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ABSTRACT 
 

The goal of this study is to propose an approach for developing new and detailed vehicle models 
that include flexible components with complex geometries, including chassis, and airless and 
pneumatic tires with distributed inertia and flexibility. The methodology used is based on 
successful integration of geometry, and small and large deformation analysis using a mechanics-
based approach. The floating frame of reference (FFR) formulation is used to model the small 
deformations, whereas the absolute nodal coordinate formulation (ANCF) is used for the large 
deformation analysis. Both formulations are designed to correctly capture complex geometries 
including structural discontinuities. To this end, a new ANCF-preprocessing approach based on 
linear constraints that allows for systematically eliminating dependent variables and significantly 
reducing the component model dimension is proposed. One of the main contributions of this paper 
is the development of the first ANCF airless tire model which is integrated in a three-dimensional 
multibody system (MBS) algorithm designed for solving the differential/algebraic equations of 
detailed vehicle models. On the other hand, relatively stiff components with complex geometries, 
such as the vehicle chassis, are modeled using the finite element (FE) FFR formulation which 
creates a local linear problem that can be exploited to eliminate high frequency and insignificant 
deformation modes. Numerical examples that include a simple ANCF pendulum with structural 
discontinuities and a detailed off-road vehicle model consisting of flexible tires and chassis are 
presented. Three different tire types are considered in this study; a brush-type tire, a pneumatic 
FE/ANCF tire, and an airless FE/ANCF tire. The numerical results are obtained using the general 
purpose MBS computer program SIGMA/SAMS (Systematic Integration of Geometric Modeling 
and Analysis for the Simulation of Articulated Mechanical Systems). 
 
Keywords: Airless tires; pneumatic tires; absolute nodal coordinate formulation; floating frame 
of reference formulation; integration of computer-aided design and analysis (I-CAD-A). 
 
 
 
 
 
 
 
 
 
 
 



1. INTRODUCTION 

This investigation is concerned with the development of new detailed MBS small- and large-

deformation vehicle models consisting of components with complex geometries including 

structural discontinuities. In this section, research background, brief literature review, the scope, 

contributions, and organization of the paper are discussed. 

1.1 Background 

Despite the fact that computational rigid MBS algorithms have been widely used in the analysis 

of vehicle systems since the 1980s [1, 2], incorporating component flexibility is necessary in order 

to develop high fidelity vehicle models that can be effectively used in accurate and reliable 

durability investigations. The FE/FFR formulation, introduced in the early 1980’s for the small-

deformation analysis of MBS applications with structural discontinuities [3], leads to accurate 

representation of the nonlinear inertia forces and coupling between the reference and elastic 

displacements. An example of a vehicle component with structural discontinuities is the chassis 

depicted in Fig. 1 which shows slope discontinuities at several locations in which beam structures 

are connected. Because in FFR formulation, the FE deformation is described in the body 

coordinate system and the large rotation and translation of the flexible body are described using 

the local body coordinate system which serves as the body reference, the FE/FFR formulation 

allows using non-isoparametric elements with large-rotation non-incremental MBS solution 

procedures.  

 The analysis of the large deformation, on the other hand, can be accomplished using the 

absolute nodal coordinate formulation (ANCF) [4 – 6]. ANCF elements employ gradient vectors 

instead of infinitesimal rotations as nodal coordinates, allowing for exact description of rigid body 

motion even in the case of beam, plate, and shell elements. ANCF elements have several desirable 



features that include constant mass matrix and zero Coriolis and centrifugal inertia force vectors, 

which are highly nonlinear in the FFR formulation. Fully parameterized ANCF elements, in 

particular, can be used to systematically describe structural discontinuities of components made of 

relatively softer materials such as tires. Figure 2 depicts two different types of tires that will be 

considered in this investigation. The first is a pneumatic tire which has smooth nominal geometry, 

while the second is an airless tire which has slope discontinuities. The fact that there is no 

distinction between plate and shell structures when ANCF elements are used allows for developing 

complex geometry models by proper selection of the nodal coordinates in the reference 

configuration. 

 MBS dynamics, widely used in the analysis of wheeled vehicles [7], provides significant 

insight on the design and performance of the vehicle before a working prototype can be 

manufactured. While the FE/FFR formulation was introduced more than three decades ago, long 

before ANCF elements were introduced, there exists a large number of vehicle applications in 

which the use of the small-deformation FE/FFR formulation can contribute to developing accurate 

and efficient computer models, particularly when combined with an ANCF large-deformation 

approach. Efficient modeling of vehicle systems that include stiff chassis and more flexible tires 

will require efficient implementation of both methods in computational MBS algorithms. The two 

methods, however, employ two fundamentally different approaches for the treatment of structural 

discontinuities. In the FE/FFR approach, in which infinitesimal rotations are used as nodal 

coordinates, a conventional vector coordinate transformation is used; while in the ANCF approach, 

in which gradients are used as nodal coordinates, a gradient transformation must be used to account 

for the effect of structural discontinuities. In the FFR approach, an intermediate element coordinate 

system must be introduced, while the ANCF approach does not require the use of such an 



intermediate coordinate system for the treatment of structural discontinuities because of the use of 

the position vector gradients. 

1.2 Literature Review 

Several vehicle components like the chassis shown in Fig. 1 are typically modeled using the 

FE/FFR approach since a small-deformation assumption can be made. The FE/FFR formulation 

was used to study the nonlinear dynamics of a vehicle traversing over an obstacle with the goal of 

examining the chassis deformation [8]. The FFR three-dimensional beam element was used to 

model the chassis of a dune buggy subjected to external excitation through a half-sine function 

based road bump [9]. Ambrosio and Goncalves [10] compared the results of the rigid and flexible 

chassis models of a detailed sport vehicle undergoing various maneuver tests. Sampo [11] studied 

the dynamics of a formula student vehicle by considering the chassis flexibility. Shiiba et al. [12] 

investigated the effect of using several non-modal model-order reduction techniques on the 

flexible chassis of a detailed racing vehicle model with specific emphasis on ride characteristics. 

Carpinelli et al. [13] compared rigid and flexible body models for the prediction of ride and 

handling characteristics of a commercial sedan vehicle. Goncalves and Ambrosio [14] optimized 

the suspension spring and damper coefficients of a wheeled vehicle that included a flexible chassis.  

 Another deformable vehicle component whose behavior has significant effect on the vehicle 

performance is the tire whose behavior is characterized by large rotation and deformation. Several 

tire models have been proposed over the past two decades for use with MBS vehicle models. These 

include formula-based curve-fitted, discrete mass-spring-damper-based, and FE-based models [15 

– 17]. The formula-based tire models are typically used for vehicle dynamics simulations where 

the analysis is concerned with low-frequency tire and vehicle dynamics. The Magic Formula tire 

model proposed by Pacejka [15] is an example of a widely used formula-based tire model. The 



discrete mass-spring-damper models yield better fidelity and are typically used in ride quality and 

durability simulations. Several commercial MBS software have implemented the discrete mass-

spring-damper-based FTire model proposed by Gisper [16]. The FE-based tire models can capture 

a larger spectrum of frequency response and are also used for NVH (noise-vibration-harshness) 

and durability analyses where the tire high frequency response and stress is studied as well [17]. 

