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Imaging of tunnel networks under irregular terrain using RF tomography is generalized to include the possibility of magnetic
dipoles (i.e., electric loops) either as transmitting or receiving devices. Forward scattering models are presented, and a generalized
method for computing numerical dyadic Green’s functions is detailed. Explicit formulas for fast numerical implementation are
also presented. The paper is corroborated with numerical simulations aimed at validating formulas.

1. Introduction

This work extends the theory of RF tomography for
underground imaging of tunnels [1] under irregular terrains
[2] to include the possibility of using either electrically
small dipoles or loops as transmitters or receivers. Prior
derivations of RF tomography for underground imaging
[1–3] assumed only the use of electrically small dipoles.
Alas, in the frequency interval between 0.1 and 10 MHz,
which is appropriate for the application of imaging of
tunnels, electrically small dipoles exhibit very small radiation
efficiency [4]. Therefore, the novelty of this paper is the
extension of the forward scattering model of RF tomography
to include electrically small loops, such as multiturn ferrite
loaded coils, as either transmitters or receivers, because they
are generally more efficient.

This paper is organized as follows. Section 2 derives a
comprehensive linearized forward model used for RF tomog-
raphy for the electromagnetic field generated from both
electric and magnetic current sources; Section 3 describes a
method to obtain numerical Green’s functions based upon a
generalization of the method of moments; Section 4 shows

some relevant simulations, and Section 5 draws conclusions.
In Appendix, explicit formulas to compute the half-space
Green’s functions, their evaluation through integral over
cubic regions, and their implementation for fast processing
are provided.

2. Forward Model

2.1. Notations and Conventions. In this paper, the exp(−iωt)
time dependence of the fields is assumed. Bolded lower case
letters represent vectors, while bolded capital case letters
represent matrices. Underscored capital letters represent
dyadics. Circumflexed bold letters represent unit vectors. To
keep formulas succinct, expressions separated by a semicolon
represent two separate equations, for instance, the expression
Ab;c = (+;−)x corresponds to two separate equations: Ab =
+x and Ac = −x.

2.2. Mathematical Description of the Terrain. Consider the
three-dimensional geometry shown in Figure 1. The interface
between air and ground is not planar but its shape is assumed
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Figure 1: Sample geometry where a portion of irregular surface
is shown above the plane z = 0. An anomaly, represented by two
cylindrical structures, is located underground in the investigation
region D.

known. This information can be used to build a numerical
Green’s function that accounts for the terrain shape, leaving
only the underground targets as unknown of the problem.
The numerical Green’s function of the irregular terrain is
computed by applying a generalized method of moment
based on half-space Green’s functions, as described later. In
other words, the final aim is the reconstruction (in the case at
hand in terms of localization and shape estimation) and not
the shape of the interface air/soil. To do this appropriately, it
is convenient to solve an inverse problem where the buried
target is an anomaly with respect to a known background
scenario; in this context, the more a priori information is
available for the background scenario (e.g., the shape of the
interface), the better the target reconstruction will be. Hence,
the accurate computation of the effects of the irregular
surface (through the determination of the numerical Green’s
function) is pivotal to provide more reliable images of the
underground scene.

It is beneficial to express the electrical properties of the
irregular terrain as the superposition of two contributions.
The first contribution is associated with an ideal planar half-
space with an interface at z = 0, whose equivalent relative
dielectric permittivity is described by a scalar function H :
R3 → C, the half-space equivalent dielectric permittivity
function, defined as

H(r̃) =
⎧⎪⎨⎪⎩εD +

iσD
(ωε0)

z̃ < 0,

1 z̃ > 0,
(1)

where ω = 2π f is the angular frequency, εD is the frequency-
independent background relative dielectric permittivity of
the ground, σD is the frequency-independent background
conductivity of the ground, and r̃ = x̃x̂ + ỹŷ + z̃ẑ is a position
vector used to describe the terrain. The second contribution
is a volumetric function Q : R3 → C with finite support,
denoted as the background contrast function, which represents
the deviation in dielectric permittivity and conductivity at
point r̃ between the actual values and the values expected

from the ideal half-space geometry H(r). The background
contrast function is mathematically described as

Q(r̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εr(r̃)− εD +

i(σ(r̃)− σD)
(ωε0)

z̃ < 0,

εr(r̃)− 1 +
iσ(r̃)
(ωε0)

z̃ > 0,
(2)

where εr(r̃), σ(r̃) are the actual relative dielectric permittivity
and the actual conductivity of the terrain within the support
of Q. Note that H(r̃) + Q(r̃) returns the actual electrical
properties of the irregular terrain.

