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ABSTRACT 

 
The finite element (FE) floating frame of reference (FFR) formulation, implemented in most 
commercial multibody system (MBS) computer programs, is widely used in the durability 
analysis by a large number of industry sectors. In this paper, a single-degree of freedom system 
is used to derive a new analytical model from the general nonlinear FFR equations. The obtained 
new analytical model is used to address fundamental issues related to the accurate, efficient, and 
general implementation of the FFR formulation, including the treatment of the algebraic joint 
constraint equations, fundamental difference between the FFR reference conditions and the 
structural mechanics boundary conditions, the choice of the deformation modes, handling 
redundant MBS constraints, effect of the MBS joints on the oscillation frequencies, and 
difference between fixed and moving boundary conditions. Structural mechanics boundary 
conditions eliminate degrees of freedom and define the system topology, while the FFR 
reference conditions eliminate coordinate redundancy and do not introduce any motion 
constraints. The paper shows analytically how the MBS joint constraint equations change the 
system oscillation frequencies, demonstrates the effect of using inappropriate set of reference 
conditions, proves there is no single set of reference conditions suited for all applications, and 
uses other FE methods to verify the results and support the conclusions drawn. The results 
obtained in this investigation show that improper selection of the reference conditions can lead to 
solution errors that exceed 100%, making such a solution completely unreliable in any durability 
investigation. General implementation of the FFR formulation will significantly contribute to 
increasing reliance on virtual testing, less reliance on building actual prototypes, better 
understanding of flexible body dynamics, and better communication between various computer-
aided engineering (CAE) groups. 
 
Keywords: Durability analysis; floating frame of reference formulation; reference conditions; 
boundary conditions; multibody system dynamics. 
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1. INTRODUCTION 

Multibody system (MBS) formulations, computational algorithms, and software are widely used 

in the analysis of mechanical and aerospace systems (Hegazy et al, 1999; Ho, 1977; Ho and 

Herber, 1985; Hooker, 1975; Jerkovsky, 1978; Kane and Levinson, 1983; Kane and Levinson, 

1985; Kushwaha et al, 2002; Likins, 1973; Liu et al, 2011; Magnus, 1978; Orlandea et al, 1977; 

Rahnejat, 2000; Roberson and Schwertassek, 1988; Schiehlen, 1982; Udwadia and Schutte, 

2010; Udwadia and Wanichanon, 2010; Wittenburg, 1977). Accurate flexible body modeling, 

including accurate prediction of the large displacements, forces, and stresses under different 

loading conditions, is central in any credible durability investigation. In the CAE durability 

analysis, multibody system (MBS) computer programs are often used to analyze the 

deformations using the finite element (FE) floating frame of reference (FFR) formulation. While 

the FFR formulation was introduced more than a century ago, the FE/FFR formulation, which 

allows for modeling complex geometries, was introduced in the early eighties. Prior to 

introducing the FE/FFR formulation, the stresses were obtained using a two-step analysis. In the 

first step, the system is assumed to consist of rigid bodies, and rigid body analysis is performed 

to determine the inertia and constraint forces. In the second step, the forces, predicted using the 

rigid body analysis, are used in a linear FE problem to determine the component stresses. This 

approach, which is referred to in the literature as the linear theory of elasto-dynamics, is based 

on the assumption that the component deformation has no effect on its rigid body displacement, 

and therefore, the dynamic coupling between the rigid body and elastic displacements of the 

system components is neglected (Bahgat and Willmert, 1973; Chu and Pan, 1975; Erdman and 

Sandor, 1972; Lowen and Chassapis, 1986; Lowen, G.G., and Jandrasits, W.G., 1972; Sadler and 

Sandor, 1973; Sunada and Dubowsky, 1981; Sunada and Dubowsky, 1983; Turcic and Midha, 
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1984). Since the FE/FFR formulation was introduced, the sequence of computations was 

reversed, and FE computer programs are currently used as preprocessors for MBS computer 

programs, which were designed to solve the differential and algebraic equations of constrained 

systems that consist of interconnected rigid and deformable bodies. Nonetheless, the capabilities 

of flexible MBS computer programs are not fully exploited as evident by the fact that the 

durability analysis still heavily relies on a conventional FE analysis for each system component 

at a time rather than using flexible MBS algorithms that allow for the analysis of the assembled 

system by incorporating the effect of mechanical joints. 

 Despite the fact that the FE/FFR formulation is implemented in most commercial MBS 

computer programs, there are important implementation issues that need to be addressed in order 

to obtain more credible durability results and increase reliance on virtual testing grounds that can 

have significant economic impact. The use of conventional FE approach to determine component 

strength in durability investigations can be error-prone in the case of MBS applications, as will 

be discussed in this paper. Reliable virtual prototyping techniques will allow the CAE engineers 

to efficiently experiment with different design configurations that can be prohibitively expensive 

or even impossible to explore using actual testing. Nonetheless, MBS computer programs that 

allow for system assembly are still not the main tools used for the durability investigations by 

many industrial organizations. Instead, MBS computer programs are often used in a rigid body 

analysis to predict the overall kinematic motion and loads that are used as input in a conventional 

FE analysis with the aim of evaluating the component strength. This is in fact equivalent to the 

use of the linear theory of elasto-dynamics that has proven inaccurate when considering 

mechanical systems. As a result, not only the quality of the durability investigations has been 

compromised, but also the lack of understanding of fundamental issues has caused damage to the 
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collegial relationship between different CAE groups and has hindered more reliance on virtual 

prototyping and testing, causing significant economic loss, and significant waste of time, efforts, 

and resources that can be better used to improve the product quality.   

The quality of the durability analysis can be significantly enhanced by having better 

understanding of the FE/FFR formulation implemented in most commercial MBS computer 

programs. In the automotive industry for example, the results of a conventional FE stress 

analysis of the vehicle flexible components (frame, leaf springs, rods, etc.) with boundary 

conditions that do not reflect the actual nonlinear MBS joints, road profiles, and motion 

trajectories of the assembled vehicle can be misleading, as will be discussed in this paper. 

Furthermore, as demonstrated in this paper, a frequency analysis, that does not take into account 

the MBS joint formulations, may not accurately reflect the actual frequencies of oscillations of 

the vehicle components under realistic operating conditions. Building bulky and stiff components 

by over-designing does not contribute to improving the product quality or reducing its cost. In 

order to obtain accurate MBS simulations of the assembled vehicle under different loading and 

operating conditions, however, it is necessary to have good understanding of FE/FFR 

implementation issues in order to avoid performing unnecessary and costly analysis often based 

on wrong assumptions. 

 

2. FE/FFR IMPLEMENTATION AND DURABILITY ANALYSIS  

It is the main objective of this paper to develop a new and simple analytical model whose results 

can be verified using commercial FE computer programs. The new analytical model derived 

using the general FE/FFR nonlinear equations, also summarized in this paper, will serve to 

obtain new results that shed light on serious problems encountered in the durability analysis. 
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This paper addresses the following important FE/FFR implementation issues using the new 

analytical model that can serve as a benchmark example: 

1. Using the FFR mean-axis reference conditions, MBS joint constraints, and MBS embedding 

technique, the equations of motion of a structural system is systematically reduced to a 

single-degree of freedom analytical model which has a closed form solution that can be used 

to shed light on fundamental FFR implementation issues. The FFR mean-axis conditions are 

used to eliminate the coordinate redundancy and define a unique displacement field, the MBS 

joint constraints are used to define the system topology and degrees of freedom, and the 

embedding technique is used to systematically eliminate the dependent variables and obtain a 

reduced order model from which the algebraic constraint equations are eliminated. 

