the band

from the first root element (the more critical one) on the left-hand side of the specimen and

propagates until reaching the other root element on the other side. It should be noted that

the set of localized elements forming the bands are not identical for the two cases and surface

trajectories have small differences at the right half of their paths.
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Table 2: Double-edge notched specimen under tension (5-mm notch offset). Simulation time for different
tracking strategies and updating schedules using 100 time steps.

Simulation type Tracking strategy Updating schedule
Simulation time

(sec.)

Double-edge notched
specimen under

tension (5-mm notch
offset)

Local tracking
End of step 2682.35

Within iterations 3477.61

Global tracking
End of step 2628.47

Within iterations 3375.54

Figures 17 and 18 present the force-displacement curves of the considered simulation for

100 and 500 time steps, respectively. The graph patterns for the global tracking algorithm

are similar. Each figure compares the two cases of performing updating at the end of each

time increment and within iterations in a given time increment. As the number of time steps

adopted increases, the end-of-step updating case approaches the case of updating within

iterations. Similar difference patterns in the peak reaction forces, robustness quality, and

computational cost are observed as in the previous example. Table 2 provides simulation

time of the considered simulation for each tracking strategy and updating schedule employed.

6.2.2. Notch offset value of 15 mm

A 198-element coarse unstructured mesh is developed with blunt notch tips modeled on

the sides, Fig. 19. The root elements are detected automatically by the tracking algorithm

based on the most critical status, i.e., the element possessing the largest maximum principal

stress. The two localization bands initiate from the root elements and do not meet at the

Figure 19: Double-edge notched specimen under tension (15-mm notch offset). Coarse unstructured
meshing with automatic detection of the root elements.
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specimen center mainly due to the different elevations of the root elements.

Two updating schedules for performing a tracking strategy are considered: end-of-step

updating and updating within iterations. First, each updating schedule is carried out em-

ploying the local tracking algorithm, Box 1, and using 50 time steps as a starting point.

The step size is then reduced by half to get more accurate results. The stabilizing crack

tip technique was not required for this simulation. Table 3 provides the results. Figures 20

through 22 show the discontinuity surface paths for each case. The vertical displacement

distributions are also provided for the case of using 200 time steps in Figs. 22c and 22f,

where both updating schedules give acceptable results. Figures 23 through 25 compare the

force-displacement curves for the two updating schedules.

The end-of-step updating fails to converge when large step sizes are used, as can be

observed at Table 3. The reason for such performance is the rapid evolution of the two

bands, which can be avoided by adopting a smaller step size. When using large step sizes,

the set of localized elements intersected by the discontinuity surfaces at localization initiation

are detected at the end of the step at which the onset of localization occurs. The delay in

detecting the localization status, as a result of performing updating at the end of the step,

imposes a stretching to the specimen without implementing the expected softening response.

This inaccurate detection of localization introduces an extra number of localized elements

to localization bands. These elements are then introduced to the global governing equations

at the subsequent time step where difficulties in convergence are observed. Since the set

of band elements are fixed at the end of the time step where localization was detected, the

subsequent time step should handle the same set of band elements no matter how refined it

Table 3: Double-edge notched specimen under tension (15-mm notch offset). Numerical simulation results
for using the local tracking algorithm.

Simulation type Updating schedule
Number of time

steps
Results

Double-edge notched
specimen under
tension (15-mm

notch offset)

End of step
50 Fails to converge
100 Fails to converge
200 Acceptable result

Within iterations
50 Acceptable result
100 Acceptable result
200 Acceptable result
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(a) (b) (c) (d)

Figure 20: Double-edge notched specimen under tension (15-mm notch offset). Using 50 time steps, (a) the
local tracking algorithm with end-of-step updating, dashed line represents the discontinuity surface paths
(only for elements in the loading phase) at their maximum length, (b) at the last converged step, (c) the

local tracking algorithm with updating within iterations, surface paths at their maximum length, (d) at the
end of the simulation.

