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Abstract— Modern power analysis attacks (PAAs) and exist-
ing countermeasures pose unique challenges on the design of
simultaneously secure, power efficient, and high-performance
ICs. In a typical PAA, power information is collected with a
monitoring circuit connected to the compromised device. The
non-typical voltage variations induced on a power distribution
network (PDN) by such a malicious probing are sensed with
on-chip sensors and exploited in this paper for detecting PAAs in
real-time using statistical analysis. A closed-form expression for
the voltage variations caused by malicious probing is provided.
Guidelines with respect to the PDN characteristics and number
of sensors are proposed for securing power delivery. The PAA
detection system is designed in a 45-nm standard CMOS process.
Based on the simulation results, a PAA on an IBM benchmarked
microprocessor is detected with the accuracy of 88% with
30 on-chip sensors. Power overhead of 0.34% and 14.3% is
demonstrated in, respectively, the IBM microprocessor and a
typical advanced encryption standard system. In a practical
cryptographic device, security sensitive PDN regions can be
identified, significantly reducing the number of the on-chip
sensors.

Index Terms— Side-channel attack, power analysis attack,
hardware security, cyber security, cryptographic devices,
machine learning, logistic classifier, data analysis, on-chip power
delivery.

I. INTRODUCTION

HARDWARE security of integrated circuits (ICs) is a
significant concern in many emerging market segments,

such as intelligent transportation, innovative health care,
sophisticated security systems, and smart energy applica-
tions. In a typical hardware attack, physical side-channel
information, such as IC power and timing traces [1], [2],
memory cache hits and misses [3], and electromagnetic (EM)
characteristics [4] is exposed in a running device. The exposed
side-channel information is a strong function of the oper-
ations executed within the device, and can be related to
sensitive on-chip data. To extract valuable data from a device,
the dependence of the data on physical IC characteristics
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is exploited by attackers as part of the statistical analysis
performed on collected side-channel information. One of the
commonly used side-channel attacks is a power analysis
attack (PAA) which aims revealing sensitive data based on
IC power consumption [5].

Power distribution network (PDN) is a primary IC compo-
nent, comprising up to several millions of nodes in modern
VLSI systems. Voltage variations at the individual on-chip
power grid nodes depend upon the effective impedance among
the nodes, non-linear current loads, and distributed on-chip
voltage sources [6], [7]. Note, that only on-chip PAAs are
considered and all the referenced PDNs and power grids
should be interpreted as on-chip PDNs and on-chip power
grids to avoid confusion with high-voltage power grids. In a
typical power attack, these voltage variations are captured
in real-time with a small resistor (of up to 50 Ohms [8])
externally connected between a power or ground (P/G) pin
of the device and off-chip power supply (e.g., battery). Power
dissipated within the resistor provides valuable information on
the on-chip switching activity of the device and, ultimately,
the executed vulnerable data.

Since the introduction of power analysis in 1998 [1], dif-
ferent PAA countermeasures have been proposed. Hiding
and masking techniques are common preventive measures
for enhancing resilience of modern integrated systems to
PAAs [9]–[30]. With existing hiding techniques, the IC power
consumption is adjusted for each operation, forcing iden-
tical power to be dissipated for different tasks. Dual-rail
pre-charge (DRP) techniques, such as sense amplifier-based
logic (SABL), dual-spacer dual-rail (DSDR) logic, and
three-phase dual-rail pre-charge logic (TDPL) are known
for their symmetric differential nature, maintaining con-
stant power over time [9]–[14]. Limited supply current fluc-
tuations with current-mode logic (CML), such as MOS
current mode logic (MCML) and dynamic current-mode
logic (DyCML) have also been explored for hiding sen-
sitive information [15]–[17]. Alternatively, a complementary
data-independent switching scheme has been proposed in [10]
and demonstrated in [18] and [19] for flattening power profiles
with wave dynamic and differential (WDDL) logic. Another
approach has been presented in [20] for eliminating power
dependence on data by equalizing circuit current with switch-
ing capacitors. Intuitively, power profile flattening methods
exhibit higher power consumption, trading off power for
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security. Each of the aforementioned techniques has been
reported to exhibit individual limitations, such as low scal-
ability, high power consumption, degradation of performance,
and/or limited effectiveness against PAAs.

With masking approaches, the objective is to add random
characteristics to power profiles, reducing the dependence of
overall power consumption on processed data. For example,
power profile have been randomized in [21]–[24] by scram-
bling valuable data with Boolean and/or arithmetic operations.
Power consumption with this approach is a function of the
masked data and not the original valuable data. A single
mask is, however, often not sufficient for mitigating modern
PAAs. Alternatively, managing multiple masks increases the
computational load of cryptographic operation, decreasing the
IC performance. Delay is one of the parameters that is widely
used as a source of randomness in masking approaches. A flow
for random insertion of delays within data paths has been pre-
sented in [25], randomizing power profiles at each cycle. Data
dependent propagation delays have been introduced in [26]
and exploited for randomizing arrival times of the individual
output bits. In [27], power profiles have been randomized with
ring oscillators, generating additional random power traces
within AES core. Secure double rate register (SDRR) has been
proposed in [28] for randomizing data within combinational
and sequential logic at register transfer level (RTL). In [29],
randomized multitopology logic (RMTL) has been described
that exhibits a reconfigurable logic format and dynamic struc-
ture, further supporting the concept of randomized power
profiles. Random pre-charge logic (RPL) has been presented
in [30], inducing random noise to the actual power profiles.