2. The paper demonstrates the fundamental difference between the structural mechanics 

boundary conditions used in the classical vibration theory and conventional FE approaches 

and the reference conditions used in the MBS approach. The structural mechanics boundary 

conditions eliminate degrees of freedom, define the system topology, and define the 

frequency contents in the solution; while the FE/FFR reference conditions eliminate 

coordinate redundancy, define a unique displacement field, do not define the frequency 

contents in the MBS system solution, and do not define the system topology which is defined 

in the FFR formulation using the MBS joint constraints. As shown in this paper, some sets of 

MBS reference conditions do not have equivalent structural mechanics boundary conditions 

when some models are considered. The phrase “boundary conditions” is loosely used in the 

literature to refer to the “reference conditions”, but in general the two sets of conditions are 

not equivalent. The fundamental differences between the structural mechanics boundary and 

FFR reference conditions and the sub-structuring interface conditions are also discussed. 
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3. The generality of the FE/FFR formulation can be severely limited by restricting the choice of 

the FFR reference conditions to one set. In general-purpose flexible MBS algorithms, the 

choice of the deformation basis vectors should not be limited to one set. Using the new 

analytical model, it is shown that such a restriction can lead to wrong solutions with very 

significant error, demonstrating that one set of reference conditions is not suited for all 

applications. The results obtained in this investigation show that improper selection of the 

reference conditions can lead to solution errors that exceed 100%, making such a solution 

completely unreliable for any credible durability investigation.  

4. CAE groups in the industry often perform FE durability analysis using FE boundary 

conditions. This paper discusses this important and fundamental issue by demonstrating that 

MBS joints change the solution dynamics characteristics, and therefore, durability analysis 

must be performed in a MBS computational environment. The oscillation frequencies of a 

single component can be significantly different from the oscillation frequencies of the same 

component in the assembled model. The single-degree of freedom analytical model 

developed in this study will be used to demonstrate the significant differences between the 

oscillation frequencies of the linear FE problem and the problem in which the MBS joints are 

imposed. This single-degree of freedom analytical model will be used to demonstrate that the 

resonance frequency significantly changes as the result of imposing the MBS joints, even in 

the case of a linear model in which rigid body motion is not allowed.  

5. In the FE/FFR formulation, there are external forces associated with the reference motion as 

well as external forces associated with the FE elastic nodal coordinates. The use of an FE 

model in the durability analysis that considers only the nodal forces associated with the FE 

degrees of freedom leads to a model that is not consistent with the basic analytical dynamics 
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principles. The simple analytical model considered in this study shows that if the forces 

associated with the reference (rigid body) coordinates are not properly projected when 

developing an FE model, such an FE model will lead to wrong solutions. The MBS 

embedding technique is used to demonstrate this important fact.  

6. The analytical model is used to discuss the important problem of handling redundant 

constraints in computational MBS algorithms. In some scenarios, as demonstrated in this 

paper, automatic elimination of redundant constraints can lead to a different model that has 

dynamics characteristics that are significantly different from those of the original model. The 

paper discusses the difference between topological singularities and initial-configuration 

singularities. It is shown that constraint redundancy can be associated with a particular initial 

configuration, and therefore, automatic removal of the constraints may not be a proper 

solution to this problem.  

The analysis presented in this paper also sheds light on the difference between the reference 

conditions used to define a unique displacement field and the MBS joint constraint equations 

used to define the system topology. The MBS joint constraints eliminate kinematic degrees of 

freedom and impose restrictions on the motion of the assembled system, while reference 

conditions do not impose such a restriction. Before imposing the MBS joint constraints, the 

displacement field of all bodies, rigid and flexible, must be uniquely defined. Figure 1 shows 

planar and spatial spherical pendulums. The MBS joint constraints for these two simple systems 

require that the joint definition point on the pendulum remains fixed. This condition leads to two 

equations for the planar pendulum and three equations for the spatial spherical pendulum. This 

number of constraint equations is not sufficient in the FE/FFR formulation to define a unique 

displacement field. Furthermore, these equations are introduced to eliminate two degrees of 
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freedom in the case of the planar model and three degrees of freedom in the case of the spatial 

model, and are not introduced for the purpose of defining a unique displacement field for one of 

the bodies connected by the joint. The reference conditions, on the other hand, should not 

eliminate any kinematic degrees of freedom since they are used for the purpose of correctly 

defining the body displacement field. Coordinate reductions should not also be viewed as 

kinematic constraints imposed on the overall motion of the system since coordinate reduction 

techniques are mainly used to eliminate modes of deformation which have no significant effect 

on the overall motion of the system. Throughout this paper, simple examples are used to discuss 

the concepts addressed in this investigation.  

 

3. FFR FORMULATION AND REFERENCE CONDITIONS 

In this section, a brief review of the basic nonlinear FE/FFR equations is presented. The 

presentation of these equations is necessary since they will be systematically reduced to obtain 

the analytical model used in this investigation. Reference will be made to these general equations 

in order to explain how they can be simplified to obtain the analytical model whose results are 

compared with the results obtained using a general-purpose MBS computer program that 

employs a solution algorithm based on the general nonlinear equations presented in this section. 

 In order to ensure the generality and accuracy of the FE/FFR formulation implementation, it 

is necessary to understand the basic concepts used in the development of this approach that 

allows for modeling structures with geometric discontinuities (Shabana, 2013). The FFR 

formulation introduced more than a century ago is only suited for the analysis of simple 

structures such as beams and plates with simple geometries. The geometric discontinuity can be 

solved using the FE/FFR concept of the intermediate element coordinate system introduced in 
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the early eighties; a concept that resembles the parallel axis theorem and allows for correctly 

accounting for the rigid body inertia of the flexible components. Another important FE/FFR 

concept that must be understood and will be one of the main topics discussed in this investigation 

is the reference conditions used to eliminate the FE shape function rigid body modes and define 

the shape of deformation with respect to the body coordinate system.  As will be shown in this 

investigation, restricting the choice of the reference conditions can lead to an FE/FFR 

implementation that is far from being general and can also lead to wrong solutions even if very 

simple systems are considered. In the FFR formulation, the configuration of the body is defined 

using the kinematic equation O r r Au , where r  is the position vector of an arbitrary point on 

the body defined in the global coordinate system, Or  is the global position vector of the origin of 

the body coordinate system, A  is the orthogonal transformation matrix that defines the 

orientation of the body coordinate system, and u  is the local position vector of the arbitrary 

point with respect to the body coordinate system. Differentiating the preceding equation with 

respect to time, the absolute velocity vector of the arbitrary point on the body can be written as 

O r r Au  . The velocity vector can also be written in the alternate forms  O  r r A ω u   and 

O  r r ω u  , where ω  and ω  are, respectively, the angular velocity vectors defined in the 

global and body coordinate systems. 

