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Abstract: We present a design of a one dimensional dielectric waveguide
that can trap a broadband light pulse with different frequency component
stored at different positions, effectively forming a “trapped rainbow”
[Nature 450, 397 (2007)]. The spectrum of the rainbow covers the whole
visible range. To do this, we first show that the dispersion of a SiO2
waveguide with a Si grating placed on top can be engineered by the design
parameter of the grating. Specifically, guided modes with zero group
velocity(frozen modes) can be realized. Negative Goos-Hänchen shift along
the surface of the grating is responsible for such a dispersion control.
The frequency of the frozen mode is tuned by changing the lateral feature
parameters (period and duty cycle) of the grating. By tuning the grating
feature point by point along the waveguide, a light pulse can be trapped
with different frequency components frozen at different positions, so that a
“rainbow” is formed. The device is expected to have extremely low ohmic
loss because only dielectric materials are used. A planar geometry also
promises much reduced fabrication difficulty.
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1. Introduction

To use photons as the information carrier is currently under intense study because of the
almost unlimited bandwidth and the high energy efficiency. Many devices in an optical network
depend on the capability to control the dispersion property of a waveguide. One example
is the slow light for which the group velocity of light is much smaller than that in the free
space. Applications of slow light devices include optical buffers, nonlinear optics, and optical
signal processing. Whereas the slow light is usually realized on Bose-Einstein condenstate [1],
to build solid-state slow light devices is of great practical importance. The former is based
on electromagnetically induced transparency (EIT) and usually demands on bulky, ultra-low
temperature apparatus, while the latter is of much lighter weight and is applicable for on-
chip integration. Photonic crystal is used almost exclusively for on-chip slow light devices.
Usually, the part of the dispersion curve around the edge of the reduced Brillouin zone is used.
This part of the dispersion curve are flattened because of the coupling between the forward
and backward propagating modes, and exhibits a very small group velocity [2–5]. In 2007, a
new idea to realize slow and stopped light was proposed in theory by Tsakmakidis, Boardman
and Hess, making use of the anomalous property of metamaterials [6]. In their proposal, the
negative Goos-Hänchen shift on a interface between a metamaterial and a regular dielectric is
used. It was shown that, for a waveguide made of a metamaterial, when the Goos-Hänchen
shift on the side walls of the waveguide compensates completely the forward-leap of the ray
in a round trip, the guided mode would become, intuitively, “frozen” on the waveguide and
no forward power propagation can be observed. This is actually a description of slow light
using the ray picture. Further, a scheme of trapping optical signal of a broad frequency band is
proposed: since the operating frequency to freeze the light is related to the waveguide thickness,
a waveguide segment of tapered thickness should be able to trap light of a continuous spectrum
at different positions along the waveguide, forming a “trapped rainbow”.

The idea has since attracted many researchers and different designs have been tried. However,
the experimental realization of the original idea of “trapped rainbow” faces great challenge. In
the original design, the metamaterial was treated as a homogeneous medium similar to a regular
dielectric, while in reality such an artificial material is always composed of discrete inclusions
with strong temporal and spatial dispersion. Up to now, the best optical metamaterial uses
inclusions of ∼ λ0/3 in size, where λ0 is the free space wavelength at the operating frequency.
When used to build a waveguide which itself might only be a few wavelengths in width,
thus modeling the waveguide as a homogeneous one is problematic. The optical metamaterial
usually operates at a frequency up to the near infrared. Little progress has been made for
metamaterials working in the visible band with reasonably good property. Also, metamaterials
are inevitably dispersive, and there have been no report on metamaterials with negative ε and
μ that cover the whole visible domain. Further, the ohmic loss related with metamaterial is a
formidable factor. In the optical frequency domain, plasmonic materials (gold or silver) are
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used almost exclusively to build metamaterials. Their ohmic loss is far from tolerable for
the application of “trapped rainbow”, and might erase any feature related to the broadband
rainbow trapping without external gain [7] .There have been a few reports on the experimental
demonstration of the “trapped rainbow” after the theoretical proposal [8–10]. However, none
has actually used the approach proposed in the original paper that was based on the negative
Goos-Hänchen shift. Rather, they are realized on the edge of the Brillouin zone of a plasmonic
periodic structure. Inevitably, the strong ohmic loss makes the trapping effect very weak.