(a) (b) (c) (d)

Figure 21: Double-edge notched specimen under tension (15-mm notch offset). Using 100 time steps, (a)
the local tracking algorithm with end-of-step updating, dashed line represents the discontinuity surface

paths (only for elements in the loading phase) at their maximum length, (b) at the last converged step, (c)
the local tracking algorithm with updating within iterations, surface paths at their maximum length, (d) at

the end of the simulation.

gets by performing step cut. Performing updating within iterations gives acceptable results

even if large step sizes are used, as shown in Table 3. Detecting the band elements is

performed within iterations at the time step in which the onset of localization occurs. This

is a more accurate estimation in terms of detecting the band elements at a point closer to

the exact time of localization initiation. Therefore, there is less artificial stressing imposed

to the specimen, i.e., softening starts earlier compared to the end-of-step updating case.

The discontinuity surface paths for the end-of-step updating using 50 time steps are

depicted in Figs. 20a and 20b at two points of the simulation; one when the surfaces are

at their maximum length, and the other at the last converged step. The two bands are

formed with each having extra localized elements at their tails (compared to the case of

using a refined step size, see Fig. 22a). The length of the bands remains unchanged until

the simulation failure. In addition, comparing with the case of updating within iterations,

Fig. 20c, a longer top band and different trajectories are observed. Because of the longer

band, the simulation faces difficulty in converging a few steps after localization initiation,
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(a) (b) (c)

(d) (e) (f)

Figure 22: Double-edge notched specimen under tension (15-mm notch offset). Using 200 time steps, (a)
the local tracking algorithm with end-of-step updating, dashed line represents the discontinuity surface

paths (only for elements in the loading phase) at their maximum length, (b) at the end of the simulation,
(c) deformed finite element mesh along with vertical displacement distribution at the end of the simulation,
(d) the local tracking algorithm with updating within iterations, surface paths at their maximum length,

(e) at the end of the simulation, (f) deformed finite element mesh along with vertical displacement
distribution at the end of the simulation.

where a step cut is performed in order to get convergence. However, the simulation finally

fails to converge. For updating within iterations, the simulation runs without facing any

convergence issues and the two localization bands remain active (with an unloading at the

tail for the top band) until the simulation ends, Fig. 20d. A similar elongated band pattern

is observed for the case of using 100 time steps, Fig. 21a. Multiple step cuts can be observed

few steps after localization initiation on the force-displacement graph in Fig. 24, where

the simulation requires a high amount of computational effort in order to converge. The

increased stressing due to the delayed localization detection plays a key role in forming

elongated bands, which then results in making the simulation fail. Those failed simulations

give acceptable results when the bands are limited in propagating beyond specified elements,

i.e., the effect of artificial increased stress is eliminated by defining prescribed admissible

regions for localization evolution.

The simulation was also performed using 200 time steps to compare the two updating

schedules when a refined step size is adopted. In this case, the step size is small enough so
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Figure 23: Double-edge notched specimen under tension (15-mm notch offset). Using 50 time steps,
force-displacement curve with the local tracking algorithm for the two cases of performing end-of-step

updating and updating within iterations.

Figure 24: Double-edge notched specimen under tension (15-mm notch offset). Using 100 time steps,
force-displacement curve with the local tracking algorithm for the two cases of performing end-of-step

updating and updating within iterations.

Figure 25: Double-edge notched specimen under tension (15-mm notch offset). Using 200 time steps,
force-displacement curve with the local and global tracking algorithms for the two cases of performing
end-of-step updating and updating within iterations. The global tracking algorithm with end-of-step

updating graph corresponds to the 400-step case since 200-step case failed to capture an acceptable result.
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Figure 26: Double-edge notched specimen under tension (15-mm notch offset). Force-displacement curve
with the local tracking algorithm for the case of performing updating within iterations using 50, 100, and

200 time steps.

both approaches are capable of providing acceptable results, though band trajectories still

have minor differences. End-of-step updating ends up with one dominant band on the lower

half of the specimen where the top band is entirely in the unloading regime, Figs. 22b and

22c. For updating within iterations, however, both bands remain in the loading phase where

most of the vertical deformation tends to localize to the lower band, Figs. 22e and 22f. The

left half of the strain localization zone shows how the vertical displacement distribution is

concentrated along a continuous row of localized elements though two separate bands are

capturing the failure response of the specimen. Figure 25 compares the force-displacement

curves for the adopted updating schedules. End-of-step updating shows less energy dissipa-

tion, which corresponds to the one dominant band forming, compared to updating within

iterations where two bands capture the softening response. The force-displacement curves

for updating within iterations using 50, 100, and 200 time steps are presented in Fig. 26,

where the graphs are fairly analogous.

