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ABSTRACT  

This paper presents a u-p (displacement-pressure) semi-Lagrangian Reproducing Kernel (RK) 
formulation to effectively analyze landslide processes. The semi-Lagrangian RK approximation 
is constructed based on Lagrangian discretization points with fixed kernel supports in the current 
configuration. As a result, it tracks state variables at discretization points while allowing extreme 
deformation and material separation that is beyond the capability of Lagrangian formulations. 
The u-p formulation following Biot theory is incorporated into the formulation to describe 
poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to 
ensure stability of the domain integration, and kernel contact algorithms to model contact 
between bodies, are introduced in the u-p semi-Lagrangian RK formulation. The proposed 
method is verified with several numerical examples and validated with an experimental result 
and the field data of an actual landslide. 

 

1. INTRODUCTION 

During the past century, much research has been done to mitigate the impact of landslides, which 
can cause considerable damage as well as loss of life [1-4]. While a well-controlled experiment 
can be effective to study and analyze landslide activities on a case-by-case basis, it requires 
considerable time, expense, and human labor. An alternative way is to perform a mathematical 
analysis of the slope. Early approaches to this problem include Limit Equilibrium Methods 



(LEMs) [5] to analyze slope stability of a landscape. These techniques provide a relatively quick 
and tractable analysis of the stability of the slope. Nevertheless, LEMs neglect local deformation 
and consider only equilibrium conditions of an entire slope using a pre-defined slip surface [5], 
which limits their applicability to conduct more sophisticated slope stability analysis.  

With the advancement of computational capabilities in the past two decades, numerical methods 
have been extensively employed and developed for landslide analysis. However, due to 
distinctive numerical challenges, numerical analysis of landslide processes is commonly 
separated into slope stability analysis and run-out simulation. To analyze slope stability, whose 
characteristics consist of complex poromechanics and solid-like behaviors, finite element 
methods (FEMs) with Lagrangian formulations are usually employed [1, 6, 7]. Although FEMs 
can accurately and effectively account for complex soil behaviors while the slope undergoes 
small deformation, they suffer significant difficulties due to severe mesh distortion and 
separation when slope experiences extreme deformation and propagates. As a result, run-out 
simulation, which involves extremely large deformation and material separation, are usually 
handled by methods such as smoothed particle hydrodynamics (SPH) [8-14] and the discrete 
element method (DEM) [15-17]. This is due to the discontinuum-based nature of SPH [18] and 
DEM [19], which is suitable with simulating flow-like phenomena. Nevertheless, SPH suffers 
from tensile instability and boundary deficiency since the kernel approximations are inconsistent 
[18], while parameters of element-to-element contact models used in DEM are difficult to 
calibrate and can significantly impair the accuracy [20]. Since it is extremely challenging or even 
impractical to apply one of these numerical methods to effectively and accurately analyze whole 
landslide processes, some researchers have suggested or employed coupled methods such as 
FEM-SPH [21] or FEM-DEM [22, 23], to handle different stages of landslide processes with 
suitable numerical methods by defining certain strain criteria to switch between methods. 
However, mathematical verification of the transition between two distinctive numerical methods 
is still not robust. Recently, Finite elements with Lagrangian Integration Points (FEM-LIP) have 
been applied to landslide problems [24, 25]. Developed from particle-in-cell methods, FEM-LIP 
has a fixed Eulerian background mesh with integration points that can flow through it. 
Constitutive models have been developed to model the transition from solid to fluid behavior, 
but the method still relies on a background mesh. These numerical issues demonstrate the 
necessity of a sophisticated yet effective numerical method that can both accurately analyze 
slope stability and simulate landslide run-out. 

The Reproducing Kernel Particle Method (RKPM) [26, 27] has been proposed to eliminate the 
difficulties due to the strong mesh dependency of FEMs. The method introduces a correction 
function in the kernel approximations to satisfy the consistency conditions and partition of unity 
[28]. Hence, the RKPM can accurately analyze slope stability as FEM, while higher-order 
accuracy can be easily achieved by increasing the order of basis functions in the correction 
function. The method can also handle large deformation with ease [27, 29-31] since it requires 
only discrete points to construct approximation functions. 



This paper presents an extension of the RKPM, the semi-Lagrangian RKPM, for analyzing entire 
landslide processes within one mathematical framework. Besides the capability to analyze slope 
stability as effectively as FEMs, the present method can also naturally model run-out simulation. 
This is due to the construction of the approximation functions in the current configuration [32, 
33], which readily allows extreme deformation and material separation. Because of such 
principle, the method can also naturally detect contacting bodies with contact forces directly 
calculated from a constitutive model, which can be aided by a level-set algorithm [31] to enhance 
accuracy of the contacting surfaces. In addition, to preserve the mesh-free properties while 
maintaining stability, a stabilized nodal integration method called the Modified Stabilized Non-
conforming Nodal Integration (MSNNI) [34] is incorporated in the framework. In this work, the 
domain integration method and contact algorithms are addressed in a two-field framework due to 
the incorporation of the two-field formulations using Biot theory [35] with the semi-Lagrangian 
RKPM to properly describe mechanics of porous media. 