3.1 FE Discretization 

In the FE/FFR formulation, a body coordinate system 1 2 3
b b bX X X  that shares the large overall 

displacement of the body is introduced. The position vector of the origin of the body coordinate 

system is defined by the three-dimensional vector Or , while the orientation of the body-

coordinate system is defined using the orthogonal transformation matrix A. The unconstrained 
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motion of the coordinate system of the body can then be described using six independent 

coordinates; three translational coordinates  T1 2 3O O O Or r r r , and three independent rotation 

parameters θ  that define the orthogonal matrix A. Using these coordinates, the global position 

vector of an arbitrary point on the finite element j  of the body can be written as 

, 1, 2, ,j j
O ej n  r r Au      (1) 

where ne is the total number of elements used in the FE discretization, and ju  is the location of 

the arbitrary point on the element j  with respect to the origin of the body coordinate system. In 

the preceding equation, Or  and A  are the same for all finite elements, and therefore, the body 

coordinate system represents a common reference for all elements and serves as the basis for 

defining the connectivity between the elements of the body. In the FE/FFR formulation, one can 

write , 1, 2,j j j
b ej n u S e  , where j

bS  is an appropriate element shape function that accounts 

for the intermediate element coordinate system transformations, and je  is the vector of the 

element nodal coordinates defined in the body coordinate system (Shabana, 2013, Chapter 6). 

This vector of element nodal coordinates defines the position of the arbitrary point in the 

undeformed state as well as the deformation vector, with the assumption that the element shape 

function can describe an arbitrary large translations, a condition satisfied by all elements. In this 

case, the vector of the element nodal coordinates can be written as j j j
o f e e e , where j

oe  is the 

vector of nodal coordinates in the undeformed reference configuration, and j
fe  is the vector of 

nodal deformations. 

3.2 FE/FFR Dynamic Equations 

Using the Boolean matrix approach, the element nodal coordinates can be written in terms of the 

body nodal coordinates as , 1, 2,j j
c b ej n e B e  , where be  is the vector of the body nodal 
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coordinates, and j
cB  is the constant Boolean matrix that defines the connectivity conditions for 

the finite element j . Therefore, the position vector of the material points can be defined as 

, 1, 2,j j j
b c b ej n u S B e  .  

 As in the case of the individual elements, one can write the vector of body nodal coordinates 

as the sum of two vectors as b bo bf e e e , where boe  is the vector of nodal coordinates in the 

initial un-deformed configuration, and bfe  is the vector of deformation nodal coordinates. The 

reference conditions are used to eliminate the rigid body modes of the element shape functions, 

define a unique displacement field, and establish the deformation basis vectors. By imposing the 

reference conditions, one can write bfe  in terms of a new reduced set of body nodal coordinates 

fe  as bf r fe B e , where Br is the matrix of reference conditions that eliminates dependent nodal 

coordinates and defines how the deformation is measured with respect to the body coordinate 

system. The number of reference conditions should not be less than the number of the rigid body 

modes of the finite element shape function. The position vector ju  of the material point on the 

finite element can then be defined in the body coordinate system as 

  , 1, 2,j j j
b c bo r f ej n  u S B e B e      (2) 

This position vector can be written as the sum of the position vector in the undeformed state plus 

the deformation vector as , 1, 2,j j j
o f ej n  u u u  , where j j j

o b c bou S B e  and j j j
f b c r fu S B B e . 

Using Eqs. 1 and 2, one can write    

  , 1, 2, ,j j j
O o f ej n   r r A u u      (3) 

Using this equation and the principle of virtual work, one can show that the FE/FFR equations of 

motion of the deformable body can be written as s e v  Mq Q Q Q , where 
TT T

r f   q q q  is 
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the vector of the body coordinate, rq  is the vector of reference coordinates, fq  is the vector of 

deformation (elastic) coordinates, M  is the body mass matrix, sQ  is the vector of elastic (stress) 

forces, eQ  is the vector of external forces, and vQ  is the vector of Coriolis and centrifugal 

forces. Using the coordinate partitioning 
TT T

r f   q q q , the preceding equation can be written 

as 

 
 
 

 
 

e vrr rf r r r

s e vfr ff f f f f

       
         
              

0 Q QM M q

Q Q QM M q


     (4) 

The vector and matrices that appear in this equation are the assembled FE vectors and matrices, 

subscripts r  and f  refer, respectively, to reference and elastic coordinates, 
TT T

r O   q r θ , 

and f fq e .  

3.3 Choice of the Reference Conditions 

One of the main goals of this investigation is to use a simple single degree of freedom analytical 

model to show that no one set of deformation basis vectors is suited for all applications. When 

the FE/FFR formulation is used, the definition of a unique displacement field defines a subspace 

(Agrawal and Shabana, 1985; Shabana, 1996), and each set of reference conditions defines a 

different coordinate system and different subspace and convergence should only be judged 

within this subspace. Improper choice of the reference conditions can lead to wrong solutions as 

will be demonstrated in this investigation. In this paper, we differentiate between the FFR 

reference conditions and structural mechanics boundary conditions. The structural mechanics 

boundary conditions eliminate degrees of freedom, while the FFR reference conditions eliminate 

coordinate redundancy. In the FFR analysis, degrees of freedom can be eliminated using the 

MBS joint constraints. It is also important to recognize that sub-structuring techniques used for a 



14 
 

system assembly do not impose boundary conditions and the Craig-Bampton interface 

constraints should not be viewed as boundary conditions or reference conditions as discussed in 

the literature (O’Shea et al, 2016). Different sets of reference conditions, however, can lead to 

similar deformation shapes and solutions that are in a good agreement as previously 

demonstrated in the literature (Agrawal and Shabana, 1985; Shabana, 1996).  

   After imposing the reference conditions, which define the nature of the body coordinate 

system, one can use the normal mode approach, which is a general, convenient, and straight 

forward approach for determining the deformation basis vectors. Using component mode 

reduction techniques, the vector of the body coordinates can be written in terms of another 

smaller set of coordinates, thereby significantly reducing the problem dimensionality and 

eliminating high frequency modes that do not have significant effect on the solution accuracy. In 

order to use the component mode techniques, the free vibration of the body with respect to its 

reference is first considered. In this case, one has ff f ff f M q K q 0 . One can assume a solution 

of this equation in the form i t
f e q a , where 1i    , a is the vector of amplitude, t is time, 

and   is the frequency. Substituting this assumed solution in the preceding free-vibration 

equation, one obtains the generalized eigenvalue problem  2
ff ff K M a 0 . This equation 

can be solved for the eigenvalues 2 , 1, 2, ,k fk n   , where fn  is the number of elastic nodal 

coordinates. The eigenvectors or mode shapes associated with the eigenvalues 2
k  can also be 

determined. Using the eigenvectors, a constant coordinate transformation from the physical 

nodal coordinates fq  to the new modal elastic coordinates fp  can then be written as f m fq B p

, where mB  is the modal transformation matrix whose columns are the low-frequency mn  mode 
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shapes, and fp   is the reduced vector of modal coordinates. The total vector of the body 

coordinates can be written in terms of the new reduced set of coordinates as 

r r

f fm

    
     

    

q pI 0
q

q p0 B
     (5) 

Substituting this transformation into the equations of motion and pre-multiplying by the 

transpose of the coefficient matrix in the coordinate transformation of the preceding equation 

leads to 

 
 

 
 

e vr rr rrr rf

f ff f e vfr ff f f

          
            
             

Q Qp 0 0 pM M

p 0 K p Q QM M


    (6) 

In this equation, 

       

T T

T T T

,

, ,

rf fr rf m ff m ff m

ff m ff m e m e v m vf ff f

   


   

M M M B M B M B

K B K B Q B Q Q B Q
  (7) 

As discussed in the literature, the FE/FFR equations of motion can be expressed in terms of 

constant shape integrals that depend on the assumed displacement field. These constant shape 

integrals can be expressed in their modal form at a preprocessing stage using the modal 

transformation in order to reduce the array size required during the dynamic simulation.  