While there is a very large number of investigations on the FE modeling of tires, there is a 

relatively small number of investigations that couple FE tires and MBS vehicle models without 

the use of co-simulation techniques. A new ANCF method of tire-rim assembly was recently 

proposed [18], and was used by Patel et al. [4] to develop a new tire model in which the tire was 

modeled using ANCF plate/shell elements and the rim was modeled using the ANCF reference 

node. Recuero et al. [5] demonstrated the use of ANCF elements in the simulation of the tire/soil 

interaction, whereas Pappalardo et al. used the rational ANCF elements [19] and the so-called 

consistent rotation-based formulation (ANCF/CRBF) elements [20] to model the tire. Yamashita 

et al. [21] modeled the tire using the bilinear ANCF shell element and demonstrated braking and 

cornering scenarios with the tire model. Sugiyama and Suda [22] modeled the tire as a ring-type 

structure using planar curved ANCF beam elements and compared its vibration modes with 

analytical and experimental results. Recuero et al. [23] examined the tire-soil interaction using a 

co-simulated rigid body vehicle model, FE tire model that utilized bilinear shell elements, and 

DEM (discrete element method) soil model. 

1.3 Scope, Contributions, and Organization of the Paper 

This paper focuses on developing a computational framework based on the integration of geometry 

and small- and large-deformation analysis for the nonlinear dynamics of detailed vehicle models 

that consist of rigid and flexible bodies. The proposed approach captures accurately structural 



discontinuities that characterize the chassis (as the one shown in Fig. 1) and airless tires (shown in 

Fig. 2). In this geometry-based approach, the chassis and tires are modeled as flexible bodies using 

the small-deformation FFR and large-deformation ANCF elements, respectively. Specifically, the 

main contributions of the paper can be summarized as follows: 

1. The first ANCF airless tire model with distributed inertia and elasticity is developed in this 

investigation and integrated with computational MBS algorithms without the need for using 

co-simulation techniques. The FE model accurately captures the structural discontinuities that 

characterize this tire type. 

2. An approach for vehicle assembly based on the integration of rigid body, small-deformation 

FFR, and large-deformation ANCF algorithms is proposed for developing new and detailed 

vehicle models. Stiff components such as the chassis are modeled using FFR elements, while 

more flexible components such as the tires are modeled using ANCF elements. 

3. A new method for the treatment of structural discontinuities using ANCF elements is proposed. 

In the new approach, linear algebraic constraint equations are formulated at a preprocessing 

stage, thereby allowing for systematically reducing the model dimension by eliminating 

dependent variables before the start of the dynamic simulation.  

4. The paper introduces a damping model for ANCF pneumatic tires which accounts for the 

energy dissipation in the tire material as well as due to the pressurized air in a tire model.  

5. New high-mobility multi-purpose wheeled vehicle (HMMWV) models are developed in this 

investigation. In one model, airless tires are used, while in a second model pneumatic tires are 

used. Both tires models are described using ANCF elements. In the vehicle models developed, 

the chassis is modeled using FFR elements, and a component-mode synthesis method is used 

to eliminate insignificant high frequency modes. 



6. Using the HMMWV model, the paper presents a comparative study based on three different 

vehicle models. The first model is the vehicle with brush-type tires, the second is a vehicle 

with pneumatic tires, and the third is a vehicle with airless tires. The results obtained using 

these three different models are compared. 

The sections of the paper are organized as follows. Section 2 briefly describes the two finite 

element formulations used to model the small- and large-deformations of the flexible components 

used in the vehicle system. The FE/FFR method will be used to model small-deformation behavior, 

whereas ANCF elements will be used to model the large deformation behavior. Section 3 describes 

the FFR and ANCF methods used to account for structural discontinuities. Section 4 discusses the 

MBS equations of motion of the vehicle system. Section 5 presents two numerical examples; the 

first example demonstrates the use of the linear ANCF constraint equations in modeling structural 

discontinuities and the second example is the HMMWV vehicle model with an FE/FFR chassis 

and ANCF tires. Three types of tire models, brush-type rigid tire, pneumatic ANCF tire, and an 

airless ANCF tire, are used and the results obtained are compared. 

 

2. SMALL- AND LARGE-DEFORMATION ANALYSIS 

Accurate and efficient modeling of vehicle system applications requires the integration of small- 

and large-deformation formulations. The stresses of relatively stiff components such as rods and 

chassis can be efficiently modeled using a small-deformation formulation that allows for 

systematically eliminating insignificant deformation modes. More flexible components such as 

tires and belt drives, on the other hand, require the use of a large-deformation formulation. This 

section briefly discusses the two formulations used to describe the component flexibility in this 

paper. These two fundamentally different formulations, FFR and ANCF, are integrated in one 



MBS computational algorithm designed for solving the differential/algebraic equations that govern 

the dynamics of vehicle systems. The brief presentation in this and the following sections is 

necessary in order to have an understanding of the fundamental differences between the two 

formulations in the way the coordinates are selected and the structural discontinuities are handled. 

In the FE/FFR method, a conventional coordinate transformation based on orthogonal 

transformation matrices is used; while for ANCF elements, transformation between parameters or 

coordinate lines is used leading to a non-orthogonal gradient transformation. 

2.1   FE/FFR Formulation 

In the FFR formulation, the absolute position vector of an arbitrary point on body i  can be written 

as i i i i r R A u , where iR  is the absolute position vector of body reference, iA  is the rotation 

matrix that defines the orientation of the body  reference, and iu  is the local position vector of the 

arbitrary point. If the body is deformable, the absolute position vector can be written as 

 0
i i i i i

f  r R A u u , where 0
iu  is the local position vector of the point in the undeformed state 

and i
fu  is the time-dependent deformation vector. 

 Beam elements will be used in this study to model the chassis in the FE/FFR formulation. The 

displacement field of the beam element can be written as w Se , where S  is the element shape 

function matrix and e  is the vector of the element nodal coordinates. The shape function matrix 

of the FE/FFR beam element is provided in Appendix A.1. In order to be able to correctly model 

structural discontinuities in the FE/FFR formulation, four coordinate systems are used:  the global 

coordinate system (GCS), body coordinate system (BCS), intermediate coordinate system (ICS), 

and the element coordinate system (ECS) as shown in Fig. 3. For every ECS, there exists an ICS 

which is initially parallel to the ECS and fixed with respect to the BCS. Using the concept of the 

ICS, the beam displacement field of an element j  on body i  can be written in the ICS as 



ij ij ij
ICS ICSw S e , where the subscript ICS  refers to vectors defined in ICS. Furthermore, ij

ICSe  can be 

written in terms of the nodal coordinates described in BCS as ij ij ij
ICS ne C q , where ij

nq is the vector 

of nodal coordinates described in BCS, and ijC  is a constant transformation matrix between ICS 

and BCS, composed of orthogonal transformation matrices. The location of the point in the BCS 

can be written as ij ij ij
ICSu C w  or ij ij ij ij ij

nu C S C q , where ijC  is an orthogonal transformation 

matrix that defines the ICS with respect to the BCS. The nodal coordinates of element j  can be 

written in terms of the total vector of nodal coordinates of the body as 1
ij ij i
n nq B q , where 1

ijB  is a 

Boolean matrix that defines the connectivity between finite elements forming the flexible body. 

Consequently, the local position vector can be written as 1
ij ij ij ij ij i

nu C S C B q  [3, Chapter 6]. In 

order to define a unique displacement field by eliminating the rigid body modes of the element 

shape function matrix, a set of reference conditions must be applied. To this end, the body nodal 

coordinates are written as 0
i i i
n f q q q , where 0

iq  is the vector of body nodal coordinates in the 

un-deformed configuration and i
fq  is the vector of body nodal deformations which can be written 

as 2
i i i
f fq B q , where 2

iB  is the linear transformation matrix obtained using the reference 

conditions. Using the transformation 2
i i i
f fq B q , the local position vector iju  can be written as 

   1 0 2 0 2
ij ij ij ij ij i i i ij i i i ij i

f f n    u C S C B q B q N q B q N q .  