 

2. SATURATED DEFORMABLE POROUS MEDIA 

In this study, the poromechanics of saturated deformable porous media is described using a 
saturated two-phase formulation extended from the Biot theory [36]. This is to take into account 
the coupling effect between solid and fluid phases, which is important to the mechanical 
behavior in most geomaterials. Only slow to moderate speed events, such as consolidation and 
landslide problems, are considered so the relative acceleration of the fluid with respect to the 
solid can be neglected [36].  

Considering no phase change and isothermal conditions, the governing equations of the dynamic 
displacement-pressure (u-p) formulation can be described by  

Balance of momentum equation:      ,ij j i iub                  in   (1) 
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where ij  is the total stress, i ib g  is the body force, ig  is the acceleration of gravity, 

(1 ) s f    n n  is the saturated density of porous medium, n  is the porosity, s  is the 

density of solid grains, f  is the density of fluid f , iu  is the displacement of solid skeleton, 

and   is the problem domain. The Biot coefficient is defined as 1 sK K   , K  is the bulk 

modulus of porous medium, sK  is the bulk modulus of solid grains, M  is regarded as Biot 

compressibility modulus, and fP  and f
iq  are the pore fluid pressure and superficial velocity of 

fluid, respectively.  
 



The Biot compressibility modulus M  can be denoted by 
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where fK  is the bulk modulus of fluid.  
An isotropic Darcy’s law is employed to describe fluid flow through an intrinsic permeability k, 
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where f  is the dynamic viscosity of fluid.  

Following Biot theory, the total stress ij  can be decomposed into the effective stress of solid 

phase ij  and the pore fluid pressure fP  by 

 ij ij
f

ijP       (5) 

where  ij  is the second-order identity tensor.  

Since ij  is fully decoupled from the fluid phase, it can be computed using constitutive models 

of solid independent of the fluid phase. For demonstration purpose, the Drucker-Prager plasticity 
model with non-associated flow rule and a damage model adapted from [37] are used in this 
study to represent geomaterial behaviors. 

The Drucker-Prager yield function is described as 

 2 12J BI  f k   (6)  

where 2J  is the second invariant of the deviatoric part of ij ; 1I  is the first invariant of ij ; B  

and k  are material parameters; ij  is the effective stress before attenuated by material damage. 

The Drucker-Prager material parameters B  and k  can be related to cohesion c  and friction 
angle   of Mohr-Coulomb by 
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For non-associated flow rule, the plastic potential function has different form from the yield 
function. In this paper, the plastic potential function takes the following form 

 2 12J I  g k   (9) 

where   can be related to dilatancy angle   as 
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 A damage parameter d is introduced to degrade the deviatoric part and the tensile volumetric 

part of the effective stress ij . It yields the total (damaged) effective stress ij  as 

    dev +1 (1 )ij ij kk kk ijd d          
  (11) 

where superscript dev, +, and – indicate deviatoric, tensile, and compressive parts of the 
corresponding terms, respectively. Following [32], the damage parameter d is defined as  
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where   is the norm of the deviatoric strain (i.e., dev dev
ij ji   ) used as a means to identify 

material damage. The damage parameter 2c  specify the initiation point, when material starts to 

damage (i.e. 0d  ). The damage parameter 1c  specify the critical point, when material is fully 

damaged (i.e. 1d  ). 

In addition, to take into account large deformation, the stress update is carried out following [38]  
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where dmg
ijklC  is elasto-plastic-damage material tangent tensor. 1n

ikT  and 1n
ljT  are the 

transformation matrices denoted by  
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The incremental strain 0.5  n
kl  can be expressed as 
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The superscript 0.5n  denotes that the corresponding variables are evaluated from the 
configuration at time step , which minimizes the error [38].  0.5n



The corresponding boundary and initial conditions of the governing equations (1) and (2) are 
defined as  
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where  and f
in  are the unit normal vectors in the outward direction of corresponding 

boundaries h  and s . In Eq. (18), ih  is the prescribed traction on h ; g
iu  is the prescribed 

displacement on g ; f
sv  is the prescribed fluid inflow on s ; f

rP  is the prescribed pore fluid 

pressure on r ;  is the boundary of   and has the following relationships: h g   , 

h g  , s r    , and s r   ; the initial values of displacement and velocity of 

the porous medium are denoted by  0
iu x  and  0iu x , respectively;  0

fP x  is the initial value of 

the pore fluid pressure. Only water is considered in this work, as the fluid phase, and hence the 
superscript f  will be replaced by w  hereafter. Additionally, the superscript w  on the pore 

water pressure wP  will be dropped for simplicity. 
 

Applying the boundary conditions (18) into the governing equations (1) and (2), the variational 
equations of the u-p formulation are obtained as 
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with the corresponding Galerkin approximation as follows 
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where superscript h denotes approximated function of the corresponding term. 
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3. SEMI-LAGRANGIAN RKPM 

In the Lagrangian formulation, mapping between current configuration and initial configuration 
is required, i.e., ( , )tx X . Here X  refers to the Lagrangian coordinates, x  refers to the 

Eulerian coordinates, and   is the mapping function. This mapping between the two 

configurations breaks down when extreme deformation occurs. To circumvent such issue, the 
shape functions of semi-Lagrangian RKPM [31, 32] are constructed in the current configuration, 
thus avoiding the severe distortion or even separation of the support domain. The discretization 
(i.e., nodal points) of semi-Lagrangian RK formulation, however, still follow a Lagrangian 
description to track internal variables of the same material points at each time step while the 
support of the RK shape function maintains a fixed shape and size. These properties of semi-
Lagrangian RKPM, illustrated in Figure 1, are advantageous for problems involving extremely 
large deformation and material separation.   