 

4. DEFORMATION BASIS VECTORS 

In order to be able to develop the simple analytical model used in this investigation to 

demonstrate analytically and numerically that one set of deformation basis vectors cannot be 

used for all applications, a set of reference conditions that will be used later in this paper to 

define a single-degree of freedom linear model is discussed in this section. The single-degree-of-
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freedom model developed in this study can be used to shed light on fundamental issues related to 

the implementation of the FE/FFR formulation and its use in the durability analysis. 

 In the FE/FFR formulation, the large displacement is defined by the motion of the body 

reference. In the case of small deformation or simple deformation shapes, the use of the body 

coordinate system allows for creating a local linear problem that can be exploited to reduce 

systematically the number of coordinates by eliminating insignificant high frequency modes as 

described in the preceding section. Introducing the body coordinate system is also necessary 

when conventional finite elements that employ infinitesimal rotations are used. These elements 

cannot describe correctly finite rotations that must to be accurately represented in MBS 

computational algorithms that are based on non-incremental solution procedures. In order to 

define a unique displacement field, therefore, the rigid body motion of the FE shape functions 

must be eliminated. This is accomplished as discussed in the preceding section using the 

reference conditions that define the nature of the body coordinate system and define the 

deformation basis vectors. In MBS dynamics, the shape of deformation must be consistent with 

the MBS joint constraints imposed on the boundary of the deformable body. As will be 

demonstrated in the following sections of this paper, there is no single set of reference conditions 

and deformation basis vectors that is suited for all applications. For example, some commercial 

codes recommends that the users should not impose any reference (boundary) conditions and use 

free-free deformation modes after eliminating the rigid body zero-frequency modes. It is 

important to recognize that the free-free deformation modes correspond to a set of reference 

conditions called the mean-axis conditions.  The mean-axis reference conditions are defined by 

the following set of equations (Ashley, 1967; Canavin and Likins, 1977; Likins, 1973; Agrawal 

and Shabana, 1985): 



17 
 

0, 0f f

V V

dV dV    u r u      (8) 

In this equations,   and V  are, respectively, the body mass density and volume, fu  is the 

deformation vector, and  ,bo fr r e e  is the position of the arbitrary point with respect to the 

body coordinate system. In order to have a linear equation, in the second equation of Eq. 8, r  is 

evaluated in the reference configuration, that is,  bor r e . Using the preceding equation, one 

can develop the transformation bf r fe B e  used in Section 3 of this paper to define a unique 

displacement field. 

It has been shown in the literature that the use of the mean-axis reference conditions leads to 

the free-free deformation modes. That is, the free-free deformation modes after eliminating the 

rigid body zero-frequency modes correspond to a unique set of reference conditions. If the origin 

of the body coordinate system is initially located at the body center of mass, it can be shown that 

the mean-axis conditions ensure that the origin of the body coordinate system remains at the 

center of mass throughout the simulation. This is a case of a floating coordinate system since the 

resulting body reference is not necessarily attached to a material point on the body. The free-free 

deformation modes, however, produce specific geometry for the deformed shape that may not be 

suitable for all applications as will be demonstrated in this paper. Therefore, a MBS computer 

program that restricts the choice of the deformation modes to the free-free modes lacks 

generality and cannot be used as a general-purpose flexible MBS computer program. 

As the result of assuming  bor r e  in order to achieve linearity of the mean axis 

conditions, these conditions do not lead to a complete elimination of the dynamic coupling 

between the reference motion and the elastic deformation; weak inertia coupling still exists 

between the reference rotation and the elastic deformation of the body. Nonetheless, these 
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conditions can be effectively used to develop a new analytical linear model that leads to closed-

form expressions which will shed light on fundamental issues including the appropriateness of 

using one set deformation basis vectors, effect of the MBS joints on the frequency contents of 

the solution, change in the resonance frequencies as the results of imposing the MBS joint 

constraints, appropriateness of the automatic elimination of redundant constraints as 

implemented in some MBS algorithms, etc. 

 

5. FE AND MBS APPROACHES: FUNDAMENTAL DIFFERENCES 

In this section, the simple model shown in Fig. 2 is used to develop reference solutions that will 

be used in this investigation to examine the effect and appropriateness of using different 

references conditions. The beam shown in the figure is assumed to be connected by pin joints at 

points O  and A . The beam is subjected to a vertical force F  as shown in the figure. The 

solutions will be obtained using two different algorithms and software. The first is a 

conventional FE approach and the second is a MBS approach. The basic features of the two 

approaches are described below. 

1. FE Approach In the FE approach, boundary conditions at points O  and A  are used in 

the general-purpose FE computer program ANSYS. Two different sets of boundary 

conditions are used; simply-supported and pinned-pinned. If u  and v  refer, respectively, to 

axial and bending deformations, the three simply-supported boundary conditions are  

0O O Au v v   , where subscripts refer to the points. In the case of pinned-pinned beam, the 

four boundary conditions are 0O O A Au v u v    . A linear dynamic analysis is performed 

for the two models. 
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2. MBS Approach In the MBS approach, the solutions are obtained for the same beam model 

using the general-purpose MBS computer program Sigma/Sams (Systematic Integration of 

Geometric Modeling and Analysis for the Simulation of Articulated Mechanical Systems). 

As previously mentioned in the paper, the reference conditions should not be interpreted, in 

general, as boundary conditions. Boundary conditions eliminate degrees of freedom, while 

reference conditions are used to eliminate the rigid body coordinate redundancy. Three 

different sets of reference conditions are used in the MBS analysis of the model shown in 

Fig. 2. The first set, the free-free modes, corresponds to the mean-axis conditions previously 

discussed in this paper. The second set of reference conditions is referred to as the simply-

supported reference conditions ( 0O O Au v v   ), and the third set of reference conditions is 

referred to as the pinned-pinned reference conditions ( 0O O A Au v u v    ). In the MBS 

analysis, the following specific steps are followed: (1) An FE discretization is developed in a 

preprocessor computer program in which the reference conditions are applied to define a 

unique displacement field; (2) The resulting eigenvalue problem discussed in Section 3 is 

used to determine the normal modes for each set of the reference conditions; (3) The shape 

integrals are evaluated and expressed in their modal form (Shabana, 2013); (4) The 

preprocessor prepares a file that includes the shape integrals and is used as an input to the 

main processor; (5) The MBS pin joint constraints are imposed in the MBS model leading to 

four algebraic equations, which are in general formulated using nonlinear equations. It is 

clear, therefore, that both the reference conditions and the MBS pin joints must be 

introduced. The reference conditions define a unique displacement field and define the nature 

of the body coordinate system, while the MBS pin joint constraints eliminate kinematic 

degrees of freedom and define the system topology. 
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The fundamental differences between the FE and the MBS approaches are clear from the 

discussion above. By introducing the body coordinate system, the MBS approach allows, in 

general, for describing finite rotations using a non-nodal set of coordinates. This allows for 

describing large displacements non-incrementally using conventional elements which are not 

capable of describing finite rotations.  