In this paper, we numerically demonstrate an approach to realize frozen mode based on the
negative Goos-Hänchen shift. The proposed approach uses only dielectric materials, thus could
have extremely low ohmic loss. The “trapped rainbow” is then realized by a waveguide with
chirped or adiabatically tuned design of the frozen mode waveguide. Our approach is the first,
complete demonstration for frozen mode and trapped rainbow that uses negative Goos-Hänchen
shift, the original idea in [6]. In the following, we first review the idea of using negative Goos-
Hächen shift to construct a frozen mode, and our recent discovery that negative Goos-Hänchen
shift, sometimes of giant magnitude, can be realized on the surface of a dielectric decorated by
a grating. We then demonstrate rigorously that a “frozen mode” where the Goos-Hänchen shift
fully compensates the forward leap of the ray in a round trip inside a slab waveguide indeed
corresponds to zero group velocity of the guided mode, and show numerical results of such a
frozen mode. Based on this waveguide that supports frozen mode, we then show our designs of
“trapped rainbow”, where a broadband pulse is “frozen” with different frequency components
trapped on different positions along the device.

2. Goos-Hänchen shift and frozen mode

When a Gaussian beam is totally reflected from a surface, the axis of the reflected beam
experiences a lateral shift with respect to the position predicted by geometric optics [11]. Such
a phenomenon is named after the discoverers Goos and Hänchen, and has been shown as an
example of discrepancy between geometric optics and the wave nature of the light. The shift is
related to the change of the reflection phase for different plane wave components of the incident
beam. Mathematically, the Goos-Hänchen shift can be evaluated as [12]

zs =− ∂φ
∂kx

(1)

where φ is the phase of the reflection coefficient of the plane wave component with a lateral
wavenumber of kx. Here an e−iωt time variation is assumed for the electromagnetic field. The
Goos-Hänchen shift is usually positive for the reflection from an interface between two regular
dielectrics, while negative on interfaces between regular dielectrics and plasmonic material or
metamaterial.

The negative Goos-Hänchen shift has attracted a lot of research interest, one of which is
to control the direction of energy flow in a dielectric slab waveguide with respect to the wave
vector of the guided mode, as discussed in the same paper that proposed the trapped rainbow [6].
Whereas the original discussion was from a rather intuitive approach, here we would like to
give a rigorous mathematical description. Considering a slab waveguide made of a dielectric
of refractive index n and thickness h. A guided mode can be described as a plane wave total-
internally reflected back and forth on the two interfaces that satisfies the following relationship:

2nhk0 cosθ +φ1(θ ,k0)+φ2(θ ,k0) = 2mπ (2)

where k0 is the free space wavenumber, θ is the angle of incidence, φ j(θ ,k0), j = 1,2 is the
phase loss (the phase of the reflection coefficient) on the two side walls, respectively, while m
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an integer. When written in terms of kx, the wavenumber parallel to the waveguide wall, we
have

2h
√

n2k2
0 − k2

x +φ1(kx,k0)+φ2(kx,k0) = 2mπ (3)

Take the total differential of both sides with respect to k0 and kx, we get

2nh
Δk0√

1− k2
x/(nk0)2

−2h
kx√

n2k2
0 − k2

x

Δkx + ∑
j=1,2

(
∂φ j

∂k0
Δk0 +

∂φ j

∂kx
Δkx

)
= 0 (4)

which is a relationship a guided mode must satisfy in addition to Eq. (2). When deriving
the former equation, we assume that n does not change with frequency, which is a reasonable
assumption for dielectric waveguides. Divide both sides by Δkx and take the limit of Δkx → 0,
we get (