 The analysis presented in this section shows that assembly of elements that have different 

orientations in the reference configuration requires the use of constant orthogonal transformation 

matrices ( ijC  and ijC ). The use of these transformations in the FE/FFR formulation is necessary 

in order to have exact modeling of the rigid body dynamics. In the FE/FFR formulation, the vector 

of body generalized coordinates is written as 
Ti iT iT iT

f   q R θ q , where iR  and iθ  are the 



body reference translation and rotational coordinates, respectively. The kinetic energy can be 

defined using the generalized velocities and the body mass matrix as 

1

1 1

2 2
eni iT i i iT ij i

j
T


    q M q q M q     , where en  is the number of elements, ijM  is the mass matrix 

of element j , and iM  is the body mass matrix which is a highly nonlinear function of the 

coordinates. The virtual work of the elastic forces is defined as 
ij

ij ijT ij ij
s V

W dV   ε σ , where a 

linear elastic and isotropic material is assumed for the stress-strain relationship. The element 

stiffness matrix can be written as 
ij

ij ijT ij ij ij
ff V

dV K V E V , where 2
ij ij ij iV D N B , ijE is the matrix 

of elastic coefficients, and ijD  is the differential operator that relates the strains and displacements, 

such that ij ij ij
fε D u . Using the transformations previously developed in this section, the element 

stiffness matrices can be assembled to obtain the stiffness matrix i
ffK  which can be used to define 

the stiffness matrix iK  associated with the total vector of coordinates of the body [3]. Using the 

mass and stiffness matrices, the FE/FFR equations of motion for an unconstrained body i  can be 

written as  

i i i i i i
e v  M q K q Q Q                        (1) 

where  i
eQ  is the vector of generalized external forces, and i

vQ  is the Coriolis and centrifugal 

quadratic velocity vector. For flexible vehicle components with complex geometry such as the 

chassis shown in Fig. 1, the number of elastic coordinates in Eq. 1 can be very large. For this 

reason, coordinate reduction techniques are often used to reduce the problem dimensionality. In 

this investigation, the number of elastic coordinates of the chassis is reduced using component 

mode synthesis methods by performing an eigenvalue analysis of the system i i i i
ff f ff f M q K q 0 , 

where i
ffM  is the partition of the mass matrix associated with the vector of body nodal 



deformations. Because of the application of the reference conditions, the stiffness matrix i
ffK  is a 

symmetric positive-definite matrix [3]. Using the eigenvalue analysis, the vector of nodal 

coordinates can be written as i i i
f m fq B p , where i

mB  is the modal transformation matrix whose 

columns contain the eigenvectors that represent significant deformation modes, and i
fp  is the 

vector of modal coordinates. Because insignificant high frequency mode shapes are eliminated 

from i
mB , the number of elastic coordinates can be significantly reduced as demonstrated by the 

HMMWV example used in this investigation.  

2.2  ANCF Finite Elements 

Unlike the FE/FFR formulation, ANCF elements lead to highly nonlinear elastic forces and a 

constant mass matrix, and therefore, the Coriolis and centrifugal inertia forces are zero when these 

elements are used. ANCF coordinates consist of position and gradient/slope vectors that are 

defined in the global coordinate system. Several ANCF elements have been proposed in the 

literature. These ANCF elements include beam, plate/shell, solid, triangular, and tetrahedral 

elements that can be defined using non-rational or rational polynomials [24 -28, 6]. When ANCF 

elements are used, the global position vector of an arbitrary point on element j  of body i  can be 

written using the element shape functions and nodal coordinates as ij ij ijr S e , where ijS  is the 

element shape function matrix, and ije  is the vector of element nodal coordinates. In this 

investigation, both pneumatic and airless tires will be modeled using ANCF plate/shell elements 

whose shape functions are provided in Appendix A.2. The vector of the four-node plate/shell 

element nodal coordinates ije  can be written as 1 2 3 4

Tij ijT ijT ijT ijT   e e e e e , where the coordinates 

of node n  can be written in the case of a fully-parameterized element as   



     
TT T Tij ijT ij ij ij

n n n n nx y z         
e r r r r , 1, 2,3, 4n  , where  Tx y zx  are 

element parameters. No distinction is made between ANCF plate and shell elements because an 

ANCF shell element has the same assumed displacement field of the ANCF plate element. The 

shell geometry can be systematically defined using the element nodal coordinates in the reference 

configuration 0
ije , where the subscript 0 refers to reference configuration. The use of the position 

vector gradients as nodal coordinates allows for obtaining complex shell geometry by a proper 

choice of 0
ije . The mass matrix of ANCF elements 

0
0ij

ij ij ijT ij ij

V
dV M S S  can be defined using the 

kinetic energy, where ij  and 0
ijV  are, respectively, the mass density and volume in the reference 

configuration. Given an external force vector ij
ef , the ANCF generalized force vector can be 

written as ij ijT ij
e eQ S f . For fully parameterized ANCF elements, the continuum mechanics 

approach can be used to formulate the elastic forces. Given an elastic energy potential function 

ijU , the second Piola-Kirchhoff stress tensor can be written as 2
ij ij ij
P U  σ ε , where 

  / 2ij ijT ij ε J J I  is the Green-Lagrange strain tensor, 
ijij ij  J r X  is the matrix of position 

vector gradients, and 0
ij ij ijX S e  is the vector of the element  parameters in the reference 

configuration. The vector of element elastic forces can be formulated based on a hyper-elastic 

model as  
0

0ij

Tij ij ij ij ij
k v vV

dV   Q ε e σ , where the subscript v  refers to Voigt (engineering) 

notation of the strain and stress tensors. In case of ANCF, the equations of motion of an 

unconstrained ANCF body i  can be written as i i i i
k e M e Q Q , where i

eQ  is the vector of external 

forces.  



 As previously mentioned, ANCF plate/shell elements are used in this investigation to obtain 

accurate initially-curved geometry description for both pneumatic and airless tires. The stress-free 

initially-curved geometry in the reference configuration can be achieved by writing the matrix of 

position vector gradients as 1
0e
J J J , where e   r xJ , 0   X xJ ,  Tx y zx  is vector 

of element coordinates in the straight configuration, and 0X Se  as previously defined. With the 

appropriate selection of 0e , curved structures can be easily modeled using ANCF elements. 

Additionally, volume transformation can be written between the straight and initially-curved 

configuration as 0 0dV dV J  [29, 30, 6], where V  and 0V   is the volume in the straight and 

reference configurations, respectively. 

 

3. FFR AND ANCF MODELING OF STRUCTURAL DISCONTINUITIES 

Structural discontinuities appear at the locations of intersection of rigidly-connected segments 

which have different orientations. These discontinuities characterize vehicle system components 

such as the chassis shown in Fig. 1 and the airless tire shown in Fig. 2. In order to develop accurate 

computational models for these components in MBS applications, it is necessary to use approaches 

that account for the slope discontinuities. This section briefly describes the methods used for 

handling structural discontinuities in the two FE formulations used in this investigation. A new 

ANCF approach for the treatment of structural discontinuities is also proposed in this section. In 

this approach, a constant velocity transformation matrix is developed and used to eliminate the 

dependent variables at a preprocessing stage. The new approach offers the flexibility and 

generality of combining structural discontinuity constraints with other constraints since it retains 

the original element coordinates before any coordinate transformation is performed. 