2.3. Investigation Domain. The targets (i.e., tunnels or voids)
are assumed to reside within the investigation domain
D, fully belonging to the lower medium. To ease the
mathematical derivation, the region D shall not include any
point in which the background contrast functionQ(r̃) differs
from zero. A point in region D shall be represented with a
separate position vector r = xx̂ + yŷ + zẑ.

For a target-free scenario, the background electrical
properties in D are fully described by the quantities εD, σD.
However, the presence of any subsurface structure creates
a deviation in dielectric permittivity and conductivity with
respect to the background. The actual relative dielectric per-
mittivity distribution εrO(r) and conductivity distribution
σO(r) inside the investigation domain D are the unknowns of
the inverse problem. The inverse problem is recast in terms
of an object contrast function V : R3 → C, which is more
physically related to the presence/absence of a target, defined
as

V(r) = εrO(r)− εD +
i(σO(r)− σD)

(ωε0)
. (3)

In fact, when V(r) /= 0, a dielectric or conducting
anomaly is present at location r.

2.4. Transmitters and Receivers. In the HF region, deployable
transmitters and receivers can be either electrically small
dipoles or loops: the radiation characteristic of these anten-
nas can be easily incorporated in the forward model, since
both electrically small dipoles and electrically small loops
can be modeled as Hertzian electric/magnetic dipoles. At
the particular n-th measurement of the field, the transmitter
is located at position ran and directed along the unit-norm
vector ân, while the receiver is located at position rbn and
direction b̂n. At the receiver side, the measured field is H if
the receiver is a magnetic dipole, or E if an electric dipole
acts as a receiver.

2.5. Derivation of the Forward Model. For a fixed frequency
f , the incident electric and magnetic fields observed at a
generic point r inside D due to elementary electric/magnetic
sources distributed arbitrarily above/below an irregular ter-
rain at locations r′ can be expressed in time-harmonic form
as [

E
H

]
(r) =

∫∫∫
D

⎡⎢⎣iωμ0GIrr
ee GIrr

em

GIrr
me iωε0GIrr

mm

⎤⎥⎦ · [ J
M

]
(r′)dr′. (4)



International Journal of Antennas and Propagation 3

In (4), GIrr
ee is the electric dyadic Green’s function due to an

electric source, GIrr
em is the electric dyadic Green’s function

due to a magnetic source, GIrr
me is the magnetic dyadic

Green’s function due to an electric source, and GIrr
mm is the

magnetic dyadic Green’s function due to a magnetic source.
Mathematically, these Green’s functions are the solutions of
the following differential equations, with the appropriate
radiation condition at infinity

∇×∇×GIrr
u (r, r′)− k2(r)GIrr

u (r, r′)

=
{

Iδ(r− r′) u = ee;mm

∇× Iδ(r− r′) u = em;me

(5)

and the wavenumber k(r) can be evaluated using

k(r) = ω

√
μ0

(
ε0εr(r,ω) +

iσ(r,ω)
(ωε0)

)
. (6)

Note that (4) is valid for any arbitrary distribution of k(r);
therefore, these Green’s functions represent the solutions of
(5) for the most general case.

The presence of a nonzero contrast function inside D
generates an equivalent current density equal to

JInc(r) = −iωε0V(r) ·
[

EInc(r) + ESca(r)
]

∼= −iωε0V(r) · EInc(r).
(7)

The approximation in (7) is called “Born Approximation”
[5], and it is generally valid when only a qualitative recon-
struction (in terms of presence, location, and geometry) of
the underground electrical properties is sought [6].