  The beam model shown in Fig. 2 is assumed to have mass 0.1135m   kg, length 0.4572l   

m, density 37.84 10   kg/m3, circular cross-section with radius of 33.175 10  m, and 

modulus of elasticity 112.0684 10E   Pa. The beam is divided into 12 identical planar beam 

elements; each of which has two nodes and each node has three coordinates, two translations and 

one infinitesimal rotation. The force 300F    N is assumed to apply at the fifth node which is 

assumed to have an initial displacement equivalent to 39.1669 10   m; this initial displacement 

is used to define the initial value of the modal coordinates. Figure 3 shows the normal modes that 

result from imposing the three different sets of reference conditions. The associated frequencies 

and the body coordinate systems are also shown in this figure. In all cases, the body coordinate 

system is not rigidly attached to a material point since translation and/or rotation is allowed with 

respect to the body coordinate system.   

 Figure 4 shows the transverse displacement of the beam at the point of the load application. 

The results presented in Fig. 4 are obtained using the commercial software ANSYS in the case of 

the two sets of simply-supported and pinned-pinned boundary conditions. Figure 5 shows the 

transverse displacement of the free-end of the beam when the two sets of boundary conditions 

are used. The axial displacement at point A  is not zero when the simply-supported boundary 

conditions are used, while it is zero when the pinned-pinned boundary conditions are used. It was 

found, however, for this example that the axial displacement in the case of the simply-supported 
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boundary conditions is very small. In the conventional FE approach, the free-free end conditions 

cannot be used for this model; this fact is important to understand the fundamental difference 

between the structural mechanics boundary conditions and the FE/FFR reference conditions. 

 For the model shown in Fig. 2, the MBS approach allows using the free-free reference 

conditions. It was shown in the literature that in some applications, the free-free reference 

conditions can lead to solutions which are in a good agreement with the solutions obtained using 

other end conditions when the MBS approach is used (Agrawal and Shabana, 1985; O’Shea et al, 

2016). Figure 6 shows the MBS and FE results of the transverse displacement of the point at 

which the load is applied. The results clearly show that for this extended beam model, the 

solution obtained using the free-free reference conditions does not converge to the solution 

obtained using the FE boundary conditions or other MBS reference conditions. Figure 7 shows 

the transverse displacement of the free end of the beam. The results presented in this figure show 

again that the solution obtained using the free-free reference conditions does not converge to the 

correct solution of the problem; the error as shown in Table 1 exceeds 100%, demonstrating that 

the use of improper reference conditions does not lead to reliable solution in any credible 

durability investigation. 

 The results presented in this section are obtained using two modes for each case. 

Convergence analysis was performed in order to ensure that higher modes do not have a 

significant effect on the accuracy of the solution. In summary, the results presented in this 

section demonstrate clearly the following: 

1. Some sets of MBS reference conditions do not have equivalent structural mechanics 

boundary conditions. The system shown in Fig. 2 cannot be modeled using conventional FE 

free-free boundary conditions; it can, however, be modeled using the MBS free-free 
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reference conditions which in some applications can lead to a correct solution for constrained 

components as demonstrated in the literature (Agrawal and Shabana, 1985; O’Shea et al, 

2016). For example, the free-free modes reference conditions can predict accurate solution if 

the beam is connected by pin joints at both ends, but cannot predict an accurate solution for 

the extended beam of Fig. 2.  

2. While the MBS free-free reference conditions can give acceptable solution in some 

applications, as previously demonstrated in the literature, the use of this set of reference 

conditions can lead to a solution that converges to the wrong solution in some other 

applications as demonstrated by the results of the simple example considered in this section. 

3. Different sets of reference conditions that are associated with different frequencies in the 

linear problem can lead to solutions that are in a good agreement. 

In the following section, an analytical model is developed in order to shed light on some 

fundamental issues related to the constrained MBS dynamics. 

 

6. ANALYTICAL MODEL 

As mentioned in the preceding section, commercial FE computer programs cannot conveniently 

be used to verify the results obtained using the free-free MBS reference conditions for the model 

shown in Fig. 2. This makes clear the fundamental difference between the structural mechanics 

boundary conditions and the reference conditions used in flexible MBS analysis. The structural 

mechanics boundary conditions eliminate degrees of freedom, while the MBS reference 

conditions eliminate coordinate redundancy. Therefore, one must use another approach in order 

to verify the results obtained using the MBS simulations in the case of the free-free reference 

conditions. The results of the other sets of reference conditions (simply-supported and pinned-
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pinned) have been already verified in the preceding section using the FE model. The MBS 

simulation results presented in the preceding section are obtained using the augmented 

Lagrangian formulation in which the MBS joint constraints are formulated using nonlinear 

algebraic equations that are adjoined to the system differential equations of motion using the 

technique of Lagrange multipliers. 

 In this section, the general MBS equations presented in Section 3 and the free-free modes 

reference conditions are used with the embedding technique to develop an unconstrained single-

degree of freedom analytical model that can be used to shed light on the numerical results 

obtained in the preceding section and investigate fundamental issues related to the constrained 

motion of flexible bodies. In particular, the analytical results can be used to confirm the fact that 

the free-free end conditions lead to a wrong solution and such a set of reference conditions is not 

suited for all applications, including the very simple example considered in this study. The 

closed form equations obtained will be also used to discuss some fundamental durability analysis 

issues. 

6.1 Single-Degree of freedom Analytical Model 

In the modal transformation of Eq. 5, it is assumed that the contribution to the elastic nodal 

deformations of node k  from mode m  can be written as  Tfk km km km fmp  q , where 

,km km   and km , are, respectively, the elements of the mode shape m  associated with the axial 

displacement, transverse displacement, and rotation of the nodal point k ; and fmp  is the 

amplitude (coordinate) of mode m . If only bending modes are used, one has 0km  . We also 

note that in the case of a constant angular velocity, the vector vQ  of Eq. 4 is identically zero 

(Shabana, 2013; Sherif and Nachbagauer, 2014). This fact will be utilized in developing the 

analytical model presented in this section. In order to develop the single degrees of freedom 
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model, it is assumed that two deformation modes are used and the origin of the body coordinate 

system is initially located at point O . The distance between points O  and A  is denoted as d . 

 If free-free reference conditions, with two bending deformation modes, are used; the 

partitions of the modal matrix associated with the translations of points O  and A  of the model 

shown in Fig. 2 can be written as 

      
1 2 1 2

0 0 0 0
,O A

O O A A   
   

    
  

S S    (9) 

The first rows in these two matrices are zero because of the use of bending deformation modes 

only. The four MBS pin joint constraint equations can be written in this case as 

      ,O O O f O A A f      r A u S p 0 r A u S p d 0    (10) 

In this equation, Ou  and Au  are, respectively, the local position vectors of points O  and A  in 

the reference configuration, OS  and AS  are, respectively, partitions of the modal transformation 

that correspond to the translational coordinates of points O  and A , as previously defined, 

 0
T

dd , and  

   1

2

cos sin
, , ,

0 sin cos
f

O A f
f

pd

p

 
 

    
       

    
u 0 u p A    (11) 

In this equation, 1fp  and 2fp  are the modal coordinates, and   is the angle that defines the 

orientation of the body reference of the beam. Therefore, the MBS pin joint constraint equations 

reduce to 

     ,O O f O A A f     r AS p 0 r A u S p d 0    (12) 

Substituting the first equation into the second equation, one obtains 

    A A O f   A u S S q d 0      (13) 
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This equation can be used to show that for the example considered, cos 1   or 0  . To this 

end, the preceding equation is pre-multiplied by the transpose of the transformation matrix A , 

leading to 

      
1 1 2 2

cos

sinf f

d d

p p d


  
   

      
    (14) 

where 1 1 1A O     and 2 2 2A O    . The first equation shows that cos 1   or 0  , while 

the second equation in the preceding equation yields  2 1 2 1f fp p   , which shows that the 

modal coordinates can be written in terms of one independent modal coordinate 1fp  as 

 1 2 12 11
T T

f f fp p p    , where  12 1 2    . One can also show that   10
T

O b fpr , 

where  1 2 12b O O      . Because two modes are considered, the vector of coordinates in Eq. 