The existing countermeasures have been demonstrated to
reduce the vulnerability of modern systems to power attacks.
These approaches do not, however, guarantee the ultimate
security against advanced PAAs, yet exhibiting significant
overhead in terms of power, performance, area, design com-
plexity, and system scalability [9]–[30]. In addition, the exist-
ing countermeasures are designed as preventive measures,
and are not capable of detecting security attacks at runtime.
A set of power efficient IC design solutions for detecting and
mitigating PAAs in real-time is required to effectively enhance
resilience of integrated systems to security attacks.

Detecting PAAs at runtime is proposed in this paper. The
proposed approach is based on the observation that an exter-
nally connected device (e.g., resistor) affects the effective
impedance of the integrated power grid, inducing non-typical
voltage variations at the node of connection (i.e., the com-
promised node), as shown for a typical PDN in Fig. 1.
To detect power grid probing, we propose to reveal these fine,
non-typical voltage variations with compact power efficient
sensors integrated on-chip. PDN exploration at the circuit
level is however highly complicated in VLSI systems and
straightforward analysis of power profile is computationally
infeasible in real-time [31]. To detect these fine voltage
variations in modern power grids, advanced algorithms are
required for classifying the captured power information into
secure and compromised categories. Machine learning (ML)
is a diverse set of statistical techniques for analysis and in
particular for classification of complex patterns in large data

Fig. 1. Voltage variations across a typical 50 × 50 power grid caused by a
probing circuit connected at the compromised node at (25, 25). The highest
variations are observed at the compromised node, as shown in light shade.

sets. Compact ML classifiers have recently been demonstrated
for low power on-chip data classification [32] that can be
exploited for providing an efficient alternative for the existing
PAA countermeasures.

A theoretical framework that comprises circuits, models,
and algorithms for on-chip ML-based prediction of the security
level in a running device is proposed. With the proposed
approach, PDN voltage variations are simulated during the
system design stages in both the secure and compromised
configurations and exploited for supervised training of a ML
classifier. The trained ML classifier is designed on-chip for
detecting non-secure probing of a power grid at runtime.

Given the distributed nature and complexity of modern
power grids and process, voltage, and temperature (PVT)
variations in advanced technology nodes, non-secure probing
can be accurately detected with a single on-chip sensor only
within a limited region surrounding the compromised node.
To guarantee full security coverage in high-end VLSI systems,
hundreds of compact, power efficient sensors should ultimately
be integrated on-chip.

An analytic expression for voltage variations across power
grid is derived that considers the effect of malicious probing.
Based on the expression, the tradeoffs among the physical
power grid characteristics, system security, and the power
efficiency of the proposed ML approach are investigated and
the related design considerations are described. By carefully
choosing the power gird characteristics, a complex integrated
system can be power-efficiently secured without compromising
the performance and functionality of the system. The theo-
retical and simulation results provide an important, intuitive
insight into the behavior of compromised power grids and the
design of next generation secure and scalable power delivery
systems.

The proposed ML-based approach is demonstrated based
on IBM benchmark suite circuits [33], [34] that model typical
microprocessor power grids. Based on SPICE circuit level
simulation results, PAAs can be accurately detected with the
proposed approach in modern microprocessors. To the best of
authors knowledge, the set of the proposed circuits, models,
and algorithms is the first IC design framework for accurately
and proactively detecting side-channel attacks at runtime and
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Fig. 2. Power analysis setup for capturing power profiles within a power
grid.

is expected to provide an efficient alternative for the existing
preventive power attack countermeasures.

The rest of this paper is organized as follows. In Section II,
a typical PAA is described and closed-form expressions for
voltage variations caused by an off-chip malicious probing
are derived. Based on the analytic expression, an ML frame-
work is proposed for training and classifying power traces,
as described in Section III. Power delivery design tradeoffs
related to hardware security are discussed in Section IV.
Simulation results are presented in Section V. The paper is
summarized in Section VI.

II. PAA ANALYTIC DESCRIPTION

Power attacks are known for their low cost, reli-
able, and non-invasive nature [5]. Several approaches exist
for excerpting the power information from a running
device [8], [35]–[37]. A typical PAA setup is illustrated
in Fig. 2 with a small resistor (Ra) connected between the
power line of the compromised device and the external power
supply. In this configuration, the on-chip power signal at
the compromised node is mirrored across the resistor Ra

and exploited for revealing valuable physical information and
consequently secret data. A power grid configuration with an
access probe connected between an off-chip power supply and
a PDN node is referred to as a compromised configuration
throughout this paper. Alternatively, the configuration without
an external resistor is referred to as secure configuration.

The effect of this resistive non-secure connection on the
physical characteristics of a power grid is analyzed in this
section. A PDN, designed as a grid of vertical and horizontal
interconnections, is a primary IC component which physically
distributes power supply voltages and currents in modern
VLSI systems. Voltage at the individual power grid nodes
is determined by the difference between the nominal on-chip
voltage, Vnominal , and voltage drops across the power grid due
to parasitic RLC impedances and switching of the distributed
non-linear loads.

Voltage drop at the individual grid nodes has been for-
mulated in [6] for an infinite uniform resistive grid with
multiple voltage sources and current loads. With this approach,
all of the voltage sources except for one are converted to

Fig. 3. A power grid comprising three voltage sources, and two current
loads, I (k)

load . All of the voltage sources except for one, Vsupply , are converted

to equivalent current sources, I (k)
supply . The effective resistance between power

grid nodes is also illustrated.