The approximated scattering integral equation for the
problem becomes

E
(

rbn
)
= iωμ0

∫∫∫
D

GIrr
ee

(
rbn, r

)
· Jeq(r)dr,

H
(

rbn
)
=
∫∫∫

D
GIrr
me

(
rbn, r

)
· Jeq(r)dr.

(8)

So far, the solutions of (5) are known in closed form only for
very limited distributions of k(r), such as the homogenous
space, half-space, or planarly layered media [5, 7]. The
general solution for any arbitrary distribution of k(r), such
as a half-space having irregular boundary, must be sought
numerically.

Combining (7) with (8), the contrast function V(r)
can be linearly related to the total (scalar) complex-valued
(phasor) electric field collected at the receiver due to a single
transmitter of length ln via the following relations.

(1) Tx electric dipole, Rx electric dipole

En
(

ran, ân, rbn, b̂n,ωn
)

= +iωnμ0k
2
0I
e
nln

×
∫∫∫

D
b̂Tn ·GIrr

ee

(
rbn, r

)
·GIrr

ee

(
r, ran

) · ânV(r)dr

+ iωnμ0I
e
nlnb̂Tn ·GIrr

ee

(
rbn, ran

)
· ân+b̂Tn · Z.

(9)

(2) Tx magnetic dipole, Rx magnetic dipole

Hn

(
ran, ân, rbn, b̂n,ωn

)
= −iωε0k

2
0nI

h
n ln

×
∫∫∫

D
b̂Tn ·GIrr

me

(
rbn, r

)
·GIrr

em

(
r, ran

) · ânV(r)dr

+ iωε0I
h
n lnb̂Tn ·GIrr

mm

(
rbn, ran

)
· ân+b̂Tn · Z.

(10)

(3) Tx electric dipole, Rx magnetic dipole

Hn

(
ran, ân, rbn, b̂n,ωn

)
= k2

0nI
e
nln

×
∫∫∫

D
b̂Tn ·GIrr

me

(
rbn, r

)
·GIrr

ee

(
r, ran

) · ânV(r)dr

+ Ienlnb̂Tm ·GIrr
me

(
rbn, ran

)
· ân + b̂Tn · Z.

(11)

(4) Tx magnetic dipole, Rx electric dipole

En
(

ran, ân, rbm, b̂m,ωn
)

= k2
0nI

h
n ln

×
∫∫∫

D
b̂Tn ·GIrr

ee

(
rbn, r

)
·GIrr

em

(
r, ran

) · ânV(r)dr

+ Ihn lnb̂Tn ·GIrr
em

(
rbn, ran

)
· ân + b̂Tn · Z.

(12)

These formulas represent the forward scattering model for
RF tomography, valid for any arbitrary distribution of the
background electrical properties. In (9)–(12), T denotes the
operation of transposition, and Z represents an (unknown)
error vector accounting for high-order Born series terms,
clutter, and noise. Because of the first-order Born approx-
imation, the validity of the reconstruction is limited to
low/moderate-contrast targets.

Discretization and inversion of the forward model can
be accomplished in several ways. In this work, the method
described in [2] will be followed and, due to limited space, it
will not be repeated here.

By using the principle of superposition, the general
Green’s functions in (9)–(12) can be separated into two
contributions:

GIrr
u (r, r′) = Gu(r, r′) + GS

u(r, r′), (13)

where u is one of ee; em;me;mm. The functions Gu(r, r′)
represent the Green’s function specific for the half-space
geometry (having planar interface at z = 0), whereas GS

u(r, r′)
represent the scattered contribution due to the presence
of the background contrast function Q defined in (2).
Analytical expressions of the half-space Green’s function
G(r, r′) do exist in several forms [5, 7–12]; however, in
Appendix, we propose better formulas that are explicit, easy
to be integrated, and computed with FFT, and having very



4 International Journal of Antennas and Propagation

few singularities (to improve numerical stability). To employ
RF tomography for the imaging of any irregular surface,
GS
u(r, r′) needs to be computed numerically, possibly in a fast

and efficient manner.

3. Numerical Green’s Functions

The application of RF tomography to imaging below
irregular terrain according to (9) requires the numerical
computation of the Green’s function of the problem, which is
discussed in this section. Since the topic is more general than
its application to RF tomography, the problem of finding the
value of the numerical Green’s function observed at point
r, due to a source located at r′, having wavenumber k0 is
described first.