6 has 5 elements which can be written in terms of the independent modal coordinate 1fp  as 

    1 2 1 2 12 10 0 1
T T

O O f f b fr r p p p          (15) 

The vector of forces eQ   in Eq. 6 can be written as 

      1 20 1 0
T

e F F F Q     (16) 

where 1F  and 2F  are the elements of the modal matrix that correspond to the transverse 

deformation at the point of the application of the vertical force F . One can also show that, for 

this system, the mass matrix in Eq. 6 is a 5 5  matrix that has the following structure: 

   

13 14 15

23 24 25

13 23 33 34 35

14 24 34 1

15 25 35 2

0

0

0

0

rr rf

fr ff

m m m m

m m m m

m m m m m

m m m m

m m m m

 
 
  
   
  
 
  

M M
M

M M
     (17) 
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where m  is the total mass of the beam, 33m  is the mass moment of inertia that depends on the 

beam deformation, 1m  and 2m  are the modal mass coefficients,  13 23

T
m m  is the moment of 

mass vector which is constant in this case because of the mean-axis conditions and because 

0  , 34m  and 35m  represent the weak dynamic coupling between the rotation and deformation 

coordinates as the result of the application of the mean-axis conditions, and 14 15 24, ,m m m , and 

25m  are the inertia coefficients that represent the coupling between the reference translation and 

the elastic modal coordinates; these coefficients are constant because 0   (Shabana, 2013; 

Sherif and Nachbagauer, 2014). Some of these coefficients need not to be defined explicitly 

because of the structure of the velocity transformation vector  120 0 1
T

v b B  of Eq. 

15. It is clear that 

     2 2
1 12 2 24 12 252 2T

v v b b bm m m m m        B MB    (18) 

The stiffness matrix ffK  in Eq. 6 is diagonal with diagonal elements equal to the modal stiffness 

coefficients 1k  and 2k . Using the coordinate relationship developed in this section, 0  , the 

fact that the mean-axis conditions eliminate the coupling between the body translation and the 

elastic deformation, and the fact that T
vB  eliminates the constraint forces, one can substitute Eq. 

15 into Eq. 6 and pre-multiply by the transpose of the velocity transformation vector 

 120 0 1
T

v b B  to obtain one equation which can be written as 

      1 1 1f f fmp cp kp Q         (19) 

In this equation,  

 

2 2
1 12 2 1 12 2

1 2 12

, ,T
v v

b F F

m k k k c c c

Q F

 

   

     


   

B MB
    (20) 
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where ,k km k , and , 1, 2kc k  , are, respectively, modal mass, stiffness, and damping coefficients.  

Equations 19 and 20 show the change in the system dynamics characteristics as the result of 

imposing the MBS joint constraints. As will be discussed in this section, the solution oscillation 

frequency for the above system is significantly different from the natural frequencies associated 

with the end conditions used to determine the mode shapes. The solution for 1fp  can then be 

written in a closed form in the case of non-zero initial modal displacement  1 0fp as  

      1 sint
f d

Q
p Xe t

k
          (21) 

The symbols that appear in his equation, upon the use of the definition of the natural frequency 

k m  , can be written as  

 
2

2 1
1 20

11
2 , 1 , , tan

1m m d f

Q
c m X p

k


     

 
  

        
  (22) 

In determining the equivalent damping coefficient  , the free vibration of the body with respect 

to its coordinate system must be considered. That is, 2
1 12 2 24 12 252 2m b bm m m m m        and  

m mk m  . The solution for 1fp  can be used to determine 2fp  from the equation 

 2 1 2 1f fp p   . Having determined the modal coordinates 1fp  and 2fp , the displacement 

of the beam at an arbitrary point or node can be determined.  

6.2 Verification of the Free-Free Mode Results 

In the analysis of the simple model, it assumed that the mode shapes are orthogonal with respect 

to the stiffness matrix. That is, based on the model data previously presented, the modal mass 

and stiffness coefficients are given, respectively, by 

-5 -06
1 2 10.131281 10 , 0.172735 10 , 1m m k     , and 2 1k  . For all modes, a damping factor of 



28 
 

3% is used. The elements of the modal matrix used in the simple model equations are 

2 2
1 1

2
20.6802 10 0.2, ,468 10 0.2521 10O O A          and 2

20.1603 10A
  . The 

elements of the modal matrix at the point of the application of the force are 1
20.2521 10F
  

and 2
20.1603 10F
 . Figures 8 and 9 show, respectively, the transvers displacement at the 

point of application of the force (Node 5) and the free end of the beam (Node 13) as functions of 

time obtained using the analytical solution and the MBS computer program Sigma/Sams for 

different reference conditions. It is clear that the free-free mode analytical solution agrees with 

the free-free mode MBS solution, but both significantly differ from the FE solution which agrees 

well with the MBS solution when the simply-supported or pinned-pinned reference conditions 

are used. The results presented in Figs. 8 and 9 confirm the fact that the free-free modes are not 

appropriate for all applications, including the simple example considered in this investigation. 

Figure 10 shows the vertical displacement of the body reference in case of the free-free mode 

reference conditions. The results of this figure, in which the analytical and MBS results are 

compared, show that in the case of free-free reference conditions, the origin of the body 

coordinate system does not remain at point O , while in the case of other reference conditions 

considered in this paper, the origin of the body coordinate system remains at point O . In all 

cases, however, the origin of the body coordinate system does not move in the axial direction 

because of the kinematic constraints and because of using bending modes only. Figure 11, which 

shows the deformed shape of the beam in the two cases of free-free and simply-supported end 

conditions for the converged solution, clearly demonstrates the error in the free-free reference 

conditions solution. With an inappropriate choice of the reference conditions, the deformation of 

the beam can become very different in order to ensure that the MBS constraints are satisfied. It is 

also clear from this figure that the second mode becomes significant and the body coordinate 
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system moves vertically in order to ensure that the MBS constraint equations are satisfied. The 

amplitude of the second mode can be claculated from the relationship 2 12 1f fp p , where in this 

example 12 10.7756   . The elements that correspond to the two modes in the modal 

transformation matrix are approximately of the same order.  