 

                     (a)                  (b)                  (c) 
 

FIG. 1.  Comparison between 2-D (a) RK shape functions in the initial configuration,  
 (b) Lagrangian RK shape functions in the current configuration,  

and (c) semi-Lagrangian RK shape functions in the current configuration. 
 

The semi-Lagrangian RK shape functions are defined as 

        ; aI IIC    x x x x xx  (23) 

where  I x  is the shape function of node I  constructed in the current configuration and 

 ,II tx x X  is the nodal position of node I in the current configuration. The correction function 

 ; IC x x x  and the kernel function  a I x x  are also determined in the current 

configuration. The kernel function controls the smoothness and locality of the approximation 
function, and hence it should be selected depending on the characteristics of the problem, e.g., 
the order of partial differential equations. For m-dimensional analysis, the m-dimensional kernel 
function can be constructed by the product of one dimensional kernel function; that is 
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where a  is a number defining the influence domain, also called the support size of the function. 
This value is usually normalized by nodal distance and called the normalized support size 

a a x  .  

The correction function is introduced to enforce the reproducing conditions to achieve 

reproducibility for monomials up to the specified thn  order consistency, that is 
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The coefficients ( )b x  are obtained by satisfying the thn  order reproducing condition 
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where NP  is the total number of nodes. By using Eqs. (23) and (26) and imposing the 
reproducing condition (27), the corresponding coefficients ( )b x  can be determined as 

 1( ) ( ) ( )b x M x H 0  (28) 

where ( )M x  is the moment matrix which can be described in discrete form as 
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and  IH x x  is the vector of monomial basis functions. 

Substituting Eq. (28) into Eqs. (26) and (23), the semi-Lagrangian RK shape function reads 
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Therefore, a function iY  can be approximated by using semi-Lagrangian RK approximation 
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Subsequently, the approximation of the temporal derivative of function iY  is expressed as 
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where  iIy t  is the nodal coefficient corresponding to  ,h
i tY x .   I x  is the change of the RK 

shape function with respect to time, due to the reconstruction of the semi-Lagrangian RK shape 
function, which can be interpreted as a convection term to carry the information history during 
the transition between the old shape function and the new one. It is defined as 

        ;I I IaC    x x x x x x  (33) 

where the temporal derivative of the correction function is omitted since the function is 
constructed by solving the corresponding coefficient ( )b x  under the current configuration. The 

temporal derivative of the kernel function  Ia x x  is constructed by using Eq. (24) and 

performing the chain rule 
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4. SEMI-LAGRANGIAN RK FORMULATION FOR SATURATED DEFORMABLE 
POROUS MEDIA 

Two cases of u-p formulation are considered in this paper: dynamic analysis and quasi-static 
analysis. For dynamic case, the formulations are as shown in Eqs. (1) and (2). However, for 
quasi-static case, the inertial term in Eq. (1) is omitted, which is only suitable with slow motion 
events [36]. Both cases are spatially discretized by the semi-Lagrangian RK while the temporal 
domain is discretization by different schemes for each case. The implicit temporal integration 
scheme is employed in the quasi-static case, whereas explicit time discretization is used for 
dynamic analysis due to higher efficiency. Explicit dynamics have been shown to be well suited 
for larger scale and faster motion problems such as landslides. 

 

4.1 Spatial Discretization 

The approximated displacement h
iu , pore water pressure hP , and their spatial derivatives with 

respect to current configuration in Eqs. (21) and (22) are expressed by the semi-Lagrangian RK 
approximation (31) as 
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where ( )iId t  and ( )Ip t  are nodal coefficients of displacement and pore water pressure, 

respectively. For efficiency propose, the same linear-order semi-Lagrangian RK shape functions 
are adopted for both the displacement and the pore pressure fields in this study. 

 

Remark:  

It is well known that the approximations for the displacement and the pressure should be 
properly selected, according to the inf-sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition 
[39-41] to avoid pressure oscillations, which ultimately leads to numerical instability. Although 
adopting the same linear semi-Lagrangian RK shape functions for the displacement and pressure 
fields violates the LBB condition, the domain integration methods, namely nodal integration, 
described in the succeeding section alleviate the LBB instability issue. The nodal integration 
schemes under-integrate the strain energy, causing a similar effect as the reduced integration 
techniques in FEM  [36]. As shown in Section 5, no instability condition has been observed in 
the problem where the equal order u-p FEM typically fails to provide a stable solution. It is, 
however, reported in [42] that the instability still occurs for problems with low permeability or 
under undrained conditions when a nodal integration scheme is employed. In such a case, a 
pressure projection scheme can be introduced to project the linear pressure field onto a 
piecewise-constant field. The difference between the linear pressure field and the projected 
constant field can be added into the continuity equation (22) as a stabilization to overcome the 
deficiency of equal-order approximation. For details, the reader is referred to [42-44]. 

    

The temporal derivatives of approximated displacement h
iu  and pore water pressure hP  in Eqs. 