2nh√
1− k2

x/(nk0)2
+ ∑

j=1,2

∂φ j

∂k0

)
∂k0

∂kx
= 2h

kx√
n2k2

0 − k2
x

+ ∑
j=1,2

−∂φ j

∂kx
(5)

Notice that ∂φi/∂k0 is always positive. This is because ∂φi/∂k0 is the delay of the center of
the Gaussian pulse at the reflection of the interface. For lossless reflection (which is the case
here), this delay must be positive for a causal system. This means the sign of the right hand
side completely determines the sign of ∂k0/∂kx, which is proportional to the group velocity.
For the right hand side, the second term is the Goos-Hänchen shift on the two side walls.

Also notice that kx/
√

n2k2
0 − k2

x = kx/ky. Thus, if we let zw = hkx/
√

n2k2
0 − k2

x , zw is actually
the forward displacement of the ray when propagating from one side wall to the other (see
Fig. 1(a)). Combining the contribution of zs and zw together, the right hand side of Eq. (5)
gives the total x direction displacement of a ray in a round trip, as we see in Fig. 1. When
the waveguide and the surrounding medium are both made of regular dielectrics, the Goos-
Hänchen shift is positive, thus the right hand side is always positive. This means we always
have ∂k0/∂kx > 0. Things become interesting when we have negative Goos-Hänchen shift
on one or both of the side walls, especially when it is of large magnitude so that the total

zs

zw

θ Sx > 0
kx > 0

x

y

(a)

−zs

θ Sx > 0
kx > 0

x

y

(b)

−zs

θ Sx = 0
kx > 0

x

y

(c)

−zs

θ Sx < 0
kx > 0

x

y

(d)

Fig. 1. Energy flow and Goos-Hänchen shift in a planar waveguide . The incidence is
colored in red, Goos-Hänchen shift zs in blue, while the forward displacement zw in orange.
The rays travelling inside the waveguide are in black.
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displacement is negative (Fig. 1(d)). In this case, the group velocity would be negative, and the
energy propagates anti-parallel to kx. When the Goos-Hänchen shift is just enough to make the
right hand side goes to zero (the situation described by Fig. 1(c)), we have ∂k0/∂kx = 0, and
a “frozen mode” of the waveguide is formed. This is a guided mode with finite propagating
constant, but zero net power propagation. All these conclusions are consistent with those in [6]
but with rigorous mathematical analysis. We would like to point out that the conclusions only
hold when the waveguide material has no temporal or spatial dispersion, i.e. ∂n/∂k0 = 0 and
∂n/∂kx = 0, as assumed when deriving Eq. (4). This is a reasonable assumption for dielectric
waveguide, but not for metamaterial waveguides.

3. Negative Goos-Hänchen shift and frozen mode on a dielectric grating

A negative Goos-Hänchen shift is crucial in building a frozen mode. This can be achieved on the
surface of plasmonic materials or metamaterials, but is usually accompanied with large ohmic
losses. However, it is possible to make negative Goos-Hänchen shift using completely dielectric
devices, as we demonstrated in a recent publication [13]. The system under consideration is
shown in Fig. 2(a), where a thin grating made of Si is placed on a substrate of SiO2. For certain
grating design, the phase of the reflection coefficient for incidence from the SiO2 side is of
very different nature compared to that on the SiO2/Air interface, as we see in Fig. 2(b) in
which S polarized incidence is studied, i.e. Ez is the only electric field component. Whereas the
phase decreases with the incident angle for a SiO2/Air interface indicating a positive Goos-
Hänchen shift (see --- in Fig. 2(b)), on the SiO2/Grating interface, the phase increases,
exhibiting a negative Goos-Hänchen shift (see — and — in Fig. 2(b)). This is similar to
that of a SiO2/Metamaterial case (see --- in Fig. 2(b)). The negative Goos-Hänchen shift
is related to the guided mode of the grating. For the second band of the guided mode of the
grating, the energy propagates to the opposite direction of the wave vector. The part of the
dispersion curve for this band that is between the light lines of the free space and the substrate
is leaky on the substrate side, and can couple to the incident beam efficiently. According to
a commonly accepted explanation, the negative energy propagation with respect to the lateral
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Fig. 2. (a): Schematic of an infinite thick substrate decorated by a dielectric grating.
I and R stand for incidence and reflected beam respectively. zs is the Goos-Hänchen
shift. Duty cycle is defined as Γ = a/Λ. (b):Reflection phase vs Incidence angle θ of
different interfaces when incidence coming from the SiO2 substrate. Operating free space
wavelength is 1.5μm. GratingI parameters: ΛI = 0.53μm, tI = 0.097μm, ΓI = 0.65.
GratingII parameters:ΛII = 0.43μm, tII = 0.11μm,ΓII = 0.93.
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wave propagating direction is responsible for the negative Goos-Hänchen shift [13, 14]. The
amount of Goos-Hänchen shift can be controlled by the grating design: depending on the
parameters of the grating, we may have a very large (a steep φ -kx curve) or a mediocre (a slow-
varying φ -kx curve) Goos-Hänchen shift. In fact, the amount of Goos-Hänchen shift ranges
from tens of nanometers up to several millimeters. In our study, a Goos-Hänchen shift of more
than 5000 times of the free space wavelength [13] has been observed.