3.1  FE/FFR Formulation 



The element intermediate coordinate system (ICS) used in the FE/FFR formulation plays a crucial 

role in modeling structural discontinuities. The ICS concept is similar to that of the parallel axis 

theorem used in rigid body dynamics [3]. Consider the structure shown in Fig. 4 that consists of 

two non-isoparametric beam elements forming an L-shaped structural discontinuity at their 

intersection. For brevity, BCS, ECS and ICS in Fig. 4 refer to body, element, and intermediate 

coordinate systems, respectively. It can be seen from Fig. 4 that the orientation of ECS-1 

(corresponding to element 1) is the same as that of the BCS, while the orientation of ECS-2 

(corresponding to element 2) is different from that of the BCS. The shape functions of the non-

isoparametric beam element used can correctly capture rigid body translation but, since this 

element uses infinitesimal rotations as nodal degrees of freedom, large finite rotations cannot be 

correctly modeled. In order to correctly capture the inertia of this structure and obtain correct rigid 

body kinematics, two ICSs are introduced at the BCS which are parallel to their respective ECS as 

shown in Fig. 4. The nodal coordinates defined in the BCS corresponding to each of the two 

elements can be transformed into their respective ICSs using the ijC  matrix used in Section 2.1. 

Using this transformation, the shape function matrix of the non-isoparametric beam element can 

be used to yield the correct position of the material points with respect to the ICS. The position of 

the material point obtained in the ICS can then be transformed to the BCS by using the constant 

transformation matrix ijC  which is the transformation matrix that defines the ICS orientation with 

respect to the BCS as discussed in Section 2.1. Therefore, the use of the ICS concept allows 

modeling different types of geometric discontinuities (T-, V-, and L-sections) in the FE mesh, 

while correctly representing the rigid body kinematics, inertia and dynamics. 

3.2  ANCF Finite Elements 



In case of ANCF elements, handling structural discontinuities requires the use of a fundamentally 

different approach that involves gradient transformations that have a structure different from the 

orthogonal vector transformations [31]. To this end, an appropriate coordinate transformation 

matrix that exists between the body and element parameterizations must be used, and no 

intermediate coordinate systems are required because of the use of the ANCF position vector 

gradients. The nodal coordinates defined with respect to the body parameterization can be 

transformed to coordinates with respect to the element parameterization as e Tp , where e  and 

p  are the set of coordinates defined with respect to the element and body parameterizations, 

respectively, and the transformation T  can be written as 

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

j j j

j j j

j j j

 
 
 
 
 
 

I 0 0 0

0 I I I
T

0 I I I

0 I I I

     (2) 

where , 0( )m n m nj x  S e  are the components of the matrix of position vector gradients 0J   

defined at the reference configuration and mS  is the mth row of S  [31]. The transformation T  only 

affects the gradient vector coordinates of the given node, not the position vector coordinates. 

Employing this method, the structural discontinuities can be modeled using the conventional FE 

assembly procedure. By doing so, the connection between two ANCF elements having a structural 

discontinuity at a given common node is taken into account employing a standard connectivity 

matrix of the FE mesh. For example, consider the structure depicted in Fig. 5, which is the same 

as the one considered in the previous section. Without loss of generality, it is assumed that the 

BCS is parallel to the GCS. The structural discontinuity occurs at the shared node between the 

ANCF fully parameterized beam element 1 and element 2 as shown in Fig. 5. It can be seen from 

Fig. 5 that the orientation of the gradients in element 1 is the same as that of the BCS, whereas the 



orientation of the gradients of element 2 is rotated with respect to the shown BCS. In this case, the 

transformation matrix that transforms the coordinates from the body to element parameterization 

will be an identity matrix at the shared node for element 1. For element 2, the transformation matrix 

will depend on the direction cosines between the gradients at the shared node in element 2 and the 

BCS assuming that the set of gradient vectors at the discontinuity node is an orthonormal set (no 

initial curvature). A similar procedure can be used for gradient deficient ANCF elements [32]. 

 In this investigation, a new method for modeling structural discontinuities using ANCF 

elements is proposed. The proposed method generalizes the technique previously developed [31] 

to structural discontinuities located at arbitrary points of an FE/ANCF mesh. Instead of directly 

applying the coordinate transformation e Tp  to switch to the body coordinates, a constant 

structural discontinuity constraint Jacobian matrix is defined. This Jacobian matrix can be used to 

define a constant velocity transformation matrix that can be used to systematically eliminate 

dependent variables. This approach offers the generality and flexibility of combining the structural 

discontinuity constraint equations with other constraint equations before switching to the body 

coordinates. By using this approach, structural discontinuities that occur at nodal locations of the 

FE/ANCF mesh can also be modeled, and therefore, the method previously developed in [31] can 

be considered as a special case of the method proposed in this section.  

 In the method proposed in this section, a set of ANCF structural discontinuity algebraic 

constraint equations is developed. Since these algebraic constraint equations are linear, they and 

the associated dependent variables can be systematically eliminated at a preprocessing stage, 

leading to reduced order models that can be efficiently solved. In order to obtain the general set of 

constraint equations associated with structural discontinuities, the proposed method is composed 

of two steps. In the first step, two sets of coordinate lines, which represent geometric lines 



associated with the material fibers of the continuum body, are defined. The first set of coordinate 

lines referred to as  Tx y zx  represents the element material fibers, whereas the second set 

of coordinate lines referred to as  Tx y zx  represents the body material fibers. The set of 

coordinate lines x  are also referred to as Cartesian coordinates and serve as a unique standard for 

the FE mesh assembly, while the coordinate lines x   are simply referred to as element coordinate 

lines. Using these basic continuum mechanics concepts, the position field of a three-dimensional 

continuum body is defined as  1 2 3

T
r r rr  and it can be written as a function of the element 

coordinate lines x  or as a function of the body coordinate lines x . By using the chain rule of 

differentiation, one can write        b         r x r x x x r x J , where bJ  is the Jacobian 

matrix that represents the transformation between the body coordinate lines and the element 

coordinate lines. Without loss of generality, the structural or body parameterization is defined 

considering the reference configuration of the continuum body, and therefore, the Jacobian matrix 

of the body parametrization bJ  is identical to the matrix of the position vector gradients 0J  defined 

in the body reference configuration. This tensor transformation can be rewritten in matrix form as 

follows: 
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where ,m nj  are the components of the matrix 0J . By adding an identity transformation for the 

ANCF nodal position vector, the preceding equation can be rewritten as 
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For a general node of an ANCF fully-parameterized element, the nodal coordinate vector 

associated with the element coordinate lines can be defined as 
TT T T T

x y z   e r r r r , whereas 

the nodal coordinate vector associated with the structural (body) parametrization can be given by 

TT T T T
x y z   p r r r r .  Therefore, as mentioned before in this section, one can write e Tp , 

where T  is the transformation matrix previously defined. On the other hand, the matrix of position 

vector gradients defined by differentiation with respect to the structural (body) parameters can be 

written as         1
b b
            r x r x x x r x J r x H , where 1

b b
H J . Assuming 

again that the Jacobian matrix of the body parametrization bJ  is identical to the matrix of the 

position vector gradients 0J  defined in the body reference configuration, this inverse tensor 

transformation can be rewritten in matrix form as follows:  
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where ,m nh  are the components of the matrix 1
0 0

H J . It follows that  
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where  11 21 31x x y zh h h  S S S S ,  12 22 32y x y zh h h  S S S S , and  13 23 33z x y zh h h  S S S S . 