6.3 Reference Load Projection 

The analysis of the single-degree of freedom model shows that the use of a systematic approach 

to obtain the independent deformation equation of motion leads to a definition of the generalized 

forces associated with the independent deformation degree of freedom. The generalized force 

 1 2 12b F FQ F       includes a contribution from the external forces associated with the 

reference motion of the system. This contribution is defined by the term bF  in the Q  

generalized force expression. In fact, this simple model reveals the very striking result that the 

contribution to the generalized force  1 2 12b F FQ F       from the MBS reference load

bF , often ignored in the FE-based durability analysis, is approximately 4.8 times the 

contribution of the nodal forces  1 2 12F F F   ; in this example 

 1 2 12 0.412322F F F     , while 1.978947b F  . That is, not only very different solution 

is obtained, but also the sign of the force and displacement will be reversed if the effect of the 

MBS reference load is not accounted for properly. Therefore, in FE-based durability analysis, it 

is not sufficient to distribute the forces on the nodal points without taking into account the MBS 

kinematic formulation. Most FE commercial software and algorithms, however, are not designed 

using a MBS approach. 

6.4 Oscillation Frequency and Durability Analysis 
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The results of Figs. 8 and 9 show that the frequency of oscillation that appears in the free-free 

reference condition solution in the transient region is 

2 3 21 1.3319 10 rad/s 2.12 10 Hzd         rad/s, which is based on the natural frequency 

31.3322 10k m     rad/s. This MBS frequency is not related to the natural frequencies of 

the free-free modes presented in Fig. 3; it is, however, closer to the simply-supported and 

pinned-pinned second mode frequency. This important result clearly shows the change of the 

oscillation frequencies in the solution as the result of imposing the MBS joint constraints. The 

use of the embedding technique to eliminate the dependent variables and define an independent 

differential equation of motion leads to the projection of the inertia, damping, and stiffness forces 

in the direction of the degree of freedom of the system. Such a projection results in a change of 

the system inertia, damping, and stiffness characteristics. Accordingly, the resonance frequency 

can be significantly altered as the result of imposing the MBS joint constraints. This simple 

example, therefore, demonstrates the problems that can be encountered in a durability analysis 

that ignores the MBS joint constraints and relies mainly on a conventional FE analysis which 

does not account for the MBS joint constraints and does not allow for systematically using the 

projection scheme of the embedding technique as described in this paper.  

 It is important to point out that the use of loads predicted using MBS software as input to a 

conventional FE model does not remedy the problem discussed in this subsection. Loads are not 

kinematic joints, do not eliminate degrees of freedom, and do not alter the resonance frequencies. 

Therefore, the frequency contents in the solution will depend only on the FE boundary 

conditions, which are not in general equivalent to the MBS joint constraints. The MBS-predicted 

loads, when used in an FE durability analysis, do not change the deformation basis vectors and 

do not change the resonance ranges of the model. More reliance on accurate flexible MBS 
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computational tools is the solution for credible durability analysis of systems that consist of 

interconnected bodies. 

 

7.  AUTOMATIC ELIMINATION OF REDUNDANT CONSTRAINTS 

The simple example considered in this investigation defines indeterminate (over-constrained) 

system if the effect of the deformation is not considered. A planar rigid body has three degrees of 

freedom if no constraints are imposed on its motion. The two pin-joints are defined using four 

algebraic constraint equations, leading to an over-constrained system if this system were rigid. 

By considering two bending modes of vibration, the system has one degree of freedom as 

demonstrated in the preceding example. This flexible body system is not topologically over-

constrained. Nonetheless, singularity of the constraint Jacobian matrix can appear if the initial 

conditions are zeros and if no axial modes of vibration are considered. In order to demonstrate 

this initial configuration singularity, the constraint equations, O O f r AS p 0and 

 O A A f   r A u S p d 0  (Eq. 12), are differentiated with respect to the coordinates ,O r , and 

fp . This yields the following constraint Jacobian matrix: 

   
 

1 2

1 2

1 2

1 2

1 0 cos sin sin

0 1 sin cos cos

1 0 sin cos sin sin

0 1 cos sin cos cos

O O O

O O O
m

A A A

A A A

d

d

     
     
      
      

   
  
    
  

J    (23) 

In this equation, 1 1 2 2O O f O fp p     and 1 1 2 2A A f A fp p    . Because   remains zero in 

this example, it is clear that in the case of zero initial modal coordinates, that is 

   1 20 0
0f fp p  , one has 0O   and 0A  , and the constraint Jacobian matrix becomes 
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     1 2

1 2

1 0 0 0 0

0 1 0

1 0 0 0 0

0 1

O O
m

A Ad

 

 

 
 
 
 
 
 

J      (24) 

This equation shows initial-configuration singularity since the first and third rows are identical. 

The MBS constraint Jacobian matrix becomes rank deficient despite the fact that the system is 

not topologically over-constrained. This simple example sheds light on the danger of automatic 

elimination of redundant constraints, which can lead to creating a new system topology that may 

lead to a different solution and different oscillation frequencies as discussed in the preceding 

section. In MBS algorithms, the constraint forces can be written in terms of the constraint 

Jacobian matrix mJ  and the vector of Lagrange multipliers λ  as T
mJ λ .  

 For the example considered in this investigation, 0  , that is sin 0   and cos 1  . Using 

Eq. 23, one can show that 
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J         (25) 

Using the velocity transformation vector  120 0 1
T

v b B , one can show that 

0T T
v m B J λ , demonstrating how the constraint equations are systematically eliminated to 

determine the analytical model. 

 

8. SUB-STRUCTURING INTERFACE CONDITIONS 

Another set of conditions that are widely used in the durability analysis of mechanical and 

structural systems is the sub-structuring interface conditions (Craig and Bampton, 1968; O’Shea 
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et al., 2016). There is a fundamental difference between these conditions and the structural 

mechanics boundary conditions and the FFR reference conditions. In sub-structuring techniques, 

the structure is divided into substructures at nodes, called the interface or sub-structure boundary 

nodes, which are used with a static condensation method to determine a set of basis vectors equal 

to the number of degrees of freedom of the interface nodes. These basis vectors, called static 

correction modes, can be systematically obtained by using stiffness sub-matrices while the effect 

of the structure inertia is neglected (Craig and Bampton, 1968, O’Shea et al., 2016). The 

interface nodes are then assumed fixed and an eigenvalue problem is solved for each sub-

structure to determine its interface deformation modes. These interface deformation modes are 

combined with the static correction modes to form the Craig-Bampton transformation matrix. At 

this stage, the high frequency interface deformation modes can be eliminated in order to develop 

a low order model for each substructure. Using the reduced order substructure models, the 

substructures can be assembled using the connectivity conditions at the interface nodes, leading 

to a structure with a reduced order model as the result of reducing the dimensions of its 

substructures. Boundary conditions on the entire structure motion can be then imposed if 

necessary. In some of the aerospace applications, such as airplanes, no boundary conditions need 

to be imposed to eliminate additional degrees of freedom since airplanes are often modeled as 

free-free structures that have rigid body modes. 

 Craig and Bampton (1968) never claimed that such a sub-structuring procedure leads to an 

improvement of the solution, and never argued that the static correction modes will lead to such 

an improvement. Their goal was to demonstrate that their sub-structuring technique will lead to a 

solution that converges to the solution of the original problem, and by including sufficient 

number of sub-structuring modes, their technique does not lead to deterioration in the accuracy. 
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It is, therefore, important to note that the Craig-Bampton sub-structuring technique does not 

eliminate the rigid body motion of the structure since modeling free-free structures using sub-

structuring techniques is very common in the aerospace industry. 