Fig. 4. Effective impedance and currents in a uniformly resistive compro-
mised grid.

equivalent current sources, I (k)
supply , supplying current with

opposite direction with respect to the current loads, I (k)
load . A

power grid with three voltage sources and two current loads
(i.e., I (k)

load ) is illustrated in Fig. 3. All of the voltage sources
except for one (i.e., Vsupply) are converted to equivalent current
sources (i.e., I (k)

supply). Principle of superposition is utilized to
determine the voltage drop at any arbitrary node ng in a power
grid with N voltage sources and M current loads [6],

Vng = Vnominal

− 1

2

M∑

k=1

[I (k)
load(Rvsng + R(k)

vs il
− R(k)

ngil
)])

+ 1

2

N∑

k=2

[I (k)
supply(Rvs ng + R(k)

vs is
− R(k)

ng is
)], (1)

where the indices n = {ng, vs , is, il} identify the power grid
nodes associated with, respectively, the arbitrary power grid
node, the voltage source, a current source (k = 2, . . . , N), and
a current load (k = 1, . . . , M). Rn1n2 is the effective resistance
between the nodes n1, n2 ∈ n (see Fig. 3). The negative
and positive summation terms in (1) describe the contribution
of, respectively, the original system current loads, I (k)

load , and
those current sources converted from voltage sources, I (k)

supply .
The voltage drop determined by these summation terms is a
function of the effective resistances Rn1n2 . Hence, changes in
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Fig. 5. Power grid configurations with a monitoring circuit and various number, magnitude, and placement of voltage sources (red circles) and current loads
(blue squares). Adjacent resistance of Rad j = 0.4 � and access resistance of Ra = 1 � is considered in all these configurations. The voltage variations
at each node within the individual compromised grids are simultaneously evaluated based on (4) and in SPICE. Maximum error of (a) 0.37%, (b) 0.59%,
(c) 0.67%, and (d) 0.31% is reported with (4) as compared to SPICE results.

the effective power grid impedance due to malicious probing
are expected to induce changes in power grid voltage levels.

A primary objective is to find the effective resistance
between the compromised node N0 and a power grid node
Ni located at a distance d from the N0. Here, the distance d
is the number of nodes between the N0 and Ni and Rsecure

and Rcompromised is the effective resistance between two nodes
in, respectively, secure and compromised configuration. First,
a continuous uniform resistive medium is assumed. Note that
only portion of the total current, Itot , flowing through Ra

reaches the node Ni . Consider a circle centering at the node
N0 with the node Ni located on the circle perimeter, as shown
in Fig. 4. Recalling the symmetric nature of the uniform power
grid around the N0, nodes Ni and N j on the perimeter are
provided with the same share (Ia

i = Ia
j = Itot

2πd ,∀i, j ) of
the total current, Itot , flowing from the N0. On the other
hand, Ra , can be modeled as 2πd parallel connected resistors,
R′

a = Ra · 2πd . Applying Kirchoff’s law at N0, the current
at each power grid node on the perimeter of the circle shown
in Fig. 4 is the current through a single resistor, R′

a . In a
practical on-chip power grid, nodes are located in discrete
locations. Thus, the node Ni is provided with the additional
share of the total current, Itot , from the adjacent virtual nodes
(i.e., those nodes existent in continuous, but not in discrete
configuration), practically decreasing the effective resistance
between N0 and Ni by a factor of 4d . The series effective
resistance introduced by the probe is therefore,

Rprobe = Ra · 2πd · 1

4d
= π

2
Ra . (2)

The effective resistance between two nodes in a uniform
resistive secure grid can be analytically expressed as a function
of the vertical (n) and horizontal (m) distance between the
power grid nodes [38],

Rsecure =
[ 1

2π
ln(n2 + m2) + 0.51469

]
Rad j , (3)

where Rad j is the resistance between two adjacent nodes.
Thus, the effective resistance between two nodes in a com-
promised PDN is formulated based on (2) and (3) as,

Rcompromised = Rsecure + Rprobe

=
[ 1

2π
ln(n2 + m2) + 0.51469

]
Rad j + π

2
Ra . (4)

Fig. 6. Proposed ML-based training flow for detecting PAAs.

To evaluate the analytic expression in (4), four power grid
configurations are considered. Each power grid comprises
eleven vertical and eleven horizontal power lines, a monitoring
circuit, and various number, magnitude, and configurations
of power components (voltage sources and current loads),
as shown in Fig. 5. The accuracy of the resulting on-chip
voltage levels obtained based on (4) is verified with SPICE
simulations for each of these power grid configurations, yield-
ing a maximum voltage error of less than 7 mV (i.e., 0.7% of
the nominal supply voltage) as compared to SPICE. In these
power grid configurations, Rad j = 0.4 � and Ra = 1 � is
considered. The design flow of the proposed ML framework
is derived based on the theoretical foundation presented in this
section, as described in the following section.

III. ML DESIGN FLOW AND PARAMETERS

FOR PAA DETECTION

In this section, a ML framework for detecting PAAs
is described. The detection flow is illustrated in Fig. 6,
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Fig. 7. Typical power waveforms extracted from (a) an experimental AES
circuit on FPGA board SAKURA-G [39], and (b) a realistic industrial-size
IBM benchmark.

comprising data acquisition and preparation, model training
and validation, model testing, and at runtime PAA detection,
as described in Sections III-A-C. ML parameters and Python
simulation results are provided in Section III-D.