With regard to accuracy, similar difference patterns in the peak reaction forces are ob-

served as in the 5-mm notch offset case. In terms of robustness, it is observed that updating

within iterations provides a more robust algorithm. Such updating schedule enables the

use of arbitrary step sizes within a reasonable range. However, the end-of-step updating

schedule may result in failure to converge when large step sizes are used and therefore pro-

duces some limitations on using large step sizes. As for comparing the computational cost,
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Table 4: Double-edge notched specimen under tension (15-mm notch offset). Numerical simulation results
for using the global tracking algorithm.

Simulation type Updating schedule
Number of time

steps
Results

Double-edge notched
specimen under
tension (15-mm

notch offset)

End of step

50 Fails to converge
100 Acceptable result
200 Incorrect result
400 Acceptable result

Within iterations

50 Fails to converge
100 Fails to converge
200 Acceptable result
400 Acceptable result

updating within iterations is still considered as a relatively more computationally expensive

approach though end-of-step updating has shown some increased computational effort in

getting convergence for few steps after localization initiation when large step sizes are used.

The simulation was also performed using the global tracking algorithm, Box 3. The results

are presented in Table 4 for using 50, 100, 200, and 400 time steps. Both updating schedules

fail when large step sizes are used. Acceptable results are obtained as step size is refined. All

successful results emerging from the global tracking strategy contain one dominant band,

either upper or lower one, which starts from one notch tip and reaches the other side of

the specimen. The local tracking strategy reveals similar localization patterns though less

concentrated localizations were sometimes observed, see Fig. 22f, and the discontinuity

surfaces did not reach the specimen sides. For the case of using the global tracking strategy,

the simulation was often observed to face numerical difficulties when switching from two

bands in the loading phase to one dominant band. Refined step size implemented by step

cuts helped to surmount the convergence difficulties. The force-displacement curves for

the two adopted updating schedules are compared in Fig. 25. The two graphs are almost

identical, and have minor differences (smaller reaction forces at the point of switching from

two active bands into one dominant band) compared with the case that uses the local tracking

algorithm with end-of-step updating. Therefore, except for the mentioned switching point,

the force-displacement curves are almost identical when one dominant band forms regardless

of both the updating schedule employed and whether the dominant band reaches the head-on

specimen side or not.
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The local and global tracking algorithms reveal almost identical band trajectories except

for the tail parts. While the local tracking strategy tends to capture a returning pattern at

the band tails, see Fig. 22e for example, the global tracking smooths out the localization

orientation and often results in bands propagating through the whole width of the specimen.

The results of the local tracking strategy better match with the experimental results reported

in [Shi et al., 2005] where the two cracks are observed to curl around each other without

tracing the whole specimen’s width. It should be noted that the aforementioned report only

provides a typical crack path pattern that was commonly observed throughout the experi-

ments and the possibility for other trajectories, e.g., cracks reaching specimen sides, should

also be considered. Such variety of possible crack paths becomes a more probable scenario

when significant inhomogeneities exist within the material, such as in concrete, which is the

material type modeled here. Eventually, these inhomogeneities should cause one band to

open and the other to unload elastically. Here, however, we rely on numerical differences in

the mesh and algorithm to trigger the loss of symmetry seen here. Such problems are known

to be difficult to simulate numerically. To determine the likely true responses, a statistical

analysis with accurate variations in the material properties is necessary. Such an analysis is

beyond the scope of this work, and the accuracy of the tails of the curves can be questioned

(though probably both are within the range of physical responses). What can be concluded

is that global tracking tends to smooth out the fracture path.

6.3. Stretching of a block with local imperfection

The last example consists of a plane strain stretching of a block with local imperfection,

as shown in Fig. 27a. The imperfection can be in the form of a damaged area, pre-developed

micro cracks/voids, etc., which is implicitly modeled by a finite element with reduced tensile

strength located at the left-hand side of the specimen. In previous examples, the entire

localization surfaces formed almost instantly within one or a few time steps due to the

homogeneous or nearly homogeneous nature of the problems. This example is set up to have

a relatively gradual evolution of the discontinuity surface in order to provide the capability of

performing the designated comparative studies for the two updating schedules. The material

is linear elastic and isotropic with Young’s modulus E = 5.5E+03 MPa and Poisson’s ratio
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ν = 0.25. The parameters used to describe the exponential softening function, Eq. 11,