The following sections extend the work proposed in [2],
which was itself a generalization of [1, 7–16], to the gen-
eral case of electric/magnetic sources and electric/magnetic
probes.

3.1. Method of Moments. The scattering integral equations
in vector form for the distributed dielectric anomaly Q(r)
can be easily derived from Maxwell’s equation and are stated
below

ES(r) = + k2
0

∫∫∫
D
Q(r̃)Gee(r, r̃) · ETot(r̃)dr̃, (14)

HS(r) = − iωε0

∫∫∫
D
Q(r̃)Gme(r, r̃) · ETot(r̃)dr̃. (15)

In this context, ES, HS are the scattered electric and magnetic
fields, and ETot is the total electric field. The next goal is to
generalize (14) and (15) to the case of Green’s functions. This
step is shown in [2], and accordingly we have for (14)

ES(r) = iωμ0GS
ee(r, r′) · â,

ETot(r̃) = iωμ0GTot
ee (r̃, r′) · â,

(16)

and for (15)

ETot(r̃) = GTot
em (r̃, r′) · â,

HS(r) = GS
me(r, r′) · â.

(17)

To generalize the result, the ·â operation is disregarded.
Substituting (16) in (14), the dyadic scattering integral
equation becomes

GS
ee(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·GTot

ee (r̃, r′)dr̃. (18)

Similarly,

GS
em(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·GTot

em (r̃, r′)dr̃,

GS
me(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gme(r, r̃) ·GTot

ee (r̃, r′)dr̃,

GS
mm(r, r′) = −

∫∫∫
R
Q(r̃)Gme(r, r̃) ·GTot

em (r̃, r′)dr̃.

(19)

In these formulas, R is the support of Q. Since

ETot(r̃) = EInc(r̃) + ES(r̃), (20)

and the incident electric field is

EInc(r̃) =
{
iωμ0Gee(r̃, r′) · â electric currents,

Gem(r̃, r′) · â magnetic currents,
(21)

we obtain that

GTot
ee;em(r̃, r′) = GS

ee;em(r̃, r′) + Gee;em(r̃, r′). (22)

Part of (18)-(19) can be computed analytically. Therefore,
the left-hand side of (18)-(19) is divided into two dyadic
functions: a known part

GK
ee(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·Gee(r̃, r′)dr̃, (23)

GK
me(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gme(r, r̃) ·Gee(r̃, r′)dr̃, (24)

GK
em(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·Gem(r̃, r′)dr̃, (25)

GK
mm(r, r′) = −

∫∫∫
R
Q(r̃)Gme(r, r̃) ·Gem(r̃, r′)dr̃, (26)

and an unknown part

GU
ee(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·GS

ee(r̃, r′)dr̃, (27)

GU
me(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gme(r, r̃) ·GS

ee(r̃, r′)dr̃, (28)

GU
em(r, r′) = k2

0

∫∫∫
R
Q(r̃)Gee(r, r̃) ·GS

em(r̃, r′)dr̃, (29)

GU
mm(r, r′) = −

∫∫∫
R
Q(r̃)Gme(r, r̃) ·GS

em(r̃, r′)dr̃. (30)

Retrieving GS(r̃, r′) from (27)–(30) is a hard task, so that
an approximation is needed. The computation is facilitated
by discretizing the region R in P small cubes (voxels),
representing an orthogonal basis expansion for Q. Each cube
p is centered at position r̃p, whose volume Rp is defined as

Rp =

⎧⎪⎪⎨⎪⎪⎩
x̃p − Δ ≤ x̃ ≤ x̃p + Δ,

ỹp − Δ ≤ ỹ ≤ ỹp + Δ,

z̃p − Δ ≤ z̃ ≤ z̃p + Δ,

(31)

where Δ is the half length of the edge of elementary cube.
The dimension of the voxel is chosen so that Gu(r̃p, r′) and
GS
u(r̃p, r′) can be assumed constant within the boundaries of

the voxel itself. Theoretically, Rp could represent any kind of
orthogonal basis, such tetrahedral voxels; however, the choice
of “cubes” will be particularly useful for fast computation, as
shown later.
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Accordingly, (23) and (27) can be discretized in an
unknown part