A. Data Acquisition and Preparation

Data collection and feature selection are primary factors
in efficiently increasing the accuracy of the ML-based clas-
sification. With the proposed design flow, power traces (i.e.,
continuous voltage levels across a PDN) are collected as part
of the design process of a cryptographic system in secure and
artificially designed compromised configurations, and labeled,
respectively, ‘0’ and ‘1’. To simplify the process of designing
a realistic industrial-size system, power traces in this work are
modeled based on IBM power grid benchmarks in Cadence.
To illustrate the practicality of the IBM power grids [33], [34],
an IBM power trace with 10% variations is shown in Fig. 7
along with an experimentally measured power trace of a com-
mon Advanced Encryption Standard (AES) system [39]. Note
the similar periodic behavior of these power traces. Periodicity
of a typical power trace is exploited to obtain numerous
ML observations (i.e., each power signal period is used as
a single power observation). To account for system variations
and generate a practical data set, a randomly distributed noise
is added to the power traces, yielding a balanced data set
of 2,000 secure and 2,000 compromised power observations.
Out of the 4,000 unique observations 70%, 15%, and 15% are
used for, respectively, training the classifier, validating ML
parameters, and testing the proposed system. The individual
power trace observations are sampled and used as ML features
for PAA detection.

1) Sparse Sampling: Sampling frequency of the power
traces and number of ML features are both important for
determining the overall power consumption of the proposed
PAA detection ICs. To extract a sensitive data in a typical PAA,
thousands of power traces are commonly required [5]. The
necessity for the numerous repetitions of the cryptographic
operation is exploited for reducing the power consumption
of the proposed PAA detection system with sparsely sampled
power traces. With this approach, power traces are sampled
at lower frequency over numerous cycles of the PAA opera-
tion, yielding longer detection time and lower average power
consumption. To illustrate the proposed approach, consider a
typical periodic voltage signal with a period of 6 ns and six
features, as shown in Fig. 8. Note that feature (1) acquired
at t = t1 can also be obtained at time t1 + K · 6 ns

(K ∈ N). For example, features similar to those selected within
the first period can be collected over ten periods, as shown
in Fig. 8, significantly reducing the sampling frequency and
thus, the power consumption of the proposed PAA detection
system.

2) DC-Shifted PAA: An example of typical PDN voltage
variations captured in secure and compromised configura-
tions with nominal supply voltage of 1.8 V is illustrated
in Fig. 9 in the form of transient signal (Fig. 9(a)) and
histogram (Fig. 9(c)) of a single ML feature. In this example,
the maximum voltage droop due to power grid parasitic
impedance is 125 mV in secure configuration. Alternatively,
in the compromised configuration a larger voltage droop is
observed due to the increased grid impedance. Hence, there
is an apparent difference of 34 mV in the on-chip voltage
DC component in secure and compromised configurations.
ICs operated in secure and compromised configurations can
therefore be distinguished using simple averaging methods, not
requiring utilization of more advanced ML approaches. This
DC shift in a compromised PDN can be significantly reduced
by an attacker through properly adjusting the DC voltage level
of the off-chip power supply. Classification of PDN security
level in these advanced optimally adjusted PAA setups is
considered in this paper. Power traces captured in secure and
compromised DC-adjusted systems are shown in Fig. 9(b).
A histogram of a single ML feature is shown in Fig. 9(d),
exhibiting significantly lower variance between the secure
and compromised data as compared with the non-adjusted
PAA configuration (see Fig. 9(a) and Fig. 9(c)). Classifying
the PDN security level under a DC-adjusted power attack
is impractical with the straightforward averaging methods.
Alternatively, ML classifiers can be exploited to accurately
distinguish a secure IC operation from a compromised oper-
ation under DC-adjusted PAAs. All the results are reported
based on ideally DC-adjusted PAAs. Note, that in practical
cryptographic devices, ideally compensating for the DC shift
at a compromised node is a challenging and often infeasible
task. Thus, the accuracy of PAA detection in those practical,
partially DC-adjusted systems is expected to be higher than
the worst-case accuracy reported in the following sections.

B. Model Training and Validation

To design an effective integrated solution for PAA
mitigation, design complexity, power, area, and detection
accuracy of the proposed ML circuits are simultaneously
considered. First, the collected power profiles are projected
onto a two-dimensional space using principle component
analysis (PCA). The visualized projected data exhibits linearly
separable input features. Thus, both linear and non-linear
classifiers can be exploited for classifying secure and com-
promised configurations. Existing non-linear classifiers are
typically computationally expensive and exhibit significant
power and area overheads. Thus, linear classifiers should be
preferred for on-chip integration in real-time applications,
subject to performance constraints. The performance of the
proposed solution for PAA detection is evaluated in Python
with logistic regression, support vector machine (SVM), and
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Fig. 8. Sparsely sampled ML features are collected over multiple periods (i.e., observations) of a power trace, lowering the average power consumption of
the proposed PAA detection approach. Collecting two sets of identical features is demonstrated within a single period (sampling frequency of 1 GHz) and
over ten periods (sampling frequency of 90 MHz).

Fig. 9. Voltage signals at secure and compromised PDN nodes,
(a) typical transient voltage profile, (b) DC-adjusted transient voltage profile,
(c) histogram of a single ML feature, as sampled based on (a), and (d) his-
togram of a single ML feature, as sampled based on (b).

linear regression. While all the three models demonstrate
similar performance (see Fig. 10), logistic model exhibits
lower design complexity in binary classification problems
due to its simpler threshold function, as described in the
next subsection (see (8)). Thus, the logistic regression is
preferred, owing to its high accuracy, low design complexity,
and superior power and area characteristics.