With the help of the negative Goos-Hänchen shift on the grating, we can readily realize the
frozen mode discussed in the former section, by placing the grating on the sides of a dielectric
waveguide. It turns out that grating on one side is enough to realize our goal. One of the designs
makes use of a SiO2 waveguide of 200nm thick and a grating of 40nm in thickness. To calculate
the dispersion curve of this grating-decorated waveguide, we first find out the reflection phase
φ(k0,kx) on the SiO2/Grating interface and the SiO2/Air interface, respectively. These values
are then used in Eq. (2) to get the dispersion relation. The results are shown in Fig. 3(a) as red
cross. Notice how the dispersion curve bends to form a local extreme where ∂k0/∂kx goes to
zero at which a frozen mode is formed. Calculation confirms that the right hand side of Eq. (5)
indeed goes to zero at the top of the dispersion curve, which demonstrates the application of
Eq. (5) in finding a frozen mode. The numerical evaluation also shows that the right hand side
of Eq. (5) is positive for the part of the dispersion curve with kx smaller than that at the top
point, and negative when kx is larger than that at the top. This is consistent with the positive
or negative group velocity the dispersion curve shows (see Fig. 1). The nature of the negative
Goos-Hänchen shift can be used to understand the frozen mode. Recall that the negative Goos-
Hänchen shift is usually explained [14] by an energy flow beyond the reflection interface that
is opposite to kx. If this power flow compensates completely the forward power flow inside
the waveguide, no net power flow is carried by the guided mode, and a zero group velocity is
expected.