 Based on this brief discussion, the fundamental differences between the sub-structuring 

interface conditions, the structural mechanics boundary conditions, and the FFR reference 

conditions can be made clear from the following well-established facts: 

1. The sub-structuring interface conditions do not eliminate rigid body modes, do not 

significantly change the fundamental frequencies of the assembled structure, and do not 

define the system topology because no joints are introduced. The sub-structuring interface 

conditions are mainly used to assemble substructures after the elimination of the sub-

structure high frequency deformation modes. The Craig-Bampton transformation still 

accounts for the rigid body modes. 

2. The structural mechanics boundary conditions eliminate rigid body modes, define the 

fundamental frequencies of the system, and define the system topology since joints are 

introduced to the model. This is evident by the fact that different boundary conditions lead to 

different solutions and natural frequencies. The boundary conditions are, for the most part, 

considered as joint constraints on structures that do not experience large rigid body 

displacement. If the structure has arbitrarily large displacements, the use of the concepts of 

the FFR formulation becomes necessary if an FE method capable of correctly describing the 

rigid motion is not used. 

3. The FFR reference conditions eliminate the rigid body motion of the structure with respect to 

its reference, do not eliminate the rigid body modes of the structure, define the nature of the 

body coordinate system, define a unique displacement field and the shapes of deformation of 



35 
 

the flexible body with respect to its reference, do not influence the frequency contents in the 

solution since the flexible body still has its rigid body modes described by the reference 

coordinates, and do not change the system topology because the reference conditions are not 

mechanical joints. In the FFR formulation, the system topology is defined by the MBS joint 

constraints. The frequency contents in the solution is influenced by these MBS joint 

constraints as demonstrated by the simple analytical model considered in this paper. 

Therefore, if additional conditions are imposed to eliminate the rigid body modes after obtaining 

the Craig-Bampton transformation, these conditions are either boundary conditions in the case of 

structural systems or FFR reference conditions in the case of MBS applications. In the latter 

case, mechanical joints that define the system topology and the frequency contents can be 

applied in order to assemble the system components. Nonetheless, the definition of a unique 

displacement field for each body is necessary before the system assembly using mechanical 

joints that are described for MBS applications using highly nonlinear algebraic equations instead 

of the linear boundary conditions often used for structural mechanics applications. 

 

9. SUMMARY AND CONCLUSIONS 

In this investigation, simple numerical and analytical models are used to address fundamental 

FE/FFR implementation issues. The reference solutions used are confirmed using a full FE 

analysis. The new models can, therefore, serve as a benchmark examples that shed light on some 

serious problems encountered in performing the durability analysis by the industry. The issues 

addressed and the contributions made in this paper can be summarized as follows: 

1. The analysis presented in this paper demonstrates that one set of reference conditions is not 

suited for all applications. Consequently, the generality of the FE/FFR formulation can be 
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severely limited by restricting the choice of the reference conditions to one set. This 

important fact was confirmed by developing a new analytical model that demonstrated the 

problems that arise if general-purpose flexible MBS computer programs restrict the choice of 

the deformation basis vectors. The new analytical model, supported by MBS simulation data, 

shows that such a restriction can lead to wrong solutions in the case of very simple models.  

2. The paper demonstrates the fundamental difference between the boundary conditions used in 

the classical vibration theory and structural mechanics and the reference conditions used in 

MBS dynamics. Structural mechanics boundary conditions eliminate degrees of freedom, 

while the FE/FFR reference conditions eliminate coordinate redundancy and define a unique 

displacement field. Some sets of MBS reference conditions do not have equivalent boundary 

conditions in structural mechanics, as demonstrated by the simple model considered in this 

study. The differences between the structural mechanics boundary and FFR reference 

conditions and the sub-structuring interface conditions were also explained. 

3. When the MBS constraints are applied, use of inappropriate set of reference conditions can 

lead to wrong solutions.  Because low-frequency modes with simpler shapes may fail to 

satisfy the MBS algebraic constraint equations, modes associated with higher frequencies 

may become more dominant as demonstrated by the analytical model developed in this 

paper. As shown in Table 1, the improper selection of the reference conditions can lead to 

solution errors that exceed 100%, making such a solution completely unreliable. 

4. It is common that CAE groups in the industry perform durability FE analysis using FE 

boundary conditions. The analysis presented in this paper sheds light on the credibility of 

using this approach. It is shown that MBS joints change the model dynamics characteristics, 

including the inertia, damping, and forces as well as the resonance frequencies. Therefore, 
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the durability analysis must be performed in a MBS computational environment in order to 

correctly capture the effect of the MBS kinematic constraints and ensure proper projection of 

the forces that produce the deformations and stresses. In particular, the analysis presented in 

this paper shows that the contribution of the reference forces to the independent deformation 

coordinates requires the formulation of the MBS joint constraints which are not included in 

commercial FE computer programs. 

5. The frequencies of oscillation and the resonance ranges of one component of the system 

based on linear analysis can be significantly different from those of the assembled MBS 

model. That is, the frequencies predicted for a component using detailed FE analysis should 

not enter as a factor in the design of the assembled component which can experience 

arbitrarily large displacements.  

6. Some commercial MBS computer programs provide the feature of the automatic removal of 

redundant constraints. In some cases, as demonstrated in this paper, automatic elimination of 

redundant constraints can lead to a different model that has dynamics characteristics that are 

significantly different from those of the original model. It is important, therefore, to 

distinguish between topological singularities and initial-configuration singularities.  

Future investigations in this area can be focused on further studies of the initial-configuration 

singularities, and developing analytical models with more degrees of freedom to include other 

types of modes such as axial modes. These analytical models can be valuable in clearly 

explaining the projection of forces and addressing important durability analysis issues.  
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Table 1 Converged values and percentage error 

Node Free-free sol. (m) Simply-supported sol. (m) Percentage error 
Load node 33 0557 10.    21 0719 10.    71.5% 
Free end 34 7052 10.    21 6081 10.   129.3% 
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Figure 1  Planar and spherical pendulums 

 

 

 

 

 

 

 

 

 

Figure 2  Beam model 
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(a) Free-Free 
 

 

(b) Simply-Supported 
 

 

 

(c) Pinned-Pinned 

Figure 3  Mode shapes and associated frequencies in Hz 
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Figure 4  Transverse displacement at the point of the load application predicted using FE method 

( Simply-Supported,  Pinned-Pinned) 
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Figure 5  Transverse displacement at the beam free end predicted using FE method 

( Simply-Supported,  Pinned-Pinned) 
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Figure 6  Transverse displacement at the point of the load application predicted using MBS and 
FE methods 

(  MBS simply-supported,  MBS pinned-pinned, 

FE simply-supported,  FE pinned-pinned,  MBS free-free) 
 

 



50 
 

0.0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

D
is

pl
ac

em
en

t (
m

)

Time (s)

 

Figure 7  Transverse displacement at the free end predicted using MBS and FE methods 
(  MBS simply-supported,  MBS pinned-pinned, 

FE simply-supported,  FE pinned-pinned,  MBS free-free) 
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Figure 8  Transverse displacement of the point of the load application in the case of free-free 
reference conditions 

( Analytical solution, MBS solution) 
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Figure 9  Transverse displacement of the free end in the case of free-free reference conditions 
( Analytical solution, MBS solution) 
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Figure 10  Motion of the body reference in the case of the free-free reference conditions 
( Analytical solution, MBS solution) 
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Figure 11  Deformed shape of the beam 
( Free-Free,  Simply-Supported) 