(21) and (22) are expressed by the semi-Lagrangian RK approximation (31) as 
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where iv  denotes the velocity, ( )iIv t  is the nodal coefficient of velocity, a i  is the acceleration, 

 aiI t  is the nodal coefficient of acceleration, and  I x  is the change of  I x  with respect 

to time. 

The semi-discrete form of Eqs. (21) and (22) are obtained by applying Eqs. (35) - (39) as 
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where the summation convention of repeating indices is employed. Dirichlet boundary 
conditions in the study are directly imposed by using RK shape functions with nodal 
interpolation property [45].  

 

4.2 Temporal integration 

Consider the semi-discrete dynamic u-p equations in Eqs. (40) and (41). The central difference 
and the forward Euler temporal integration schemes are employed for the displacement field and 
the pressure field, respectively, as follows.  

 1 20.5 a    n n n n
iI iI iI iId d tv t  (42) 

 1 1 1ˆ 0.5 an n n
iI iI iIv v t      (43) 

 1n n n
I I Ip p tp       (44) 

where t  is the time step. The predicted velocity 1ˆn
iIv   is defined as 

 1 aˆ 0.5   n n n
iI iI iIv v t  (45) 

The semi-discrete equations (40) and (41) are recast into matrix forms: 
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Introducing a mass proportional damping C and applying the temporal integration schemes in 
(42) - (45) to (46) and (47), the fully discrete equations read 

   1 ext int 1 1ˆ0.5 ( ) ( ) nn nt        aM C G C G v GdF F   (58) 

 ext int1 1 1n n n    Sp pF F Gd G     (59) 

The matrices associated with the time rate change of the semi-Lagrangian kernels, G , G , G , 

and G , can be omitted for computational efficiency since they have very subtle effects on the 
solutions when the relative nodal velocity in (38) are small to moderate (see [31, 33]), which is 
generally true in the problems studied in the paper. A one-dimensional wave propagation 

problem is given in Appendix B to demonstrate that the effect of G  and G  on the solution is 
negligible. 

Equations (58) and (59), therefore, degenerate to  

   1 ext i 1nt ˆ0.5 nnt      aC CvFM F   (60) 

 ex int1 tn  S Fp F     (61) 

In this paper, 5% mass proportional damping is used for C  and the lumped mass scheme by 
conducting the row sum is employed for M  and S  to acquire diagonal matrices. This process 
can uncouple the system of equations and significantly improve computational efficiency 



without significantly impairing accuracy, which will be shown in the first numerical example. At 

each time step, 1a n
iI  is solved from Eq. (60), then 1n

iIv  is updated by Eq. (43), and 1n
Ip   is 

subsequently determined by using Eq. (61). 

Even though the efficiency of the explicit temporal integration schemes are attractive, implicit 
temporal integration schemes offer better stability, which may be required in problems where the 
critical time step size is prohibitively small or unconditionally unstable result occurs in the 
explicit scheme, as shown in [46]. However, due to the computational cost of the implicit 
temporal integration, this approach will only be used for benchmark (small scale) problems in 
this paper for verification purpose. 

When slow-motion phenomena are considered, the inertia forces in the equation of motion can 
be neglected, leading to the u-p quasi-static formulation. The semi-discrete form of Eqs. (21) and 
(22) can be rewritten in matrix forms as 

 1 1 *n n  Kd Qp F   (62) 

 1 1 1 1 1 *T n n n n n        Q v Gd Sp Gp Hp F     (63) 

where  
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  (64) 

As described in dynamic case, convection terms can be negligible resulted in 

 1 1 *n n  Kd Qp F   (65) 

 1 1 1 *T n n n    Q v Sp Hp F   (66) 

Only the first order temporal derivative of displacement and pore water pressure is involved in 
Eqs. (62) and (63); therefore, backward Euler method is employed for the temporal integration of 
both displacement and pore water pressure. At time step 1n , the displacement and pore water 
pressure can be expressed as 

 1 1 1n n n n n
iI iI iI iI iId d tv d d         (67) 

 1 1 1n n n n n
I I I I Ip p tp p p         (68) 

Applying temporal integration (Eqs. (67) and (68)) in Eqs. (65) and (66), then rearranging the 
equations to recover the symmetry as follows  
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At each time step, the incremental displacement 1n
iId   and incremental pore water pressure 

1n
Ip   are solved simultaneously from Eq. (69), then 1n

iId   and 1n
Ip   are updated by Eqs. (67) and 

(68), respectively. 

 

4.3 u-p Stabilized Nodal Integration Method 

One of the most important issues in the Galerkin formulation using semi-Lagrangian RK 
approximation is the domain integration. This is primarily due to the nature of RK approximation  
and the applications of semi-Lagrangian RKPM, which usually involves extreme deformation 
and discontinuities [47]. Nodal integration methods are especially effective for problems with 
such characteristics. However, direct nodal integration method suffers from rank deficiency due 
to under sampling and the derivative of a RK shape function vanishing at the node [48, 49]. To 
remedy the instability caused by rank deficiency and also achieve computational efficiency for 
large deformation problems, the Stabilized Non-conforming Nodal Integration (SNNI) [33] uses 

the idea of the assumed strain  h
ij  from the Stabilized Conforming Nodal Integration (SCNI) [50] 

to construct the smoothed derivative of shape function over the pre-defined nodal representative 
domain (Figure 2b), that is 
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and    1
)  (



 
L

Ii IL
L

in
V

db x x x  (72) 

where LV  and L  are the volume and boundary, respectively, of the nodal representative domain 

L . Id  is the vector of corresponding nodal coefficient of displacement or so-called generalized 

displacement.  