Logistic regression (LR) is a common supervised ML model
known for its high performance and simple implementation.
The conventional LR model outputs a continuous probabil-
ity range of prediction variable. Alternatively, a probability
threshold can be used to divide the continuous output range
into two discrete classes. Such a model is designed based on a
logistic regression and a probability boundary of 0.5 [40]. The
proposed model is referred to as logistic classifier. The logistic
classifier is trained based on data acquired from SPICE, xk

i .
In this notation, the indices i and k are, respectively, the power
trace index (i.e., observation number) and the sample index
within a power trace (i.e., feature number). For example, x3

2 is
the third feature of the second collected observation.

Fig. 10. Accuracy of PAA detection as function of the distance between the
sensor and compromised node with logistic regression, linear regression, and
SVM models.

The response of the proposed logistic classifier is
determined based on a linear combination of features
xi = (xi

1, xi
2, . . . , xi

N ) and model weights w =
(w1, w2, . . . , wN ),

Z = wT xi . (5)

The training objective is to find the weights w that minimize
the cost function J (y, z) across all of the observations [41],

J (y, z) = −y log(φ(z)) − (1 − y) log(1 − φ(z)), (6)

where y is the truth label and φ(z) is the sigmoid function
that outputs the probability of power data xi to be classified
as compromised with model weights w,

φ(z) = 1

1 + exp(−z)
. (7)

Note that φ(z) is a number between 0 and 1 which in fact
corresponds to the probability of xi being compromised. For
example, for φ(wT xi ) = 0.8, there is an 80% likelihood
for a system to be compromised with a power trace which
corresponds to xi .

C. Model Testing and Operation at Runtime

To avoid the on-chip implementation of non-linear sigmoid
function (see (7)), a probability boundary of 0.5 is used for
testing the proposed classifier and in a running device. The
prediction of the logistic classifier is based on,

φP AA(z) = sign(z)

= sign(

m∑

i=1

wi xi ) =
{

1, z ≥ 0

0, z < 0,
(8)
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Fig. 11. Accuracy of the PAA detection with the proposed logistic classifier in
a practical power delivery system, considering (a) various quantization levels,
and (b) various number of features.

where the decision value of ‘0’ or ‘1’ is the indicator of
the system operated in, respectively, secure or compromised
configurations. The accuracy of the proposed logistic classifier
is evaluated on a test set as a percentage of all the correct
predictions out of the total number of test predictions,

α = T P + T N

T P + F P + T N + F N
× 100%, (9)

where, TP is the number of compromised (i.e., attack-positive)
configurations that are correctly classified as compromised,
TN is the number of secure (i.e., attack-negative) configura-
tions that are correctly classified as secure, FP is the number
of secure configurations incorrectly classified as compromised,
and FN is the number of compromised configurations incor-
rectly classified as secure.

D. ML Parameters and Simulation Results

With the proposed sparsely sampled power traces, PAA
can ultimately be detected with high accuracy at very low
sampling frequencies. Alternatively, the number of features,
and quantization level of power data are key system parameters
that set the upper limit for PAA detection accuracy. Within the
proposed framework, these parameters are determined itera-
tively based on training and validation sets. All the simulation
results in this subsection are obtained based IBM benchmark
suite circuits [33] and the proposed logistic classifier trained
with 70% · 4, 000 = 2, 800 observations in Python with
scikit-learn ML library [42].

To determine the preferred A/D resolution, the proposed
classifier is trained and validated with varying quantization
levels. The accuracy of PAA detection in a noisy power
delivery system is illustrated in Fig. 11(a) as a function of A/D
resolution. Based on these results, the 60% detection accuracy
with a single bit resolution approaches the performance of
a random guess. Alternatively, the accuracy rapidly increases
with the increasing number of quantization bits and saturates
at the theoretical limit of 100% for a practical noisy power
delivery system. To meet the accuracy requirement of PAA
detection in the IBM power grid, eight bits are assigned
for encoding the sampled power trace on-chip. The preferred
number of features is determined as 30 with a similar iterative
process of training and validation (see Fig. 11(b)). In a
practical design, the accuracy of PAA detection is a strong
function of physical system characteristics, affected by the
PDN, on-chip sensors, power supplies, and current loads.
Primary system parameters that affect the performance of

the proposed ML framework are discussed in the following
section.

IV. PAA DETECTION - PHYSICAL CHARACTERISTICS

AND DESIGN TRADEOFFS

A typical IC has multiple external P/G supply pins that
can ultimately be used for connecting PAA equipment. The
location of the PAA compromised node is therefore unknown
during the IC design stages. Yet, power grid should be secured
at all potentially compromised P/G nodes. Compact integrated
on-chip sensor is a primary component of the proposed
approach exploited for sensing non-typical voltage variations
within a PDN. The PDN voltage variations can, however,
be accurately sensed only within a certain effective radius from
the physical location of an on-chip sensor. Thus, multiple inte-
grated sensors are considered for maintaining the system-wide
security of cryptographic circuits. The effective radius of
the individual sensors is a strong function of power grid
impedance, physical location of the off-chip and distributed
on-chip power supplies, and sensor electrical characteristics.
The tradeoffs among physical and electrical system parameters
are investigated in this section for effectively detecting PAA
with minimum number of on-chip sensors.