GU
ee(r, r′) ∼= k2

0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
,

GU
me(r, r′) ∼= k2

0

P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
,

GU
em(r, r′) ∼= k2

0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
,

GU
mm(r, r′) ∼= −

P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
,

(32)

and a known part

GK
ee(r, r′) ∼= k2

0

P∑
q=1

Q
(

r̃q
)

See
(

r, r̃q
)
·Gee

(
r̃q, r′

)
,

GK
me(r, r′) ∼= k2

0

P∑
q=1

Q
(

r̃q
)

Sme
(

r, r̃q
)
·Gee

(
r̃q, r′

)
,

GK
em(r, r′) ∼= k2

0

P∑
q=1

Q
(

r̃q
)

See
(

r, r̃q
)
·Gem

(
r̃q, r′

)
,

GK
mm(r, r′) ∼= −

P∑
q=1

Q
(

r̃q
)

Sme
(

r, r̃q
)
·Gem

(
r̃q, r′

)
,

(33)

where the index q is used for the same purpose of the index
p, but is distinguished to emphasize that the summations are
computed separately. In (32) and (33) the dyadic expression
S(r, r′) represents the integral of the half-space Green’s
function, performed over a cubic region having volume Rp,
centered along the source point r′, and computed at the
observation point r. The exact evaluation of this integral is
described in Appendix.

The integral equations (18)-(19) can be discretized as

GS
ee(r, r′)− k2

0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
=GK

ee(r, r′),

(34)

GS
em(r, r′)− k2

0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
=GK

em(r, r′),

(35)

GS
me(r, r′)− k2

0

P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
=GK

me(r, r′),

(36)

GS
mm(r, r′)+

P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
=GK

mm(r, r′).

(37)

Only (34) and (35) can be solved directly. Equations (36) and
(37) will be computed after the previous two equations are
solved.

Consider (34) and (35), assuming σ = e;m, in these
equations, GS

eσ(r, r′) would be determined when the value of
GS
eσ(r̃p, r′) is known for any value of p. To find GS(r̃p, r′) for

all p, (34) or (35) are tested exactly at the locations r̃p, leading
to the following set of P equations:

GS
eσ

(
r̃p, r′

)
− k2

0

P∑
q=1

Q
(

r̃q
)

See
(

r̃p, r̃q
)
·GS

eσ

(
r̃q, r′

)

= GK
eσ

(
r̃p, r′

)
, p = 1, . . . ,P, σ = e;m.

(38)

Due to the dyadic nature of (38), 9P equations with 9P
unknowns can be defined, leading to the creation of the
following matrix equation:

Aeσxeσ = geσ, (39)

where,

Aeσ =

⎡⎢⎢⎢⎢⎢⎢⎣

I9×9 −Q11
eσ −Q12

eσ · · · −Q1P
eσ

−Q21
eσ I9×9 −Q22

eσ

...
. . .

−Q1P
eσ I9×9 −QPP

eσ

⎤⎥⎥⎥⎥⎥⎥⎦,

Q
pq
eσ = k2

0Q
(

r̃q
)
⎡⎢⎢⎢⎢⎢⎢⎣

I3×3S
pq
eσXX I3×3S

pq
eσXY I3×3S

pq
eσXZ

I3×3S
pq
eσYX I3×3S

pq
eσYY I3×3S

pq
eσYZ

I3×3S
pq
eσZX I3×3S

pq
eσZY I3×3S

pq
eσZZ

⎤⎥⎥⎥⎥⎥⎥⎦,

xeσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GS
eσXX (r̃1, r′)

GS
eσXY (r̃1, r′)

...

GS
eσZZ

(
r̃q−1, r′

)
GS
eσXX

(
r̃q, r′

)
...

GS
eσZZ (r̃P , r′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, geσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GK
eσXX (r̃1, r′)

GK
eσXY (r̃1, r′)

...

GK
eσZZ

(
r̃p−1, r′

)
GK
eσXX

(
r̃p, r′

)
...