The evaluation of the dispersion relation using Eq. (2) ignores the high order spatial
harmonics of the field around the grating, of course. To see if this poses any important influence,
we also evaluated the dispersion relation of the waveguide using full wave analysis. To do
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Fig. 3. (a): The dispersion property of waveguide with grating parameters: t = 0.04μm,Λ =
0.16μm, Γ = 0.6, εh = 10.24, εl = εc = 1; waveguide parameters: h = 0.2μm, εs = 2.09.
The upper and lower dashed lines are light lines of the free space and the waveguide.
The blue circles stands for the FDTD result while red cross stands for the plane wave
approximation analysis. Solid violet line shows the dispersion of single grating laying on
a SiO2 substrate, while soild orange line shows the dispersion of bare waveguide. (b): The
instantaneous field distribution of the frozen mode in three periods of the waveguide.
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this, we use MEEP, an open source numerical electromagnetic package based on the finite-
difference, time-domain (FDTD) method. The result is shown as circles in the same plot of
Fig. 3(a), together with the guided modes of the same Si grating sitting on a SiO2 substrate of
infinite thickness. We can identify the nature of each part of the dispersion curve by examining
the field distribution of the guided modes. For the lowest band below the light line of SiO2,
the electromagnetic field is well confined inside the grating, and the dispersion curve overlaps
well with the guided mode of the grating on SiO2 substrate. These modes are below the light
line of SiO2 and does not couple well with the propagating plane waves in the SiO2 waveguide,
thus can not be predicted by Eq. (2). Rather, this is the guided mode of the grating itself. The
second band is above the light line of SiO2, thus the plane waves inside the SiO2 slab waveguide
take part in the formation of this band. Notice that the dispersion curve calculated from Eq. (2)
(plotted as ×) indeed overlaps well with that calculated from full-wave analysis. This means the
high order spatial harmonics of the field do not contribute obviously in forming the mode, and
to use Eq. (2) for mode calculation is safe. The shape of the lower part of the second band is
similar to the dispersion curve of a bare SiO2 slab waveguide of the same thickness, but shifted
in kx because of the changed reflection phase on the SiO2/grating wall (see Eq. (2)). As the
frequency increases, the waveguide mode gets close to the second band of the grating’s guided
mode where the two anti-cross each other, causing the opening of a bandgap. Notice that, the
second band of the grating mode is also where negative Goos-Hänchen shift is observed [13].
The instantaneous field distribution of the frozen mode, i.e. the mode at the top of the lower
band, is shown in Fig. 3(b). The Poynting vector evaluated from these simulation results indeed
confirm the zero net power flow of this mode.

One important feature needed for a trapped rainbow is the capability to tune the frequency
of the frozen mode. In the original paper of trapped rainbow [6], this is realized by varying the
thickness of the waveguide. A tapered waveguide requires gray-scale etching, which is difficult
in the conventional micro- and nano- fabrication developed for planar geometry. The grating
used in our device can tune the operating frequency without thickness variation: we can change
the lateral design parameters (the period Λ and the duty cycle Γ) to modulate the frequency of
the frozen mode while leaving the waveguide thickness untouched. It appears that the frozen
mode frequency can be varied most effectively by changing the period. The effect is shown in
Fig. 4, in which the dispersion curves for two waveguides of the same SiO2 slab and grating
thickness (200nm and 40nm, respectively) but different grating periods ( ◦: Period = 160nm;
�: Period = 170nm.) The result in this plot is again from MEEP simulation. As we can see, the
frequency of the frozen mode (the top of the lower band) is obviously changed. For a period
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Fig. 4. The dispersion of two types of waveguide in the difference of Period = 0.16μm(Blue
circle) and Period = 0.17μm(Red triangle).
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variation of ∼ 6%, the frequency is changed by ∼ 4.5% .

4. Trapped rainbow

To construct a trapped rainbow requires building a waveguide on which the frozen mode is
of different frequency at different position along the device. In our design, this is realized by
placing multiple segments of the waveguide of different grating period one after another. A
schematic is shown in the top of Fig. 5(a). As a demonstration, our first device is composed of
14 waveguide segments, and the grating of each segment consists of 10 identical periods. These
gratings have the same thickness of t = 40nm and duty cycle Γ = 0.6, but the period varies from
130nm to 260nm. The free-space wavelength of the frozen mode that would be supported by
waveguides of these different designs range from 395nm to 704nm.