A. The Effect of Number of Sensors on System Security

The effective radius of a sensor, δe f f , is defined here as
the maximum distance of the compromised node, nc, located
at (xc, yc) from the sensing node, ns , located at (xs, ys) such
that the sensor at ns can detect a PAA at nc with accuracy,
αP AA(ns, nc), that is equal or higher than a threshold accuracy,
αth . Considering the discrete nature of PDN, the effective
radius is reported as the effective number of power grid nodes,
|ns − nc|, between ns and nc,

δe f f = max
(xs,ys)

{|ns(xs, ys) − nc(xc, yc)|
: αP AA(ns, nc) ≥ αth}. (10)

To accurately detect a PAA, multiple compact sensors
should be integrated on-chip in ultra large scale integrated
systems. Alternatively, those smaller systems such as smart-
cards, RFID tags, FPGAs, and microcontrollers can ultimately
be secured with a single sensor. A system is secure at a certain
point of time if and only if all its sub-regions (as determined
by the individual on-chip sensors) are secure at this point
of time. Based on findings collected from numerous power
grid simulations, the number of required sensors increases
linearly with the power grid size and limited by the number
of the system power pins. Alternatively, the accuracy of PAA
detection within a single sensing sub-region is completely
independent of the on-chip power grid size, demonstrating
high scalability of the proposed ML framework.

To illustrate the effect of threshold accuracy on the number
of sensors, an IBM power grid comprising 10,000 nodes,
169 distributed power supplies, 5,387 non-linear current loads,
and a resistive probe connected at the center of the power
grid is considered. The sensitivity radius, δe f f , is obtained in
this configuration based on (10) for threshold accuracy, αth ,
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Fig. 12. Detection accuracy in an IBM power delivery system, (a) at different
distances from the sensor, and (b) with multiple sensors.

of 80%, 88%, and 98%. The PDN is designed and simulated in
Cadence. The simulation results of the PAA detection accuracy
and number of sensors required for securing the system are
shown in Fig. 12. The results exhibit lower accuracy with
the increasing distance between the sensing and compromised
nodes, |ns −nc|, and smaller number of sensors. Alternatively,
power consumption, footprint, and design complexity also
decrease with smaller number of sensors. For those applica-
tions with limited power and area resources, a knee point at
lower accuracy threshold should be considered. For example,
a PAA in the simulated IBM power grid can be detected with
accuracy of 88% with 30 sensors.

B. The Effect of PDN Impedance on System Security

The effective resistance between PDN nodes, as defined
by (4), comprises two terms. The first term in the equation
describes the impedance between nodes in a typical secure
power grid. This impedance increases with longer distance
between the nodes and higher resistance between adjacent
nodes, Rad j , decreasing quality of power (QoP) at the loads.
Alternatively, the QoP increases with multiple, distributed
on-chip power supplies. The effect of malicious probing on
the effective PDN impedance is determined by the second
term in (4), and increases with higher resistance of the access
probe Ra , resulting in larger voltage variations across the
power grid. The voltage variations due to malicious probing
(i.e., PAA signal) in those systems with higher resistance Ra

and lower resistance Rad j are therefore more apparent to an
on-chip sensor. Intuitively, the capacity of a sensor to detect
malicious voltage variations is higher in those power grids
with higher QoP. The optimum number of distributed sensors
is determined based on the resistance ratio Ra/Rad j and QoP.
Note that the amplitude of the PAA signal is determined by
the impedance characteristics of the monitoring circuit and
cannot be controlled during the design process. Alternatively,
the secure power signal is determined by power supplies and
physical power grid characteristics.

To illustrate the effect of power grid impedance on the
sensitivity radius δe f f , a typical 100×100 uniform PDN com-
prising 169 uniformly distributed power supplies, 5,387 non-
linear current loads, and a resistive probe connected at nc =
(50, 50) is simulated in Cadence, as demonstrated in Fig. 13.
A three-dimensional map of absolute voltage variations in this
system is shown in Fig. 14 for different values of the grid
resistance ratio (Ra/Rad j = 2, 5, and 10 ). The PAA signal,

Fig. 13. Schematic of a PDN with 169 uniformly distributed voltage
sources, 5,387 non-linear current loads, and a resistive probe connected
at (50, 50).

Fig. 14. Voltage variations in a compromised power grid with an access probe
resistance of Ra = 1 �, and resistance between adjacent power grid nodes of
(a) Rad j = 0.5 � (Ra/Rad j = 2), (b) Rad j = 0.2 � (Ra/Rad j = 5), and
(c) Rad j = 0.1 � (Ra/Rad j = 10).

as shown in the figure, propagates to a greater distance in those
systems with higher resistance ratio Ra/Rad j , increasing the
effective radius of the individual integrated sensors, as shown
in Fig. 15. Thus, to increase the resilience of ICs to PAAs
with less sensors, low impedance PDN should be preferred for
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Fig. 15. PAA detection accuracy as function of PDN impedance.

Fig. 16. Voltage map of a typical PDN. Shade intensity illustrates the
absolute amplitude of voltage variations. Voltage variations are lowest (dark
dot) in close proximity to voltage source and highest (light dot) at the PAA
compromised node.

simultaneously enhancing and securing the power signal. The
design of low-impedance PDN is an important cornerstone
to the process of securing modern integrated systems. With
the proposed approach, lower impedance power grids can
ultimately be secured with a few integrated sensors.

C. The Effect of Physical Location of the Distributed
Power Supplies on System Security

Based on the principle of spatial locality in power delivery
systems, highest share of load current is supplied by the near-
est power supplies due to the lower effective impedance [43].
A two-dimensional normalized map of absolute voltage vari-
ations in a typical PDN is shown in Fig. 16 with a power
supply (located at nv (0.48, 0.47)), an externally connected
resistive probe (located at nc(0.52, 0.51)), and distributed
current loads. As a result of spatial locality of power distrib-
ution, the lowest voltage variations (dark dot) are exhibited
in close proximity of the on-chip power supply, nv , and
the highest voltage variations (light dot) are observed at the
compromised node, nc. If the effective resistance between nv

and a sensor located at node ns is lower than the effective
resistance between nc and ns , a higher portion of the current

is supplied to ns by the voltage source located at nv than
by the malicious voltage source at nc. As a result, the voltage
variations at ns are dominated by the power supply at node nv

and those voltage variations due to probing decrease at close
proximity with nv . The PAA detection sensors should therefore
be integrated farther from the on-chip power supplies. The
resilience of ICs to PAAs is expected to increase in those
power delivery systems with sparsely distributed power sup-
plies. To demonstrate the proposed method at the circuit level,
this ML framework is designed in Cadence. The details of
the circuit level implementation are described in the following
section.