By using these equations, one is able to write the gradient vectors of a given ANCF element as 



functions of the structural (body) vector of nodal coordinates. Therefore, considering two material 

points iP  and jP  belonging to the element i  and j , respectively, one can write a set of structural 

discontinuity constraint equations for the connection of points iP  and jP  as follows:  
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or equivalently  
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Considering the vector of structural nodal coordinates    
TT Tk i j    

p p p  that appears in the 

preceding equation, the structural discontinuity constraint Jacobian matrix can be written as  
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where kC  denotes the vector of structural discontinuity constraint equations of Eq. 7 and 8 at node 

k . Since the structural discontinuity constraint equations are a set of linear algebraic equations 

grouped in the vector kC ,  the Jacobian matrix k

k

p
C  of this set of algebraic equations is constant, 

and therefore, the constraint equations and the associated dependent variables can be 

systematically eliminated at a preprocessing stage by developing an appropriate velocity 

transformation matrix. The use of the velocity transformation matrix offers the flexibility and 

generality of combining the structural discontinuity constraint equations with other constraint 

equations which are formulated in terms of the original element nodal coordinates.    

 



4. MBS EQUATIONS OF MOTION 

The equations of motion used in this investigation for the dynamic simulation of a vehicle system 

that consists of rigid, FE/FFR, and ANCF bodies are presented in this section. The 

differential/algebraic equations of motion are obtained using the principle of virtual work and the 

technique of Lagrange multipliers. The set of generalized coordinates used are 

TT T T
r f   q q q p , where 

TT T
r R    q q q  are the rigid body translational and rotational 

coordinates collectively referred to as reference coordinates, fq  represents the FE/FFR 

coordinates, and p   represents the vector of structural FE/ANCF coordinates. The equations of 

motion used in this study can be written as   
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where rrM  and ffM  are the mass matrices associated with the reference and FE/FFR deformation 

coordinates, respectively; rfM  and frM  represent the inertia coupling between the FE/FFR 

reference and deformation coordinates; ppM  is the mass matrix associated with the ANCF 

coordinates; 
rqC , 

fqC , and pC  are the Jacobian matrices of the nonlinear MBS joint constraint 

equations associated, respectively, with the reference, FE/FFR deformation, and ANCF 

coordinates; λ  is the vector of Lagrange multipliers; rQ , fQ , and eQ  are the applied and elastic 

force vectors associated with the reference, FE/FFR deformation, and ANCF coordinates 

respectively; 
rvQ and 

fvQ are the Coriolis and centrifugal force vectors associated with the 



reference and FE/FFR deformation coordinates, respectively; and cQ  is the quadratic velocity 

vector that arises from differentiating the constraint equations twice with respect to time.  

 For numerically solving the equations of motion, the two-loop implicit sparse matrix numerical 

integration (TLISMNI) method that utilizes the concept of coordinate partitioning and the second-

order backward difference formula for time integration is used in this work [33]. An important 

feature of TLISMNI is that it satisfies the constraint equations at the position, velocity, and 

acceleration levels. A component mode synthesis method is used for the FE/FFR model to reduce 

the size of the modal transformation matrix by eliminating insignificant high frequency modes. 

Furthermore, the concept of the ANCF reference node is used to model the rigid rim in the ANCF 

tire assembly. Using the ANCF reference node, linear constraint equations can be formulated for 

the tire-rim connection and the dependent variables in the tire mesh can then be eliminated thus 

reducing the model dimensionality and the number of Lagrange multipliers needed in the dynamic 

analysis [4, 18]. The rigidity of the ANCF reference node is ensured by imposing six nonlinear 

constraint equations that ensure that its gradient vectors remain unit orthogonal vectors in order to 

define an orthonormal rigid body coordinate system. 

 

5. NUMERICAL RESULTS AND DISCUSSION 

This section presents and discusses two simple ANCF pendulum problems and a complex off-road 

vehicle model that includes flexible ANCF tires and FE/FFR chassis in order to demonstrate the 

use of the new velocity transformation-based approach introduced in Section 3.2 for modeling 

structural discontinuities in the analysis of a complex vehicle model with flexible chassis and tires 

without the need for co-simulation. 

5.1  L-shaped Beam and Y-shaped Plate Pendulums 



In order to demonstrate the implementation of the new ANCF approach discussed in Section 3.2 

for modeling structural discontinuities, beam and plate pendulum models are used in this section. 

The beam model, which is an L-shaped pendulum model shown in Fig. 6, consists of two ANCF 

fully parameterized beam elements that are connected at a structural discontinuity node. Three 

beam pendulum models are considered in this numerical study: rigid body, ANCF with modulus 

of elasticity 122 10E   Pa, and ANCF with modulus of elasticity 72 10E   Pa. The length, 

width, and height of the beams are 1m, 0.1m, and 0.1m, respectively. A density 1000   kg/m3 

and Poisson’s ratio 0   are assumed. Figure 7 shows the time evolution of the pendulum tip 

vertical position for the three models. As can be seen from Fig. 7, the rigid body and stiff ANCF 

pendulum models are overlapping, whereas there is some difference in the results of the soft ANCF 

pendulum model. The soft ANCF pendulum, however, follows a similar trend as that exhibited by 

the other two models. In order to examine the results of the new implementation, Fig. 8 compares 

two scalar quantities and their difference at the structural discontinuity node of the ANCF model 

with 72 10E   Pa. These scalar quantities are 1 2
T
x xr r and 1 1

T
x zr r , where the subscript   refers to 

the   coordinate line on element  . The scalar quantity 1 2
T
x xr r  corresponds approximately to the 

cosine of the angle between the two beams, whereas 1 1
T
x zr r  corresponds to the engineering shear 

strain at the structural discontinuity node. It is shown in Fig. 8 that 1 2
T
x xr r  and 1 1

T
x zr r  overlap and 

their difference is identically zero throughout the simulation.  

The plate/shell model consists of three fully parameterized ANCF plate/shell elements 

connecting at common structural discontinuity nodes and making a Y-shaped plate structure as 

shown in Fig. 9. The two angled plates connect to the horizontal plate at a 45  angle measured 

from the horizontal plane. Figure 10 compares the right tip vertical position of the upper angled 



plate of a rigid body model to an ANCF model with 122 10E   Pa. The length, width and height 

of the plates are 1m, 1m, and 0.1m respectively. A density 1000   kg/m3 and Poisson’s ratio 

0  are used for the ANCF plate pendulum. As can be seen from Fig. 10, even in this case, the 

rigid body and stiff ANCF pendulum models produce the same results, thus demonstrating the 

effectiveness of the proposed ANCF approach for modeling structural discontinuities. 

5.2  Wheeled Vehicle Model 

An off-road four-wheel drive vehicle model, HMMWV model shown in Fig. 11, is considered as 

a numerical example in this section. A MBS model with a detailed suspension model was 

developed. The chassis and tires are considered flexible bodies in this MBS vehicle model. The 

chassis is modeled using the FE/FFR formulation whereas the tires are modeled using ANCF 

elements. Two types of flexible tires that include a pneumatic tire and an airless (non-pneumatic) 

tire are considered and the results obtained using these distributed inertia and elasticity tire models 

are compared with a rigid brush-type tire model. 