                       

                               (a)                          (b) 
 

FIG. 2.  Nodal representative domains of (a) SCNI and (b) SNNI in 2-D. 
 

To be effective with the common applications of the semi-Lagrangian RKPM, the conforming 
restriction of each nodal representative domain, which aids SCNI in satisfying the integration 
constraints [50], is relaxed in SNNI by using a pre-defined nodal representative domain (Figure 
2). In this work, the smoothed gradient of shape function is also used for pore water pressure as 
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where  h
LP x  is the smoothed gradient of pore water pressure at node L .  

For the explicit temporal integration, Eqs. (60) and (61) are numerically integrated by SNNI as 
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where KA  is the boundary integration weight associated with node K  and LV  is the nodal 

volume associated with node L .   

For the implicit temporal integration, Eq. (69) is numerically integrated by SNNI as 
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Nevertheless, low energy modes may still be triggered in transient problems and cause 
instability; hence, the Modified Stabilized Non-conforming Nodal Integration (MSNNI) [34] 
improves the stability by adding a penalty-type stabilization term in the internal energy. For the 
u-p semi-Lagrangian RKPM framework, the terms 
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are added in int
IF  and int

IF , respectively, in Eq. (75), and the terms 
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are added in IJK  and IJH , respectively, in Eq. (76), where   and p  are the stabilization 

parameters ranging between 0 and 1, C  is the elastic material tangent tensor, Vc  is the nodal 

volume associated with subdomain c  (see Figure 2b), 
1

LNs

LV V


 cc
, and LNs  is the number of 

subdomains in the nodal representative domain of node L .  

 

4.4 Kernel Contact Algorithms for the u-p semi-Lagrangian RKPM 

Another advantage of the semi-Lagrangian RK shape function is that it can be used to naturally 
detect the contacting bodies without the necessity of pre-defined contacting surfaces as in 
conventional contact algorithms [51]. This trait has considerable benefits for modeling contact 
problems involving arbitrary new free surface formation, such as penetration and landslide 
problems. The natural kernel contact algorithm [33] uses the partition of unity of semi-



Lagrangian RK shape functions, i.e. 
1

( ) 1
NP

II
  x , as a contact detection algorithm to 

determine contact between two bodies (Figure 3). When the partition of unity is formed between 
contacting surfaces, the contacting bodies are naturally considered as a single continuum body. 
Hence, the contact forces are directly determined from pair-wise compressive stresses induced 
by the overlapping of the semi-Lagrangian RK shape functions, which naturally prevents 
interpenetration between contacting bodies.  

In this paper, we only consider contact for the case of dynamic u-p formulation using the explicit 
temporal integration as it is the only framework to be used for landslide simulations due to its 
significantly superior computational efficiency over the implicit temporal integration. For the u-p 

semi-Lagrangian RKPM framework, the contact force acting on point I  ( cont
IF ) is computed 

from the pair-wise compressive effective stress, that is  
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 F B x σ x    ;     ( ) 0IL L IL  n σ x n    (81) 

where ILn  is a unit vector from node L  to node I , *
IN  is the set of nodal points in the body that 

does not contain node I . The total force acting on point I  ( total
IF ) is then computed by the 

summation of internal force int
IF  from Eq. (75) and the contact force cont

IF , that is 

 total int cont
I I I F F F   (82) 

Although the natural kernel contact algorithm is efficient and naturally enforces the non-
penetration condition, the algorithm cannot represent stick and slip conditions as it only 
considers pair-wise compressive contact forces.  

 

FIG. 3.  Contact between two bodies using kernel contact algorithms. 
 

The frictional kernel contact algorithm , which employs the elasto-perfectly-plastic model to 
represent the friction forces in contact region (Figure 3) by following the Coulomb’s law of 
friction is adopted in this work. The yield surface of the plasticity model is designed such that 



elastic region represents stick condition and plastic region represents slip condition. By 
accounting for friction forces, Eq. (81) is corrected as 
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and  ( ) ( ) ( ) 2L IL L IL IL L IL N IL ILt       ξ x n σ x n n σ x n n n   (85) 

where ( )N IL L ILt   n σ x n  is the amplitude of normal traction, ( )T L IL N ILt  t σ x n n  is the 

tangential traction, and μ  is the friction coefficient, which is taken as 0.1 in this paper. 

Nevertheless, the pair-wise normal/tangential vector used in the aforementioned kernel contact 
algorithms is just a simplification, which may not properly represent actual normal/tangential 
vector of contacting surfaces and can impair the accuracy. The simplified vector is used due to 
the difficulty of determining physical boundaries in mesh-free discretization. To overcome the 
issue, a level set algorithm is introduced in [46] to represent contacting surfaces.  

The normal contact surface n  can be estimated by the zero level set ( ) 0 x  as 
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where AN  and BN  are the sets of nodal points in bodies A and B, respectively. However, it is 
computationally impractical to explicitly use the zero level set ( ) 0 x  as a criterion to define 

normal contact surface; therefore, it is proposed in  to search for the zero level set only on the 
lines that connect a pair of potential contacting nodal points. Ultimately, the contact region or so-
called contact processing zone (Figure 3), which is used for calculating friction forces as 
described above, is defined by the closest layers of nodal points to the contacting surfaces. 