V. DESIGN OF THE PAA DETECTION SYSTEM

The proposed ML-based framework is designed at the 45 nm
technology node. The area occupied by a single PAA detection
circuit is 76 μm2, as estimated based on transistor count
in SPICE. A total of 30 PAA detection circuits should be
integrated on-chip for detecting PAA across the IBM power
grid with accuracy of above 88%. The ML classifier is
designed with 30 features for PAA detection at 85 MHz sam-
pling frequency, exhibiting an average power consumption of
34.71 μW. As compared with power consumption of hundreds
of miliwatts (and up to several watts) reported for the existing
state-of-the-art PAA countermeasures [9]–[30], the proposed
system exhibits significantly lower power consumption. The
security level of the system is determined with accuracy
of 88% within 31 clock cycles of the system operation.
The design of the proposed ML classifier is described in
Section V-A. Simulation results for real-time PAA detection
are presented in Section V-B.

A. Design of the On-Chip ML Classifier

The proposed logistic classifier with the probability
threshold of 0.5 is designed for detecting PAAs at run-
time. The classifier is trained using an error adaptive algo-
rithm for enhancing classification performance in presence
of noise [44]. A schematic representation of the integrated
system is illustrated in Fig. 17, comprising summation, mul-
tiplication, and memory circuits. Mirror adder topology is
chosen for ML summation as a power efficient alternative
for the conventional adder. Transistor level schematic of the
mirror adder is shown in Fig. 18(a). The mirror adder blocks
are also utilized for designing the digital multiplication unit.
To maintain high detection accuracy, 8 bits and 16 bits are
assigned for encoding, respectively, the sampled P/G traces
and individual feature weights. A 8×16 bit multiplication unit
is designed, yielding the most power consuming component of
the classifier. By reducing the dimensionality of the proposed
logistic model, higher detection accuracy can be traded off for
lower power consumption. A Master-Slave Flip-Flop (MS-FF)
circuit is used for storing data in the system. The transistor
level schematic of the MS-FF is shown in Fig. 18(b). Similar
MS-FF components are used as digital buffers for synchroniz-
ing the classifier operations.
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Fig. 17. Schematic of the proposed ML system for detecting malicious power grid activity.

Fig. 18. Circuits for realizing the proposed ML flow, (a) mirror-adder,
and (b) Master-Slave Flip-Flop.

B. Simulation Results

Successful classification of the security level is demon-
strated in Fig. 19 for four consecutive prediction periods.
The proposed ML classifier is trained offline and the model
weights are stored in the MS-FFs. At 494 ns, the system is
fully on and detection mechanism is activated. In the first
clock cycle, the first feature is multiplied by a corresponding

weight. The first multiplication result is stored in the decision
register and simultaneously the second sampled feature is
linearly transformed in the second cycle. Multiplication results
for the remaining features are accumulated in the decision
register for 30 subsequent cycles. Based on (8), a positive
and negative value of the decision register yields, respectively,
a compromised and secure prediction. Thus, at the end of each
31-cycle decision period, the PDN security level is determined
based on the sign bit (‘1’ for secure and ‘0’ for compromised).
The decision register is reset between every two successive
decisions. Decision length for the proposed system is 354 ns.

The average power consumption of the detection system
decreases linearly with lower sampling frequency. At 85 MHz,
malicious power activity can be detected within a short period
of time of 354 ns with accuracy of 88%. Alternatively, in a
successful PAA, the probe remains connected to PDN for long
periods of time (in the order of magnitude of seconds or even
minutes). By lowering the sampling frequency, the power con-
sumption of the proposed detection system can be significantly
reduced, while maintaining the accuracy of the predictions.
The tradeoff between detection time and power consumption
is illustrated in Fig. 20 based on two data points of sampling
frequency and corresponding power consumption ((56 MHz,
22.12 μW) and (85 MHz, 34.71 μW)), as simulated in SPICE.
Backward projection based on these data points yields the
average power consumption of only 32 nW with decision time
of 30 μs, and prediction accuracy of 88%.

The effect of the proposed PAA countermeasure on power,
area, and throughput of the system is listed in Table I
along with the existing state-of-the-art solutions against
PAA [19], [20], [26]–[28]. The primary objective of the exist-
ing hardware security methods is to reduce the correlation
between the system operations, (e.g., secret key process-
ing) and related power profiles. These preventive means
increase the measurement to disclosure (MTD) metric which
is defined as the number of power traces required for executing
a successful PAA (e.g., extracting the correct secret key).
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Fig. 19. PAA detection in an IBM microprocessor with decision throughput of 2.8 MHz. Circuit level simulation shows the decision bit over four consequent
detection periods in secure and compromised power grids.

Fig. 20. Backward projection of the average power consumption with the
proposed sparsely sampled power traces. Power estimation at low sampling
frequency is based on two data points, as simulated in SPICE, (56 MHz,
22.12 μW) and (85 MHz, 34.71 μW).