are tensile strength ft = 4.0E+01 MPa and fracture energy GF = 5.0E+01 N/mm. A

displacement-controlled approach is carried out by applying triangular upward prescribed

displacement on the top side of the specimen. Maximum deformation, d = 0.01 m, is

imposed on the left-hand side. A 230-element coarse unstructured mesh has been developed

using a standard constant strain triangle (CST) finite element, Fig. 27b. One element ,the

highlighted element in the figure, with degraded tensile strength and fracture energy of one

tenth of the original values (i.e., ft = 4.0E+00 MPa and GF = 5.0E+00 N/mm) is embedded

on the left-hand side of the specimen to implicitly model the local imperfection.

The local tracking algorithm, Box 1, equipped with the stabilizing crack tip technique,

Box 2, was used for tracking purpose. The global tracking strategy was also used, but the

force-displacement curves were very similar. Hence, we focus our discussion of this part on

the local tracking results. The discontinuity surface paths for different updating schedules

and the deformed finite element mesh with vertical displacement distribution are illustrated

in Fig. 28. At localization initiation, the discontinuity surface starts to evolve from the

location of the imperfection. As the simulation continues, the surface evolves following an

(a)

(b)

Figure 27: Stretching of a block with local imperfection. (a) Dimensions, loading, and boundary
conditions, (b) coarse unstructured finite element meshing. The element representing the local imperfection

is highlighted on the left-hand side.
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(a)

(b)

Figure 28: Stretching of a block with local imperfection. Using the local tracking algorithm, (a) the
discontinuity surface paths (only for elements in the loading phase) for performing end-of-step updating

using 25 steps (fine solid line), updating within iterations (fine dashed line), end-of-step updating using 200
steps (bold solid line), updating within iterations (bold dotted line), (b) deformed finite element mesh

along with vertical displacement distribution for performing end-of-step updating using 200 steps.

inclined path towards the right-hand upper corner of the specimen. The softening response is

captured throughout a set of localized elements forming an inclined strain localization band.

As shown in Fig. 28a, the employed updating schedules, end-of-step updating and updating

within iterations, using 200 time steps (bold solid and dotted lines) give an approximately

identical discontinuity surface paths, except for the middle part where end-of-step updating

gives a lower surface trajectory. The surface paths for the case of using 25 time steps (fine

solid and dashed lines) show some other differences. End-of-step updating gives a longer and

more inclined path, while updating within iterations reveals a relatively closer trajectory to

the more accurate results of the simulations using 200 time steps.

Figure 29 provides the force-displacement curves for the simulations equipped with the

local tracking algorithm using 25 and 200 time steps. The horizontal axis represents the

vertical displacement imposed only on the node located at the far left side of the specimen,

which experiences the maximum applied deformation. The vertical axis indicates the total

calculated reaction forces in vertical orientation for all the nodes located on the top edge.
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Figure 29: Stretching of a block with local imperfection. Force-displacement curves for using the local
tracking algorithm considering the two cases of end-of-step updating and updating within iterations using

25 and 200 time steps.

Figure 30: Stretching of a block with local imperfection. Force-displacement curves zoomed in around peak
force, the end-of-step updating case approaches updating within iterations as time step size is refined.

The figure compares the two cases of performing end-of-step updating and updating within

iterations. For using 25 steps, end-of-step updating has a higher peak stress and slightly

higher residual stress as the localization surface evolves, which is an incorrect estimation. As

seen in the earlier examples, the generated inaccuracy originates from the delayed detection
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of the localization status, and keeps building up as the localization surface evolves. Except

for this localization evolution part of the simulation, i.e., for the preliminary elastic response

and when no localization propagation is observed, the two force-displacement curves agree

very closely. The difference in the reaction forces starts to alleviate as the time step size is

refined, i.e., the end-of-step updating case approaches updating within iterations. The graph

patterns for using the global tracking algorithm are similar.

Figure 30 shows the force-displacement curves for a simulation using the local tracking

algorithm, which is magnified around the peak value of the reaction forces. The end-of-step

updating case is performed using 25, 50, 100, and 200 time steps. A softer response is

captured as the step size is refined and the force-displacement curve approaches the case of

updating within iterations using 200 steps. Interestingly, updating within iterations gener-

ates a smoother force-displacement curve even compared to the end-of-step updating case

with 200 steps.