5.2.1 MBS Vehicle Model 

The vehicle model considered in this numerical study is a four-wheel drive vehicle capable of 

operating both on-road and off-road. The vehicle has a 190-horsepower engine, a double ‘A’ arm 

suspension with coil springs and double-acting shock absorbers and a recirculating ball, worm and 

nut based power assisted steering. The gross operating mass of the vehicle can vary, however, a 

good estimate of the vehicle curb mass is approximately 2500 kg. The maximum vehicle on-road 

speed is around 113 km/h. For simplicity, powertrain dynamics are not considered in the MBS 

model used in this numerical study. The steering system is modeled using a rack-pinion system. 

The vehicle subsystems like suspension, car-body, chassis, and tires are modeled in detail using 

several rigid and deformable bodies. Table 1 shows the body inertia of the vehicle components, 



whereas Tables 2 and 3 show the different types of ideal and compliant joints used in the model. 

Figure 12 shows a detailed view of the suspension system and some driveline components used in 

this model. Three different types of tires are used with the model, these include rigid brush-type 

tire, FE/ANCF pneumatic tire, and FE/ANCF airless tire. The computer implementation of the 

new approach proposed in this study in Section 3 for the treatment of the structural discontinuities 

was used in the analysis of the ANCF airless tire model developed in this study. 

 For the assembly of the vehicle model, four subsystems are considered: car body, chassis, 

suspension, and wheels. The wheels are connected to the spindles (suspension component) using 

revolute joints and the spindles are connected to the upright using revolute joints. A component 

called the subframe connects the suspension, chassis and car body. The chassis is connected to the 

front and rear subframes at the NDRC locations shown in Fig. 13 using bearing elements. In this 

paper, NDRC is an abbreviation for nodal displacement reference conditions, which refer to the 

locations on the chassis where the node displacements are constrained in order to achieve a unique 

displacement field for the FE/FFR chassis mesh. Furthermore, the car body is also connected to 

the sub-frames at the same locations as that of the chassis using bearing elements. The upper and 

lower arms of the suspension shown in Fig. 12 are connected to their respective sub-frame using 

revolute joints. 

5.2.2 Flexible Subsystems: Chassis and Tires 

The FE/FFR method is used to model the vehicle chassis which is meshed using 435 non-

isoparametric three-dimensional beam elements with displacement and rotations as nodal 

coordinates. The shape function matrix for this non-isoparametric beam element is given in 

Appendix A.1. The material parameters considered are modulus of elasticity 112.1 10E    Pa, 

Poisson ratio 0.33  , and mass density 7200   kg/m3. The cross-section is assumed to be 



rectangular with width 0.05w   m and height 0.1h   m. The FE mesh and the applied reference 

conditions are shown in Fig. 13. As shown in this figure, the reference conditions are selected to 

constrain the x, y and z nodal displacement at 8 nodes/points which represent joints between the 

vehicle suspension subsystem and chassis. The dimension of the chassis model is reduced by 

eliminating high-frequency modes and keeping the first 15 modes in the model. Modal damping 

is used in order to account for the dissipation due to structural damping. A damping ratio of 1% is 

used for the first 5 modes and a damping ratio of 5% is used on the remaining higher frequency 

modes in order to damp out insignificant high-frequency oscillations and improve the 

computational efficiency of the model. The first five modes of the chassis are shown in Fig. 14, 

while Table 4 shows the frequencies associated with the 15 modes of the chassis. 

 ANCF fully-parameterized plate/shell elements, on the other hand, are used to model the 

pneumatic and airless tires. One of the tires in the 144-element pneumatic four-tire mesh is shown 

in Fig. 15, while one of the tires in the 100-element airless four-tire mesh is shown in Fig. 16. The 

linear isotropic material properties selected are 1500   kg/m3, 75 10E    Pa, and 0v  . For 

simplicity viscoelasticity was not considered in this study, however dissipative forces were added 

to the tire using a discrete damping model described in the next paragraph. The air-pressure 

considered in the pneumatic tire is 250 kPa. The tire/ground contact penalty stiffness, damping, 

and coulomb friction coefficients are selected to be 45 10k   N/m, 34 10c   N.s/m, and 0.8 

, respectively. More details on the ANCF tire/ground contact formulation can be found in the 

investigation by Patel et al. [4].  

 Finally, a new radial damping model for the tire is introduced wherein the relative velocity 

between the tire material point and the ANCF reference node that is used to model the rim is used 

in the formulation of the damping force as shown in Fig. 17. This type of damping is introduced 



in the model to simulate the effect of the more realistic material damping that would occur in the 

tire structure. However, using this type of damping, one can relate the damping coefficient to radial 

damping used in several non-FE based ring type tire models which are parametrized using test 

data. The relative velocity between the tire material point and the ANCF reference node, rv ,  is 

calculated and its projection on the outward normal to the tire surface at that material point is used 

in the damping force expression. Hence, the generalized damping forces can be written as 

( )T T
d rs

c ds Q S v n n , where c  is a damping coefficient, S  is the matrix of shape functions, n  is 

the outward normal to the tire surface as shown in Fig. 17, and s  is the tire surface area. The 

generalized damping forces used in this investigation are distributed forces calculated from 

integration over the tire surface area. Furthermore, this damping formulation does not affect the 

ability of the ANCF mesh to correctly exhibit rigid body motion since the relative velocity of the 

material point with respect to the ANCF rim node instead of its absolute velocity is used in the 

formulation of the damping force. The tire edges are clamped to the rim using linear constraints at 

the preprocessing stage, hence removing any rigid body motion between the tire and its respective 

rim reference node [18]. A damping coefficient of 42 10c   N.s/m was used with the pneumatic 

tire model in this study. Adding the damping to the tire model significantly improved its 

computational efficiency and improved the quality of the results leading to a more realistic 

behavior.   

5.2.3 Comparative Study 

In order to compare the response of different tire models considered in this study as well as the 

vehicle response, the off-road wheeled vehicle model described in Section 5.2.1 is made to traverse 

several curb-like bumps. The three vehicle models used in this analysis have the same kinematic 

constraints and model topology. The models with the airless ANCF tire, pneumatic ANCF tire, 



and brush tire will be henceforth referred to as airless, pneumatic, and brush models respectively. 

Table 5 shows the brush tire parameters used with the brush tire vehicle model. The topology of 

the test track, shown in Fig. 18, can be used to assess vehicle durability and study the noise-

vibration-harshness (NVH) response of the vehicle. The vehicle is allowed to settle initially, and 

then driving moments are applied to the wheels from 0.5s to 8.5s, after which the driving moments 

are removed and the vehicle is allowed to decelerate. The vehicle reaches a maximum velocity of 

around 17 km/h during the 15s simulation. Figure 19 shows the chassis longitudinal velocity of 

the three vehicle models. Figure 20 shows the chassis longitudinal displacement of the three 

vehicle models. There are some differences in the vehicle longitudinal displacement due to the 

different rolling resistance coefficients of the tires that are in turn dependent on the tire geometry 

and the resulting contact patch as well as the normal contact force distribution. Figure 21 shows 

the vertical displacement of the chassis reference. It can be noted from Fig. 21 that, objectively, 

the motion of the chassis frame of reference is quite similar for all three tire models. The chassis 

vertical displacement for the brush tire model is slightly larger than the FE/ANCF tire models at 

certain time points since the brush tire model is based on a rigid tire assumption with a flexible 

contact patch, and leads to larger force transmission, hence slightly larger vibration amplitude of 

the chassis which is modeled as a sprung mass. Figure 22 shows the vertical displacement of the 

front left spindle as the suspension subsystems traverse the seven curb-like bumps in the test track. 