The device is fed from the left by a slab waveguide made of the same material and of the same
thickness. A dipole source is placed in the left feeding waveguide and used as the excitation,
which gives a broadband pulse with the spectrum covering the whole frequency range interested
to the trapping device. We arrange the waveguide segments so that the frozen mode frequency
decreases from left to the right, with the segments of higher frequency sitting at the upper stream
of the optical power flow. This is because, according to Fig. 3(a) and Fig. 4, each segment
actually supports two modes of zero group velocity, one at the top of the lower band while the
other at the bottom of the top band. In our design, we use the lower band of every segment, and
the arrangement described above promises that the bottom of the upper band of each segment
falls inside the bandgap of its neighboring upper stream segment, thus would not be excited. The
structure is again simulated in MEEP. In the simulation, we record the field at different positions
along the center of the waveguide after the transient field fades out. A Fourier transform then
reveals the spectrum at each position. The observed spectrum intensity at different positions
along the whole device is shown in the bottom of Fig. 5(a). Here the horizontal axis is the
lateral position along the device with the origin at the beginning of the first waveguide, while the
vertical axis is the signal frequency. The color shows the spectrum intensity. In the simulation,
a pulse signal with approximately flat spectrum in the band of interests is used, so that no
frequency component has an advantage in the power intensity. As we walk from left to the
right along the device, we can indeed observe 14 discrete steps in the spectrum at positions
corresponding to the 14 waveguide segments (the last one is less obvious due to the reflection
by the segments ahead of it), going from 760THz (violet color) to 400THz (red color). To
give an intuitive understanding to the result, we show the color that would be observed at
different positions along the device rendered from the spectrum measured at the very position.
The algorithm to render a color from a distribution of spectrum intensity is discussed in [15],
and the result is shown in the middle of Fig. 5(a). The result clearly gives a “rainbow” trapped
along the device.

The former demonstration uses a piecewise continuous design. To have a rainbow with
adiabatic color change, we turn to a device with tapered design. Rather than physically tapering
the thickness of the slab waveguide, we use continuously changed grating period along the
whole device in the same range as the former example, as we see in the schematic shown on the
top of Fig. 5(b). A similar idea was used to make flat focusing lens in one of the authors’ former
works [16]. We expect the result to be a smooth-out version of the trapped rainbow shown in
Fig. 5(a). The result indeed proves our expectation (refer to the middle of Fig. 5(b)). As we
see in the bottom of Fig. 5(b), the peak frequency of the spectrum changes as the observation
position changes, and a rainbow of continuously varying color can be observed.
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Fig. 5. (a): Top: The schematic of the rainbow-trapping device composed of multiple
waveguide segments. Bottom: Full wave analysis of the trapped rainbow obtain by FDTD
simulation and Fast Fourier Transform. For the waveguide, t = 0.2μm. For the grating,
Γ = 0.6, t = 0.04μm, period range is designed from 0.13 → 0.26μm. The Gaussian pulse
enters from the left of the structure in the slab waveguide(not shown in the plot). Both
figures demonstrate the field distribution in the frequency domain(vertical axis) and the
spatial position(horizontal axis). (b): Rainbow trapping by waveguide of continuously
varying parameters. The period varies from 0.130μm to 0.267μm gradually. The other
design parameters and the excitation is the same as (a).

5. Conclusion

In this paper we make use of the negative Goos-Hänchen shift on the surface of a dielectric
grating to realize a frozen mode, i.e. a guided mode on a waveguide with no net power
propagation. Further, by tuning the design parameters of the grating on a waveguide, we
can achieve frozen modes with different frequencies sitting at different positions along the
waveguide, so that a broad band pulse covering the whole visible spectrum can be caught by
the waveguide, with different frequency components stored at different positions. The current
design is, to the best of our knowledge, the first demonstration of the “trapped rainbow”
proposed in [6] that make explicit use of the negative Goos-Hänchen shift, the mechanism
originally proposed in that paper. At the same time, the use of only dielectric materials promises
a much lower ohmic loss. The negative Goos-Hänchen shift is realized on the surface of a
grating, which has a geometry much easier to be fabricated compared to the usually three
dimensional structure of a metamaterial. Tuning the lateral design parameters rather than the
thickness further reduces the fabrication difficulty. All these features make the device suitable
for practical use in areas such as slow light.

We should point out that the “trapped rainbow” serves as a manifesto of the capability of
the grating in controlling the dispersion property of a slab waveguide. According to Eq. (5),
the Goos-Hänchen shift, or more generally, the reflection phase φ on the surface of the grating,
directly determines the behavior of the group velocity. Since the reflection phase is controlled
by the design parameters of the grating, Eq. (5) gives us a straightforward method to synthesize
the dispersion property of the waveguide as needed. We believe this dispersion engineering
approach can have promising applications in optical networks.
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