Figure 29 also compares the force-displacement curves for the simulations with the local

tracking algorithm performed within iterations using 25 and 200 time steps. In contrast

to the case of end-of-step updating, Fig. 30, where a considerable amount of difference in

the estimated reaction forces was observed, less difference is generated for updating within

iterations. As is shown in Fig. 29, the force-displacement curve for the case of using 25

time steps almost follows the curve of 200 time steps (notice the marker locations on the

curve), except for approximately the second half of the simulation where a softer response is

captured due to the different surface paths each case reveals.

In terms of accuracy of the two updating schedules, they reveal similar localization trajec-

tories, though some differences in surface length and inclination are observed. For end-of-step

updating, artificially increased reaction forces, leading to inaccurate higher estimations of

energy dissipation, are also generated for a longer range around the peak value in the force-

displacement curves. This longer range is built because of the relatively gradual propagation

of the localization surface. For an ongoing localization evolution, the end-of-step updating

results in a delayed detection of newly localized elements, which then imposes artificial load-

ing to the specimen. Similar difference patterns in robustness and computational cost are

observed as in the first example (stretching of a homogeneous block). Due to the gradual
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Table 5: Stretching of a block with local imperfection. Simulation time for different tracking strategies and
updating schedules using 25 time steps.

Simulation type Tracking strategy Updating schedule
Simulation time

(sec.)

Stretching of a block
with local

imperfection

Local tracking
End of step 1081.58

Within iterations 1829.74

Global tracking
End of step 975.59

Within iterations 1678.37

formation of the discontinuity surface, the artificial increased stress of the specimen, imposed

when using the end-of-step updating, does not create convergence issues, unlike the nearly

homogeneous examples. Table 5 provides the simulation time for each tracking strategy and

updating schedule employed.

Table 6 shows the utilization of the stabilizing crack tip technique, Box 2, implemented

within the local tracking algorithm. The method is needed for the end-of-step updating

case using large step sizes (25 and 50 time steps). However, as the step size is refined, this

technique is not needed. Smoother discontinuity paths, perhaps as a result of lower stress

gradients, eventually eliminate the need for the stabilizing technique. Performing updating

within iterations does not require the technique even for large step sizes since it captures a

more accurate softening response. This is in accordance with the notion that the end-of-step

updating with large step sizes raises inaccuracy issues. The global tracking strategy is also

capable of tracking a smoother discontinuity surface trajectory without the need for the

stabilizing technique.

Table 6: Stretching of a block with local imperfection. Utilization of the stabilizing crack tip technique.

Tracking
strategy

Updating
schedule

Number of time steps

Number of
times

stabilizing
used

Change in
orientation

(exceeding θallowed)

Local
tracking

End of step
25 2 155.67◦, 168.25◦

50 1 171.64◦

100, 200 0 n/a

Within
iterations

25, 50, 100, 200 0 n/a

Global
tracking

(either case) 25, 50, 100, 200 n/a n/a
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7. Concluding remarks

In this study, some numerical aspects of different band updating schedules in modeling

strain localization problems are investigated. One schedule is based on updating fracture

path information at the end of each time step, the other by updating within iterations in a

given time step. A comparison between local and global tracking algorithms has also been

made. Investigating each of these approaches and performing a comparative study have been

done by modeling some numerical examples.

To investigate the performance of the schedules, the localization is set up to initiate when

the maximum principle stress exceeds a given tensile strength. The direction orthogonal to

the maximum principal stress direction has been taken as the orientation of the localized

surface. A traction-separation relationship in the spirit of damage mechanics has been em-

ployed to determine displacement jumps along localization surfaces. Embedded in enhanced

finite element framework, local and global tracking strategies have been tested for tracking

localization surface paths. The following observations have been made:

• Robustness : Updating within iterations has been generally observed to provide a more

robust numerical algorithm, while end-of-step updating has sometimes failed to reach

an expected result. The reason for such performance is the more accurate estimation

of softening response developed by the former approach. For modeling nearly homoge-

neous problems using large step sizes, the end-of-step updating loses the capability to

accurately capture peak stresses, discontinuity surface lengths and dissipated energy.