It can be noted from Fig. 22 that the upward displacement due to a bump in case of the brush tire 

model occurs with a slight delay when compared to that of the FE/ANCF tire models. The reason 

for this phenomenon is that the brush tire model has a single contact point directly below the wheel 

center, hence the bump is only detected by the brush tire model when the brush tire center coincides 

with the start of the bump. In case of the FE/ANCF tires, since the contact detection is done for 



the elements near the ground while accounting for the variation in the ground geometry due to the 

bumps, the FE tires can detect the sudden change in ground geometry away from wheel center 

with much higher accuracy than the brush tire model. However, it must be noted that the brush tire 

model is typically used in ride quality simulations instead of NVH-type durability simulations. 

Figures 23 and 24 show the strains in the front right airless and pneumatic tires as they come into 

contact with the second bump of the test track, respectively. Along with examining the dynamic 

events occurring in the flexible tires, the chassis that is modeled using the FE/FFR approach can 

be analyzed for deformation and stress hot spots in order to improve its design or simply ensure 

that stresses remain within the material yield limit when the model is tested under certain external 

excitations and loads. Figure 25 shows the chassis total deformation for the dynamic event of the 

vehicle front tires passing over the second bump. Figure 26 shows the vertical deformation time 

history of point P shown in Fig. 25. Since the deformation data shown in Fig. 26 contain some 

high frequencies, it can be harder to correlate it with the vehicle overall motion, for this reason, 

Fig. 27 shows the vertical deformation of chassis point P after applying a low-pass filter with a 

cut-off frequency of 3.33 Hz. Similar to analyzing the deformations, element stresses can also be 

extracted and analyzed. Figure 28 shows the axial stress at point P whereas Fig. 29 shows the same 

result after applying the low-pass filter. It can be seen from the results of Figs. 26-29 that the 

chassis vertical deformation and axial stress for the three types of tire models traversing the test 

track is quite similar. The deformation in the chassis used with brush tire model is larger than its 

FE/ANCF counterparts due to the reason previously mentioned, that is, the rigidity of the tire 

which leads to larger force transmission. 

 Figure 30 shows the front left spindle vertical forces as a function of its longitudinal 

displacement. The spindle force refers to the upright reaction force acting on the spindle in the 



spindle-upright revolute joint. Appendix B briefly discusses the constraint force calculations based 

on the MBS approach adopted in this investigation. It can be noted from the results presented in 

Fig. 30 that the brush tire has high force spikes compared to the pneumatic and airless tires. Figure 

31 shows a zoomed in view of Fig. 30 in the 10-15 m displacement segment. It can be seen that 

even in transient events, the spindle forces of all three types of tires can follow a very similar 

pattern. There are, however, two large force spikes in case of the brush tire model in Fig. 31 which 

occur with a slight delay when compared to the airless and pneumatic tire models. These force 

spikes occur when the tires come into contact with the bumps. As mentioned previously, due to 

the differences in how the brush tire and ANCF tires models handle contact, there will be 

difference in the dynamic response in the neighborhood of the beginning of the bumps. Figures 32 

and 33 show the spindle longitudinal and lateral force, respectively. The spindle forces shown in 

Figs. 30 - 33 are given with respect to the global reference frame. The high frequency spindle joint 

reaction force content seen in case of the airless tire can be attributed to the fact that no material 

damping was considered. Material damping can be introduced for the ANCF tire models by 

accounting for the viscoelastic properties that will be considered in future studies.  

 It must be noted that even though this is a comparison study of different types of tires and their 

simulation-based models, the tire models considered are based on different parameters or inputs 

that must be accurately determined. The fidelity of the FE-based tire models, including the airless 

and pneumatic tires, is dependent on the geometric and material properties and complexities 

considered in the FE modeling of these tires. The brush tire model on the other hand uses specific 

inputs such as radial, longitudinal slip, and lateral slip stiffness parameters in addition to some 

other tire properties like rolling resistance and friction coefficients. Because of the difficulties of 

obtaining data from tire manufacturers and because this study is mainly concerned with 



demonstrating how structural discontinuities using large and small deformation formulations can 

be incorporated in the flexible MBS model, the brush tire parameters were varied until the model 

yielded similar global motion trajectories as those of the FE models. For a detailed comparison, 

ideally, the brush tire parameters must be optimized to match experimental data or simulation data 

that were previously verified numerically. Such optimization can be done iteratively or through 

optimization algorithms as was demonstrated by Li et al. [34]. 

 

6 SUMMARY AND CONCLUSIONS 

The goal of this investigation is to develop a computational framework for complex vehicle 

systems that consist of components with geometry characterized by structural discontinuities as in 

the cases of chassis and airless tires. Accurate durability analysis of such systems requires the 

integration of small- and large-deformation formulations. The paper proposes a new ANCF 

approach for modeling structural discontinuities in which a constant velocity transformation matrix 

that allows combining the structural discontinuity constraint equations with other ANCF constraint 

equations before the application of any coordinate transformation. The ANCF linear constraint 

equations are used to eliminate dependent variables at a preprocessing stage. The paper also 

proposes a new radial damping model for the tires and demonstrates its use in MBS vehicle system 

applications. The use of the new computational framework proposed in this study is demonstrated 

by developing and performing the simulation of a detailed wheeled vehicle model that consists of 

rigid body, FFR, and ANCF components. The vehicle components undergoing small deformations 

are modeled using the FFR approach, whereas the components undergoing large deformations and 

finite rotations are modeled using the ANCF approach. Three types of tire models that include a 

rigid brush-type tire model, an ANCF airless tire model, and an ANCF pneumatic tire model are 



compared as the vehicle traverses a series of bumps. The airless tire is modeled for the first time 

using ANCF fully parameterized plate/shell elements, which is one of the main contributions of 

this investigation.  



APPENDIX A 

A.1   FE/FFR Beam Element Shape Function Matrix 

The shape function matrix for the non-isoparametric beam element used with the FE/FFR model 

in this investigation is given as  
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A.2  ANCF Plate/Shell Element Shape Functions 

The shape function matrix and the shape functions of the ANCF fully-parameterized plate/shell 

element with gradient conformity at element edges are given, respectively, as 
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where , x l y w   , and z t   in which ,l w , and t  are, respectively, the length, width, and 

thickness of the plate.  

 

 

 

  



APPENDIX B 

Joint Reaction Force Calculation 

The reaction forces for a given joint can be calculated using the Lagrange multipliers and the 

constraint Jacobian matrix, shown in Eq. 10. The generalized constraint forces can be written as 

T
c   qQ C λ , where qC represents the Jacobian matrix associated with the joint and λ  is the vector 

of Lagrange multipliers associated with the joint which are solved for along with the accelerations 

in Eq. 10. 