 

5. NUMERICAL EXAMPLES 

Six numerical examples are given to verify and validate the performance of the explicit and 
implicit u-p semi-Lagrangian RKPM frameworks described in Section 4. The first three 
examples are benchmark problems, in which both explicit and implicit u-p semi-Lagrangian 



RKPM frameworks are considered, whereas only explicit framework is considered for the last 
three examples, which are landslide simulations. Unless otherwise noted, the following setups 

are used: semi-Lagrangian RKPM with MSNNI, 2m  subdomains per node with stabilization 
parameters of 0.5, cubic spline function for kernel function, and a normalized support size of 1.5 
with linear basis function for semi-Lagrangian RK shape functions. 

  

5.1 Consolidation 

A one-dimensional consolidation problem subjected to a step load,  0 ( ) 1000sin 5T t t  when 

0.1t   s and 0 1000T   Pa when 0.1t   s, on the top of the column is analyzed. Linear elasticity 

is employed for the geomaterial response of solid phase and material parameters are given in 
Table 1. The bottom of the column is fixed and impervious, whereas water can flow out freely (

0P  ) on the top of the column. The column is 30 m in height and is discretized by 61 nodes. 
The pore water pressure at the point of interest, which is 18 m from the top, is analyzed from 0 to 
30 seconds and compared with the analytical solution given in [36]. The accuracy when the row 
summation method is used for M  and S (Eqs. (60) and (61)) in the explicit temporal integration 
is also verified by comparing with the result when using consistent M  and S . 

Problem 5.1 5.2 5.3 

Young's Modulus (Pa), E  3 710  2.23 710  2.5 710  

Poisson's Ratio,   0.2 0.2 0.3 
Density (kg/m3),   1700 1670 2670 

Biot Coefficient,   1 1 1 

Biot Compressibility Modulus (Pa), M 3.33 810  1 1010  1.1 1610  

Permeability 
2m

Pa s

 
  

, w

k


 1.02 610 1 610  1 710  

  
Table 1. Material parameters of the one- and two-dimensional problems. 

 

From Figure 4, the results from the explicit and implicit u-p semi-Lagrangian RKPM agree well 
with the analytical solution. Oscillations occur at the beginning of the consolidation when the 
explicit temporal integration is used; nonetheless, the oscillations taper off in a few seconds and 
the results are in good agreement with the analytical solution. It is noted that the oscillations at 
the beginning of the results are due to the use of explicit temporal integration. Implicit 
integration, by contrast, shows no numerical oscillation [36]. The detailed study and discussions 
of the oscillations in this problem and the choice of Newmark parameters to achieve numerical 
damping, can be found in [36]. Further, while the difference of solutions between the use of the 



lumped scheme and the use of consistent matrices with the explicit temporal integration is subtle 
(Figure 4), the lumped scheme offers significantly better temporal stability over the consistent 
counterpart, as shown in [46].  

 

FIG. 4.  Semi-Lagrangian RKPM results of the one-dimensional consolidation problem. 
 

5.2 Soil Column with a Sinusoidal Loading 

A one-dimensional soil column subjected to a sinusoidal loading,  0( ) 1000 1 cos16T t t   N, on 

the top of the column is analyzed. Material parameters are given in Table 1 , whereas the Biot 
compressibility modulus M  is set to a large value to represent nearly incompressible porous 
media. Linear elasticity is employed for the geomaterial response of solid phase. The analytical 
solution of the problem for the fluid-saturated incompressible porous media can be found in , 
which is given as (see Appendix A for more details)  
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The above equation is directly employed as the boundary condition for displacement on the 
bottom of the column, while the top of the column is pervious and the bottom of the column is 
impervious. The soil column is 10 m in height and is discretized by 21 nodes. Displacement 
histories of the top node are plotted against the analytical solution from [52]. From Figure 5, the 
results from the explicit and implicit u-p semi-Lagrangian RKPM agree well with the analytical 
solution. No numerical oscillation is observed in the results. 



 

FIG. 5.  Displacement histories at the top of the soil column. 
 

5.3 Footing Load on Semi-Infinite Soil 

A two-dimensional strip load on infinite half-space as shown in Figure 6, where the boundary 
conditions for displacement and pore pressure are depicted, is analyzed. Linear elasticity is 
employed for the geomaterial response of solid phase and material parameters are given in Table 
1 [53]. The problem is discretized by 61 nodes on each direction. The stability of the u-p semi-
Lagrangian RKPM with MSNNI, when equal-order interpolation is used, is demonstrated in this 
problem by comparing the contour plot of the pore pressure with conventional FEM result [53]. 

 

FIG. 6.  Schematic of a strip load on infinite half-space. 
 

 



Figure 7a shows that a stable pore pressure distribution can be obtained by using equal-order u-p 
semi-Lagrangian RKPM with MSNNI and an implicit temporal integration scheme, whereas an 
oscillatory result is obtained from Q1-P1 FEM (cf. [53]). However, when the explicit temporal 
integration is used, temporal instability is observed in the u-p semi-Lagrangian RKPM result. 
The observation agrees with the von Neumann prediction given in  that the unconditionally 
unstable result is expected for the set of material parameters used in this problem, when explicit 
temporal integration is employed. Subsequently, when the Biot compressibility modulus M  is 
reduced to 1.1 1210 , a stable and smooth result is obtained in Figure 7b.  