This effect has been observed leading to global failure of the simulation where even

performing multiple step cuts could not find a converged solution. However, reducing

step size did improve robustness. Updating within iterations has been also observed

to experience a slower rate of convergence. Such sub-quadratic convergence in global

Newton-Raphson iterations might cause robustness issues in some complex problems,

though it did not raise any issues for the simulations in this study.

• Accuracy : Large step sizes with updating at the end of each time step can introduce

inaccuracies in length of localized bands as well as the force-displacement curves. The

latter difference is marked by over-prediction of reaction forces, notably peak force,
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which corresponds to incorrect estimation of the amount of energy dissipated by the

localized region. The reason for this overestimation is the delayed detection of the

set of localized elements intersected by the discontinuity surfaces (band elements) at

the end of the step at which the onset of localization occurs. Such a lag in a given

localization detection process imposes an artificial extra loading to the specimen before

implementing the designated softening. The inaccurate estimation of localization sta-

tus may introduce extra number of localized elements to the localization bands which

then may cause convergence issues in the solution of global governing equations. How-

ever, updating within iterations allows improvement of the length and orientation of

localization bands during the iteration procedure. Therefore, the length of the local-

ized region can be modified (typically corrected) before localization orientation is fixed

by the end of the time step.

In homogeneous and nearly homogeneous problems where the entire localization

surfaces form almost instantly within one or a few time steps, end-of-step updating

using large step sizes can over-predict peak force compared to the case of updating

within iterations. Hence, the extra propagation of localization surfaces occurs around

this time. For problems involving a relatively gradual band formation, such inaccurate

estimation of energy dissipation continues through the propagation given an ongoing

localization evolution. The two updating schedules tend to agree as the step size is

refined. For smaller time steps, end-of-step updating becomes capable of determining

the localization status more accurately, and fewer inaccuracies are observed. The

performance typically improves as more time steps are used. In terms of inter-element

spatial location and orientation of discontinuity surfaces, the two approaches have been

generally found to be similar, especially on time step refinement.

• Computational cost : More time and computational effort have been observed when

updating is carried out for each single iteration at least in cases where a large number

of step cuts are not necessary for end-of-step updating. Two major factors for such

increased computational cost have been identified. One is the extra number of times

that the tracking subroutine is called since updating is performed for each iteration,
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compared to the end-of-step updating case where the subroutine is called only once

for a given time step. The other factor corresponds to the slower rate of convergence

for a given evolving localization that results in additional iterations before reaching a

converged solution. Embedding the set of softening elements within the global-level

governing equations during the iterative solution is considered to be the reason for such

a relatively slower convergence. Quadratic convergence is recovered when no further

localization propagation occurs. On the other hand, the end-of-step updating has been

observed to follow a quadratic convergence rate, and sometimes faster depending on

the problem being solved.

Overall, updating within iterations captures a relatively more accurate softening response

at the expense of higher computational cost compared to the end-of-step updating. It is

then down to one’s preferences to select one of the approaches while trying to balance the

computational cost and accuracy needs for a strain localization problem at hand. It should

also be noted that the end-of-step updating schedule using large step sizes can result in

less robust algorithms, and is not recommended for modeling nearly homogeneous problems

where rapid propagation of discontinuity surfaces are observed.

The enhanced finite element framework was employed in this study to model strong

discontinuities in the form of fractures, and the conclusions derived above refer primarily

to those type of discontinuities. However, there is this implicit understanding that some

observations and conclusions apply in numerical modeling of weak discontinuities as well.

Appendix A. Residual term for balance on a discontinuity surface and numerical

implementation

Appendix A.1. Residual term and derivatives

The residual expression for balance on a discontinuity surface in matrix form, Eq. 17, is

given as

re =

(
f (w̃e)

w̃e

1 + [ne] · [Ce] ·
[
∇fh

e

])
·we − [ne] · [Ce] ·

{
εhe

conf
}

= 0 (A.1)
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where 1 is a 2-by-2 identity matrix. The reader is referred to Section 4 for definition of other

parameters. The expanded description, showing the array form of the matrices and vectors

of Eq. A.1, can be represented in Voigt notation as
f(w̃e)
w̃e

wex

f(w̃e)
w̃e

wey

+

 nex 0 ney

0 ney nex

 ·

c(1− ν) cν 0

cν c(1− ν) 0

0 0 G

 ·


wexf
h
e ,x

weyf
h
e ,y

wexf
h
e ,y + weyf

h
e ,x

−
 nex 0 ney

0 ney nex

 ·

c(1− ν) cν 0

cν c(1− ν) 0

0 0 G

 ·


εhe, xx
conf

εhe, yy
conf

εhe, xy
conf

 = 0 (A.2)