 In case of a revolute joint which connects the spindle and upright, the kinematic constraints 

can be written as [35] 
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where superscripts refer to the two bodies connected by the joint, P is the joint definition point, iv  

and jv are vectors along the joint axis, 1
iv  and 2

iv  are vectors that make an orthonormal triad along 

with iv . Using the preceding equation, the Jacobian matrix for the revolute joint can be written as 

1 1
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             (B.2) 

where k k k T k
P P   H I A u G  for ,k i j , A is the body transformation matrix, Pu  is the vector 

that defines the position of the joint definition point with respect to the body coordinate system, 

G  is the matrix that relates the body orientation parameter time derivatives to the angular velocity 

vector ω  defined in the body coordinate system, and k k kT k
m mL A v G  for ,k i j  and 1,2m   [35].
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Table 1. Vehicle inertia properties 

Components Mass (kg) xxI  (kg.m2) yyI  (kg.m2) zzI  (kg.m2) 

Chassis 708.35 156.83 1647.4 1767.3 
Car body 1378.18 712.38 1952.25 2358.16 

Front sub-frame 50.000 61.0000 10  61.0000 10  61.0000 10  
Rear sub-frame 45.359 42.9264 10 42.9264 10 42.9264 10

Front left and right suspensions 
Upright 3.6382 24.0800 10 24.2300 10 38.3400 10  

Upper arm 5.4431 22.3300 10 23.6100 10  21.3200 10  
Lower arm 16.329 0.14688 0.23163 0.11852 
Upper strut 5.0000 61.0000 10  61.0000 10  61.0000 10  
Lower strut 5.0000 61.0000 10  61.0000 10  61.0000 10  

Tire 68.039 1.1998 1.7558 1.1998 
Tierod 0.5545 35.7854 10  35.7854 10  51.7745 10  
Tripot 1.9851 31.1019 10  31.1019 10  48.1390 10  

Drive shaft 4.2175 0.16599 0.16599 46.9283 10  
Spindle 1.1028 44.7790 10 44.7790 10 44.9628 10  

Rear left and right suspensions 
Upright 3.6382 24.0800 10 24.2300 10 38.3400 10  

Upper arm 5.9320 0.068400 0.091400 0.024000 
Lower arm 16.287 0.29036 0.51811 0.23229 
Upper strut 0.45359 42.9264 10 42.9264 10 42.9264 10
Lower strut 0.45359 42.9264 10 42.9264 10 42.9264 10

Tire 68.039 1.1998 1.7558 1.1998 
Tierod 2.0412 24.2200 10 24.2200 10 41.9000 10  
Tripot 2.0307 31.1383 10  31.1383 10  48.4254 10  

Drive shaft 6.0495 0.24565 0.24565 31.4463 10  
Spindle 1.5046 47.7539 10  47.7539 10  49.2387 10  

 

 

 

 

 

 

 

  



Table 2. Ideal joints used in vehicle model 

Joint type 
Number of 

joints 
Spherical/ball 25 
Revolute/pin 16 
Rigid/bracket 4 
Cylindrical 8 

Relative angular velocity 5 
Gear 8 

Rack pinion 1 
 

Table 3. Compliant joint elements used in vehicle model 

Joint type 
Number of 
elements 

Bushing 4 

Bearing 16 
 

Table 4. Chassis frequencies 

Mode number Frequency (Hz)
1 30.9 
2 65.35 
3 70.48 
4 74.27 
5 78.23 
6 82.08 
7 91.98 
8 95.38 
9 97.21 
10 99.28 
11 116.21 
12 121.45 
13 129.75 
14 137.83 
15 148.87 

 



Table 5. Brush tire parameters 

Parameter Value
Radial stiffness (MN/m) 2 

Radial damping (MN.s/m) 1 
Longitudinal slip stiffness (MN/m2) 10 

Lateral slip stiffness (kN/deg.m2) 50 
Friction coefficient 0.8 

Rolling resistance coefficient 0.03
 

  



 

Figure 1. Structural discontinuities in a truck chassis (http://roadstershop.com/product/full-

chassis/1967-72-c10-truck-spec-chassis/) 



 

Figure 2. Pneumatic off-road tire (upper figure) and airless off-road tire (lower figure) 

 (Upper figure: http://www.nittotire.com/light-truck-tires/trail-grappler-mud-terrain-light-truck-

tire/; lower figure: http://croctyres.com.au/wp-content/uploads/2015/12/image10.jpg/) 

 

 



 

 

 

 

 

 

 

Figure 3. Coordinate systems involved in FE-FFR formulation (Black: GCS; Blue: BCS; Red: 

ICS; Green: ECS) 



 

Figure 4. FE-FFR structural discontinuity (subscripts b, i and e correspond to BCS, ICS and ECS 

respectively) 



 

Figure 5. ANCF structural discontinuity 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6. L-shaped beam pendulum with structural discontinuity 



 

Figure 7. L-shaped beam tip vertical position: ANCF and rigid body model comparison (

Rigid;  ANCF ( 122 10E    Pa);  ANCF ( 72 10E    Pa) ) 
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Figure 8. ANCF L-shaped beam engineering shear strain and cosine of angle at structural 

discontinuity  
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Figure 9. Y-shaped plate/shell pendulum model 



 

Figure 10. Y-shaped plate/shell pendulum tip vertical position: ANCF and rigid body model 

comparison ( Rigid;  ANCF 122 10E   Pa) 
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Figure 11. Off-road wheeled vehicle model (GCS: global coordinate system for orientation 

reference) 

 



 

Figure 12. Front left suspension close-up 

 

 

 

Figure 13. FFR chassis mesh (NDRC: nodal displacement reference conditions) 



 

 

Figure 14. FFR chassis first five mode shapes and frequencies 

 

 

 



 

 

 

 

Figure 15. ANCF pneumatic tire 

 



 

Figure 16. ANCF airless tire 



 

Figure 17. Distributed radial damping model (ANCF-RN: ANCF reference node) 

 



 

Figure 18. Durability vehicle simulation test track (TCS: track coordinate system, whose location 

coincides with the global coordinate system) 

 

 



 

Figure 19. Chassis longitudinal velocity ( Airless;   Pneumatic;  

Brush) 
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Figure 20. Chassis longitudinal displacement ( Airless;   Pneumatic;  

Brush) 

 

0 5 10 15
0

10

20

30
C

ha
ss

is
 lo

ng
it

ud
in

al
 d

is
pl

ac
em

en
t (

m
)

Time (s)



 

Figure 21. Chassis vertical displacement ( Airless;   Pneumatic;  

Brush) 
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Figure 22. Front left spindle vertical displacement ( Airless;   Pneumatic; 

 Brush) 
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Figure 23. Airless tire hitting second bump with yy  strain contours 

 



 

Figure 24. Pneumatic tire hitting second bump with yy  strain contours 

 

 

 

 

 

 

 

 



 

Figure 25. FFR chassis total deformation instance during dynamic simulation (with deformation 

contours) 

 

 

 

 



 

Figure 26. Vertical deformation at chassis point P with respect to BCS ( Airless; 

  Pneumatic;  Brush) 
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Figure 27. Vertical deformation at chassis point P with respect to BCS after applying low-pass 

filter ( Airless;   Pneumatic;  Brush) 
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Figure 28. Axial stress at chassis point P with respect to BCS ( Airless;   

Pneumatic;  Brush) 
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Figure 29. Axial stress at chassis point P with respect to BCS after applying low-pass filter (

Airless;   Pneumatic;  Brush) 
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Figure 30. Front left spindle vertical force ( Airless;   Pneumatic;  
Brush) 
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Figure 31. Front left spindle vertical force: zoomed in for 10-15m segment  ( Airless; 

  Pneumatic;  Brush) 

 

10 11 12 13 14 15

-40000

-20000

0

20000
Sp

in
dl

e 
ve

rt
ic

al
 f

or
ce

 (
N

)

Spindle longitudinal displacement (m)



 

Figure 32. Front left spindle longitudinal force ( Airless;   Pneumatic; 

 Brush) 
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Figure 33. Front left spindle lateral force ( Airless;   Pneumatic;  
Brush) 
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