Consequently, the performance of existing PAA countermea-
sures is typically reported as MT D > Nprotect X , where X is
the MTD of an unprotected system and Nprotect is the factor
by which the security of the protected system is increased.
Alternatively, with the proposed method, a PAA is actively
detected at runtime and ultimately completely prevented. The
effectiveness of the proposed method is evaluated statistically
as an accuracy of PAA detection, αth .

Power and area overheads of the proposed system are
evaluated based on the unprotected power grid of a
high-performance IBM microprocessor, ibmpg1t [34]. The
power consumption of 27 W is determined by summing
the transient current-voltage products at the individual power

TABLE I

SYSTEM CHARACTERISTICS OF THE EXISTING PAA COUNTERMEASURES.
THE EFFECTIVENESS OF THE EXISTING AND PROPOSED TECHNIQUES

IS REPORTED, RESPECTIVELY, AS MT D > Nprotect X AND PAA
DETECTION ACCURACY, αth .

supply nodes in ibmpg1t. To detect PAAs in ibmpg1t with 88%
accuracy, 30 PAA detection ICs should be integrated on-chip
(see Fig. 12(b)). A single ML classifier (see Fig. 17) has been
simulated in Cadence, exhibiting a total power consumption
of 34.71 μW. To evaluate the overall power overhead of all the
30 PAA detection ICs, a typical power consumption of 3.1 mW
is considered for an 8-bit ADC [45], yielding an increase of
only 30 × (34.71 μW + 3.1 mW) = 94 mW (i.e., 94 mW /
27 W × 100 = 0.34%) in the overall power consumption.

The physical size of the unprotected system, ibmpg1t,
is evaluated based on the total vertical and horizontal metal
lines within the top metal layer (i.e., 20,679 × 20,937 lines)
and a typical top metal pitch of 0.56 micrometers in 45 nm
technology node [46], yielding a total chip area of (20,679 ×
0.56 μm) × (20,937 × 0.56 μm) = 1.36 cm2. Note the
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Fig. 21. Accuracy of PAA detection with the proposed logistic classifier in
a noisy power delivery system.

typical for a high-performance microprocessor power density
of (27 W / 1.36 cm2) = 0.2 W/mm2. Alternatively, based on
Cadence circuit level design and typical ADC form factor [45],
the proposed PAA detection ICs, including the 8-bit ADC,
occupy 3,036 μm2, resulting in a system-wide area overhead
of 30 × 3,036 μm2 = 91,080 μm2 (i.e., 0.06% of total chip
area).

Securing smaller cryptographic systems, such as AES cores,
with the proposed ML approach is also investigated. A typical
AES core is considered that exhibits a power consumption
of 33.32 mW and an area of 0.35 mm2 [20]. Note that these
smaller systems can be secured with a single on-chip sensor,
yielding power and area overhead of, respectively, 14.3% and
7.2% with the proposed circuits. These costs can be further
reduced by replacing the ADC-based digital classifiers with
more compact and efficient analog classifiers [32]. The design
of these ICs is, however, out of the scope of this work.

Both power and area overheads with the proposed security
method are significantly lower than with existing approaches
often due to the preventive nature of those existing methods
that require the entire system to be redesigned for improving
the resilience against PAAs. Alternatively, with the proposed
approach, PAAs are actively detected at runtime with a few
low-complexity ICs.

To validate the system-wide accuracy of PAA detection
across the IBM microprocessor grid under PVT variations,
the proposed system is simulated with different number of
sensors. The SPICE simulation results are shown in Fig. 21,
exhibiting detection accuracy of above 90% under 2%, 11%,
and 20% variations with, respectively, 50, 125, and 2,500 sen-
sors. For those high-end VLSI systems, larger number of
sensors should be preferred for accurately detecting PAAs
across the device under high PVT variations (e.g., 125 sensors
for above 90% accuracy under 10% variations). Alternatively,
certain security sensitive regions within high-end devices or
within smaller integrated systems with less variations can
ultimately be secured with high accuracy and few sensors.

VI. CONCLUSIONS

While numerous preventive countermeasures against power
attacks exist, detection of system intrusion has not been previ-
ously explored. A ML-based countermeasure against PAAs is

proposed that allows to detect malicious probing of a power
grid in a running device. Within the proposed framework,
non-typical voltage variations induced within power grid by
a malicious probe are sensed on-chip, digitized, and analyzed
using machine learning techniques. A logistic classifier is
chosen due to its low design and training complexity, efficient
power characteristics, and high PAA detection performance.
With the proposed approach, the required number of features
and resolution of the sampled power traces are selected based
on the desired security level. The effect of a PAA on power
grid characteristics is, for the first time, analytically formulated
and the tradeoffs between the security level of an integrated
system and power grid characteristics are investigated based
on the proposed closed-form expressions. ML classification is
demonstrated as a robust, low design complexity technique for
accurately and power efficiently detecting power attacks. The
effectiveness of the proposed method increases in those low
impedance power grids with sparsely placed power supplies.

The PAA detection system is designed in SPICE and
simulated in a 45 nm standard CMOS process. The simula-
tion results validate the performance and functionality of the
proposed approach. A power attack on a benchmarked IBM
microprocessor is successfully detected within 354 ns in 88%
of PAA configurations, exhibiting low power consumption
of 34.71 μW. The proposed framework does not affect the
performance of the cryptographic device and can be configured
to consume nanowatts with longer detection periods. This
paper is the first to introduce PAA detection at runtime and
demonstrate the effectiveness of power efficient, compact ML
classifiers for increasing the resilience of modern ICs for
side-channel attacks.
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