where wex and wey are components of the displacement jump vector we in the global coor-

dinates. The quantities nex and ney are components of the unit normal vector, ne, which is

perpendicular to the discontinuity surface S pointing towards Ω+ for each localized element

e, as shown in Fig. 1b. The elastic modulus, Ce, is expanded for the plane strain case,

where ν represents the Poisson’s ratio, G, the shear modulus, and c is defined as

c =
E

(1 + ν)(1− 2ν)
(A.3)

and E is the Young’s modulus. For a plane stress problem, the corresponding form of the

elastic modulus is used. The terms fh
e ,x and fh

e ,y are summation of the gradient of the shape

functions for the active nodes of a localized element e in x and y directions, respectively.

The strain terms are shown as εxx, εyy, and εxy.

For a loading phase, the solid curve in Fig. 5b, Eq. A.2 represents a nonlinear balance

equation. The nonlinearity arises from the dependence of w̃e on we as the discontinuity

surfaces separate. By simplifying, the equation takes the form of f1

f2

 = 0. (A.4)

Each of the quantities f1 and f2 represents one of the two balance equations emerging from the

50



resultant 2-by-1 matrix equation, Eq. A.2. This equation can be solved for the displacement

jump vector components, wex and wey, using an element-level Newton-Raphson iterative

solution algorithm, in which the iterative incremental values are explicitly calculated by

 ∆wex

∆wey

 =

 ∂f1
∂wex

∂f1
∂wey

∂f2
∂wex

∂f2
∂wey

−1

·

 −f1

−f2

 . (A.5)

The corresponding derivatives with respect to the displacement jump components in the

global coordinates are

∂f1
∂wex

= −c(1− ν)fhe ,xnex −Gf
h
e ,yney −

wex
2

w̃3
e

f (w̃e)

[
w̃e

(
− ft
GF

)
− 1

]
− f (w̃e)

w̃e
(A.6)

∂f1
∂wey

= −cνfhe ,ynex −Gf
h
e ,xney −

wexwey

w̃3
e

f (w̃e)

[
w̃e

(
− ft
GF

)
− 1

]
(A.7)

∂f2
∂wex

= −cνfhe ,xney −Gf
h
e ,ynex −

wexwey

w̃3
e

f (w̃e)

[
w̃e

(
− ft
GF

)
− 1

]
(A.8)

∂f2
∂wey

= −c(1− ν)fhe ,yney −Gf
h
e ,xnex −

wey
2

w̃3
e

f (w̃e)

[
w̃e

(
− ft
GF

)
− 1

]
− f (w̃e)

w̃e
. (A.9)

It should be noted that w̃e, which represents the historical maximum of the magnitude of

the displacement jump vector for a localized element e, should be updated within Newton-

Raphson iterations; i.e., each time a new jump increment is calculated by solving Eq. A.5,

the corresponding effect on w̃e should be taken into account. For numerical implementation,

w̃e is also recorded at the end of each time step, i.e., when a converged solution is reached,

as w̃ conv
e . This end-of-step recording occurs regardless of the type of the adopted tracking

strategy and updating schedule. By performing the iterative solution, the accumulated

element-level displacement jump vector we is calculated. A relative convergence tolerance

of tollocal = 1.0E−08 is assumed for the Newton-Raphson algorithm.

For the unloading/reloading regime, the dashed line in Fig. 5b, Eq. A.2 becomes a linear

balance equation, since w̃e is a constant without any dependence on the displacement jump

vector components. Therefore, the equation can be explicitly solved for the unknown jump

terms using

we =
[ne] · [Ce] ·

{
εhe

conf
}

f(w̃e)
w̃e

1 + [ne] · [Ce] · [∇fh
e ]
. (A.10)
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Box 4 represents an algorithmic summary of the calculation procedure of the displacement

jump vector for a localized element performed at each global iteration.

Box 4: Summary of the calculation procedure of the displacement jump vector for a localized
element.

Step 1 : If a separation has already started in a previous time step (w̃ conv
e 6= 0.),

assume unloading/reloading regime and solve explicitly for the jump unknowns
using Eq. A.10 and update w̃e. Otherwise, go to Step 3.