                    

(a)                                                               (b) 
 

FIG. 7.  Contour plots of pore pressure using equal-order semi-Lagrangian RKPM with 
MSNNI. (a) Using the implicit temporal integration and the set of material parameters in 

Table 1; (b) Using the explicit temporal integration and a reduced compressibility modulus. 
 

5.4 Slope Stability Analysis  

 

FIG. 8.  Schematic of a slope. 
  

The explicit u-p semi-Lagrangian RKPM is employed to analyze stability of a slope (Figure 8) 
under dry conditions (p=0) by verifying the result with FEM [54]. The critical value of cohesion, 
when slope is unstable as reported in [54], is employed (Table 2) to compare the slip surface. 
Other parameters used in this study are identical to that in [54], which are for Drucker-Prager 



with associated flow rule. The only difference is the use of damage model in the proposed 
method to determine the slip surface instead of the slip circle analysis used in [54]. The problem 
is discretized by 25,588 nodes.  

Young's Modulus (Pa),  E  2 810   

Poisson's Ratio,   0.25 
Density (kg/m3),   2039 

Cohesion (Pa), c 2000 
Friction Angle (°),  20 

Damage Parameter: Initiation,  2c  0.05 

Damage Parameter: Critical,  1c  1 

 

Table 2. Material properties of the slope. 
 

 

The slip surface and displacement contour of the result from FEM [54] are illustrated in Figure 9 
by black solid lines and arrows, which are placed on top of the result from semi-Lagrangian 
RKPM. It can be seen from Figure 9 that the slip surface from semi-Lagrangian RKPM agrees 
well with the result from FEM, which verifies the capability of the framework to effectively 
analyzing slope stability. 

 

FIG. 9.  Comparison between the results from FEM with slip circle analysis (black) and 
semi-Lagrangian RKPM with damage model (color). 

 

5.5 Vertical-Cut Slope  



 

FIG. 10.  Schematic of a vertical-cut slope. 
 

A validation of a landslide simulation using the explicit u-p semi-Lagrangian RKPM is 
conducted by comparing the simulation of a three-dimensional vertical-cut slope (Figure 10) 
with the experimental result from a centrifuge test [55]. The vertical-cut slope is made of soft 
clay and is put under the centrifugal acceleration of 150 times of the gravitational acceleration. 
The behaviors of solid phase of porous media are represented by a Drucker-Prager plasticity with 
damage model as described in Section 2, and material parameters are given in Table 3. The 
boundary conditions for displacement are shown in Figure 10. In addition, the bottom, left, and 
rightmost boundaries are impervious and the other boundaries are pervious. The problem is 
discretized by 97,776 nodes.  

Young's Modulus (Pa), E  4 610  

Poisson's Ratio,   0.2 
Density (kg/m3),   2000 

Biot Coefficient,   1 

Biot Compressibility Modulus (Pa), M  3.33 710  

Permeability 
2m

Pa s

 
  

, w

k


 1 610  

Cohesion (Pa), c 3 410  

Friction Angle (°),   15 

Dilatancy Angle (°),   0 

Damage Parameter: Initiation, 2c  0.1 

Damage Parameter: Critical, 1c  1 

 
Table 3. Material parameters of the vertical-cut slope. 

 

The simulation results from the explicit u-p semi-Lagrangian RKPM (Figure 11) shows similar 
failure patterns and deposition as in the experimental result from a centrifuge test (Figure 12). 



This problem demonstrates that the two-field semi-Lagrangian RKPM can determine accurate 
slip surface and predict landslide propagation. 

 

FIG. 11.  Progressive deformation and damage of the u-p semi-Lagrangian RKPM 
landslide simulation of the vertical-cut slope. 

 

 

 

 

 

 

 

 

FIG. 12.  Comparison of the numerical result from the u-p semi-Lagrangian RKPM to a 
sketch of the experimental result from [55]. 

 

5.6 Landslide at the Reservoir Area of Xiangjiaba, China  



 

FIG. 13.  Problem setup of a three-dimensional landslide simulation. 
 

Young's Modulus (Pa), E  3.5 710  

Poisson's Ratio,   0.35 

Density (kg/m3),   2200 

Biot Coefficient,   1 

Biot Compressibility Modulus (Pa), M  3.33 610  

Permeability 
2m

Pa s

 
  

, w

k


 1 610  

Cohesion (Pa), c 1.02 410  

Friction Angle (°),   10.6 

Dilatancy Angle (°),   0 

Damage Parameter: Initiation, 2c  0.05 

Damage Parameter: Critical, 1c  0.5 

 
Table 4. Material parameters of the three-dimensional landslide simulation. 

 

A three-dimensional landslide simulation with problem setup as shown in Figure 13 and material 
properties in Table 4 is modeled to validate the result with the landslide occurred at a reservoir 
area in Xiangjiaba, China. The occurrence of the landslide is due to the excavation at the toe of 
the slope (Figure 13) under rainfall conditions [56]. The problem setup and material parameters 
used in the simulation is taken directly from the information given in [56], where the gaps on the 
top of the slope in Figure 13 are used to represent initial soil cracks, which were observed before 
the landslide occurred. The behaviors of solid phase of porous media are represented by the 
Drucker-Prager plasticity with damage model. The top boundary is pervious, whereas other 
boundaries are impervious. The problem is discretized by 99,426 nodes.  