GK
eσZZ (r̃P , r′)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

By solving for xeσ, the knowledge of GS
eσ(r̃p, r′) for all p

follows. Direct substitution of this information into (38)
yields the full reconstruction of the scattering Green’s
function at any given point r, r′, that is,

GS
ee(r, r′)=GK

ee(r, r′)+k2
0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
,

(41)

GS
em(r, r′)=GK

em(r, r′)+k2
0

P∑
p=1

Q
(

r̃p
)

See
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
.

(42)
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The newly acquired knowledge of GS
eσ(r̃p, r′) is also

useful to determine the remaining types of scattering Green’s
functions

GS
me(r, r′) = GK

me(r, r′) + k2
0

P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

ee

(
r̃p, r′

)
,

(43)

GS
mm(r, r′) = GK

mm(r, r′)−
P∑
p=1

Q
(

r̃p
)

Sme
(

r, r̃p
)
·GS

em

(
r̃p, r′

)
.

(44)

The final numerical Green’s dyadic can be computed by
substituting (41), (42), (43), or (44) in (13). This procedure
of computing numerical Green’s functions can be interpreted
as a generalization of the works in [17–19] to the case of 3D
half-space geometry.

4. Simulations

A large-scale numerical simulation has been performed to
prove the validity of this novel method. The conditions of
the experiments are similar to the ones reported in [2].
Accordingly, a half-space geometry is considered and, to
simulate irregular terrain, a parallelepiped of size 32 × 32 ×
8 m with the same properties of the ground is placed on
top of the flat surface at the center of the scene (see [2]
Figure 2). Five transmitters and receivers are distributed
uniformly along a circle of radius 15 m, at 0.5 m above the
box, to avoid numerical instabilities. The target is an inverse-
L shaped tunnel of equal sides and radius 1 m, located at
depth of 10 m, as shown in Figure 2. The frequency range
is 3–6 MHz, at constant intervals of 0.5 MHz. The electrical
properties of the soil are chosen to be similar to dry rocks;
accordingly, the background dielectric permittivity is εD =
10 and the background dielectric conductivity is σD = 5 ×
10−4 S/m. To avoid the so-called “inverse-problem crime,”
the exact electric field at the receiver side has been computed
numerically using the finite difference time domain (FDTD)
code GPRMAX [20]. For the FDTD solver, the discretization
step is d = 0.25 m, and the box size containing the whole
scene is 150 m× 150 m× 120 m.

For each Tx-Rx-frequency combination, two simulations
were performed: one containing the target (i.e., the total
field) and one without (i.e., the background). The scattered
field in complex form can be obtained by subtracting these
two time-domain data sets, followed by an FFT (see [1] for
details).

To fill L, the algorithm proposed in this paper was
applied. The irregular surface (i.e., the flat surface with
the box on top) was discretized in cubes having Δ =
2 m, corresponding to P = 128, which is moderately
coarse but manageable in terms of memory allocation.
Better performances is expected using smaller Δ, but more
sophisticated and memory-saving algorithms required to fill
and invert A. For Δ = 2 m, the approximation (A.43) holds
true within an error less than 5% occurring only to the
cubes adjacent to the singularity; this value can be considered
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Figure 2: Tunnel shape at depth of −10 m.

satisfactory. The region of interest D is a horizontal slice
located at depth−10 m, discretized using a cubic mesh of half
size of δ = 1 m. The direct path was eliminated a priori since
its value was accurately estimated using (9)–(12). The data
is noiseless; however, discrepancies between the numerical
FDTD solver and the proposed MoM-based method can be
assumed as unknown perturbation of the measured field,
thus implicitly testing the robustness of our algorithm with
respect to disturbances.

The reconstruction has been performed using a modified
FISTA algorithm; details can be found in [2–16, 21].

Assuming electric dipoles as sources and receivers, the
reconstructed image of the belowground surface using the
proposed algorithm is shown in Figure 3. The same irregular
geometry, parameters, and numerical algorithm are used
for the results in Figures 4–6; however, in Figure 4, electric
dipoles are used as Tx, and magnetic dipoles are used as
Rx, in Figure 5 magnetic dipoles are used as Tx, and electric
dipoles are used as Rx, and in Figure 6, both Tx and Rx are
magnetic dipoles. To reconstruct these images, all formulas
presented in this work had to be used. By induction, the
validity of these formulas has been verified.