Step 2 : If w̃e is less than w̃ conv
e , the assumption of unloading/reloading is correct

and exit. Otherwise, go to Step 3.

Step 3 : If w̃e = 0, then assign w̃e = 1.0E−10 to avoid zero denominators.

Step 4 : Solve for the jump unknowns using the Newton-Raphson iterative solution
algorithm, see Eqs. A.4 through A.9, and update w̃e.

Remark 4. Taking an initial guess is a requirement for the Newton-Raphson solution pro-

cedure. To solve for the element-level displacement jump vector here, such initial guess is

in the form of a relatively small (compared to the specimen dimensions) displacement vector

in global coordinates. The Newton-Raphson algorithm was often observed to face conver-

gence issues when random initial guesses were taken. To entirely remove such numerical

difficulties, it is suggested to take those initial values equal to a very small portion (of order

1 .0E−10 ) of the traction vector on the discontinuity surface. This strategy has the physical

logic of having the separation vector and its corresponding driving force in the same direction,

and also is in accordance with one of the essential assumptions of the adopted cohesive crack

model pointed out in Section 3, i.e., the traction vector is parallel to the displacement jump

vector across the discontinuity interfaces, as is shown in Eq. 9.

Appendix A.2. Numerical implementation

In this subsection, two flowcharts are provided in order to illustrate the numerical algorithm

employed to model strain localization problems. Figure A.31 gives a schematic representa-

tion of the overall solution algorithm. The loop included in the flowchart corresponds to the

time discretization of the simulation. At each time step, the Newton-Raphson subroutine is

called to solve for global governing equations of the boundary value problem. The relative

tolerance for global convergence is taken as tolglobal = 1.0E−08.

Figure A.32 illustrates a flowchart for the Newton-Raphson iterative algorithm, which

is embedded as a subroutine in the first flowchart, Fig. A.31. A subroutine to calculate

the residual vector performs the element-level calculations including element internal and
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external forces, stiffness, and residual, along with the global-level assemblages. The localized

elements are also treated accordingly. If the end-of-step updating schedule is considered, the

localized elements will be determined based on the localization status at the end of a previous

step for a given time increment. Nevertheless, for the case of updating within iterations,

the corresponding data will be based upon the localization status at the end of a previous

iteration for a given iteration. For the first iteration, such data will emerge from the end of

a previous step.

For both updating schedules, end-of-step and within iterations, localization orientation

should get fixed by the end of each time increment, i.e., when a converged solution is reached.

This is in accordance with reality observation that whenever a displacement discontinuity

is formed, the discontinuity surface orientation remains constant. Within the local tracking

algorithm, this task is done by fixing the unit vector normal to the discontinuity surface,

Figure A.31: Representation of the overall solution algorithm.
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and by keeping the nodal temperature of band element nodes constant if the global tracking

strategy is adopted. Displacement, strain, and stress fields along with reaction forces are

stored at the end of each time step for plotting the results.
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Belytschko, T., Moës, N., Usui, S., Parimi, C., 2001. Arbitrary discontinuities in finite elements. International
Journal for Numerical Methods in Engineering 50 (4), 993–1013.

Biabanaki, S., Khoei, A., 2012. A polygonal finite element method for modeling arbitrary interfaces in large
deformation problems. Computational Mechanics 50 (1), 19–33.

Borja, R. I., 2000. A finite element model for strain localization analysis of strongly discontinuous fields
based on standard galerkin approximation. Computer Methods in Applied Mechanics and Engineering
190 (11), 1529–1549.

Borja, R. I., Regueiro, R. A., 2001. Strain localization in frictional materials exhibiting displacement jumps.
Computer Methods in Applied Mechanics and Engineering 190 (20), 2555–2580.

Boyce, B. L., Kramer, S. L., Fang, H. E., Cordova, T. E., Neilsen, M. K., Dion, K., Kaczmarowski, A. K.,
Karasz, E., Xue, L., Gross, A. J., et al., 2014. The sandia fracture challenge: blind round robin predictions
of ductile tearing. International Journal of Fracture 186 (1-2), 5–68.

Camacho, G. T., Ortiz, M., 1996. Computational modelling of impact damage in brittle materials. Interna-
tional Journal of solids and structures 33 (20), 2899–2938.
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