 

FIG. 14.  u-p semi-Lagrangian RKPM landslide simulation of the landslide in Xiangjiaba. 
 

    

                                      (a)                                               (b)

  

FIG. 15.  Comparison between (a) simulation from the u-p semi-Lagrangian RKPM and (b) 
sketch of the landslide at a reservoir area in Xiangjiaba, China. 

The results from the explicit u-p semi-Lagrangian RKPM (Figure 14) demonstrate the capability 
of the framework for the simulation of full-scale landslide processes. The main slip surface from 
the simulation (Figure 14) and deposition at the toe also matches well with the sketch of the 
actual landslide from [56] (Figure 15). It is noted, nevertheless, that the simulation cannot 
capture the sub-slip surfaces since homogeneous material properties are assumed in the 
numerical analysis, whereas the soil slope in the actual site has heterogeneous or localized soil 
mechanical properties. 

 

6. CONCLUSIONS 

This paper presents a u-p semi-Lagrangian RK formulation to effectively model landslide 
processes from the pre-failure to post-failure. The dynamic Biot equation for saturated porous 



media is formulated under the semi-Lagrangian RK formulation, where material response of 
solid phase of porous media is described by a Drucker-Prager plasticity with damage model to 
properly represent geomaterial behaviors from small deformation to failure. Under the present 
framework, severe deformation, material separation, and contacts between fragmented bodies, 
can be handled with relative ease by taking the advantage of the nature of semi-Lagrangian RK 
shape functions that are constructed based on sets of material points in the current configuration. 
In addition, the frictional kernel contact algorithm is implemented in the u-p formulation to 
properly represent interaction between fragmentations and debris in order to capture the post-
failure mechanics of landslide events. The Modified Stabilized Non-Conforming Nodal 
Integration (MSNNI) is also extended to the u-p semi-Lagrangian RK formulation to suppress 
the spurious low energy modes due to under-integration of the direct nodal integration method. It 
is noteworthy that when an equal-order interpolation is used for displacement and pore pressure, 
no significant pressure oscillation has been observed in the numerical study. The explicit 
temporal integration is employed in the framework for efficiency, and the effect of using row 
summation for matrices M  and S on accuracy is shown to be trivial. The temporal stability of 
the present framework has been analyzed and presented in a separate work. In contrast, the 
implicit temporal integration offers better temporal stability; however, it is suitable for quasi-
static problems or small-scale problems since the computational cost is considerably higher than 
the explicit time integration for dynamic simulations. The results obtained from the present 
method are verified with analytical solutions and FEM results. Further, landslide simulations 
from the present method are validated against the experimental result and field data. The slip 
surfaces as well as landslide depositions from the simulations qualitatively agree with the 
experimental result and field data. 
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APPENDIX A 

An analytical solution for the displacement of a fluid-saturated incompressible porous media 

subjected to a loading function 0( )T t  on top is given as   
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where 0I  is the modified Bessel function of the first kind of zero order and ( )U t  is the 

Heaviside function. The parameters used in above equations are taken from [52]. The 
relationships of the parameters used herein and those used in  can be found in Table A.1, which 
has been used for the second numerical example to convert material parameters from [52] (Table 
A.2) into material parameters used in this paper (Table 1).  

 

 

Parameters in [52] Parameters in this paper
Sn  1n
Fn  n

S F     

E   1E  n  

    
Fk   w wk g   
FR  wg  

  
Table A.1 Relationships of parameters. 

 

0.67Sn    0.33Fn   
3 31.34 10  kg/mS   3 30.33 10  kg/mF  
73 10  PaE    0.2    

65.5833 10  PaS    68.375 10  PaS    
21 10  m/sFk     4 31 10  N/mFR     

  
Table A.2 Parameters used in [52]. 

APPENDIX B 



To show the effect of convective terms arising from semi-Lagrangian kernels on the solution 
(Eqs. (46)-(47)), the following one-dimensional wave equation is considered:  

 , 0xxu Eu   ,  0,x L ,  0,t T  (94) 

with boundary and initial conditions, 
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  (95) 

The analytical solution for this problem is      , sin sinu x t t kx , where m c L   , 

k c  , c E  , and m is a positive integer. Here m=5, L=40, E=1, and 10   are chosen. 

The domain is uniformly discretized with 41 nodes. The linear RK with 1.5 normalized support 
is used as the shape function and the SCNI is employed for the domain integration, following the 
procedures given in Section 3. The central difference scheme with a time step of 0.1 is employed 
for temporal integration. Three numerical solutions obtained from different formulations are at 
t=4 given in Fig. 16 for comparison: 1) total Lagrangian, 2) semi-Lagrangian RK, and 3) semi-
Lagrangian RK without convective terms. As can be seen in Fig. 16, the semi-Lagrangian RK 
solutions are in agreement with the analytical solution, and the difference between the semi-
Lagrangian RK with and without convective are relatively small.  

 

 

   (a)           (b) 

FIG. 16. Semi-Lagrangian RK solutions for one-dimensional wave propagation. 
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