5. Conclusions

In summary, a complete forward model for RF tomography
with applications to imaging under irregular terrains has
been presented. The novelties of this approach can be
summarized as follows.

(i) The method includes the possibility of using both
dipoles and loops as transmitters or receivers, at
arbitrary locations (either above or below surface)
and directions.

(ii) The model accurately accounts for the radiation
pattern of the antenna.

(iii) The model is derived from the vector wave equation,
thus preserving the vector nature of the E and H
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Figure 3: Reconstructed image: Tx Dipole and Rx Dipole.

fields, as well as accounting for changes of polariza-
tion.

(iv) The method fully accounts for the irregular shape of
the terrain.

(v) The method accurately describes scattering processes
occurring both in the near field and in the far field.

(vi) The method is intrinsically parallel, and most of the
computation can be done using FFT routines.

For completeness, limitations and challenges are reported as
well.

(i) The dimension of matrix A and vector GK grows
fast when the number of voxels in D or Q increases,
thus dramatically limiting the performance for highly
irregular terrains or large investigation domains.

(ii) The terrain is assumed flat after a certain distance
from the investigation domain; the model does not
account for leveled grounds.

(iii) The model assumes homogeneous electrical proper-
ties of the ground. Realistic soils are hardly homoge-
neous, and improved Green’s functions are desired.

(iv) The discretization process is performed using equal-
size cubes, to ease the integration of the Green’s
functions. Other basis functions that adequately
approximate the irregular shape of the terrain might
be used.

These challenges are currently under investigation.

Appendix

A. Half-Space Green’s Functions

Chew and Cui presented an approach to compute half-
space dyadic Green’s function based on vector wave functions
expressed in Cartesian form [7–12, 22–34] and several
manipulations to obtain less singular solutions. In this work,
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Figure 4: Reconstructed image: Tx Dipole and Rx Loop.
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their spirit is used to explicitly calculate the half-space dyadic
Green’s functions needed in RF tomography.

The half-space dyadic Green’s functions in terms of
electric and magnetic sources shall be defined as[

E
H

]
(r) =

∫∫∫
D

[
iωμ0Gee Gem

Gme iωε0Gmm

]
·
[

J
M

]
(r′)dr′. (A.1)

The actual expressions of the dyadic Green’s functions
depend upon the location of the observation and source
point; assuming that the source point r′ is at the layer β, and
the observation point r is at the layer α, the Green’s functions
are computed as

Gu(r, r′) =
{

GuS(r, r′) α /=β,

GuS(r, r′) + GuP(r, r′) α = β.
(A.2)

Physically, the subscript S represents the “secondary” field
contribution, accounting for either reflected or transmitted
fields through layers, while the subscript P represents the
“primary” field contribution, occurring only within the same
layer. The secondary contribution to the electric layered
Green’s function of electric type can be computed using the
following expression [12]:

G
αβ
eeS(r, r′) = (∇× ẑ)(∇′ × ẑ)g

αβ
TE(r, r′)

+
1
kα

(∇×∇× ẑ)(∇′ ×∇′ × ẑ)g
αβ
TM(r, r′).

(A.3)

In the above, k2
α = ω2μ0εα, and ∇′ implies that the curl

operator is applied to the primed variables. Equation (A.3) is

valid only for |z−z′| > 0. In (A.3), the g
αβ
TE and g

αβ
TM functions

represent the generalized Fresnel coefficients for the TE and
TM waves, respectively, expressed in spectral form. Explicitly,

g
αβ
TE(r, r′) = i

8π2

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′)

kβz
(
k2
x + k2

y

) F
αβ
TEdkxdky ,

g
αβ
TM(r, r′) = i

8π2

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′)

kβz
(
k2
x + k2

y

) F
αβ
TMdkxdky.

(A.4)

The functions F
αβ
TE; TM describe the z variation of (A.4) and

are solutions of the following differential equation [12]:⎡⎣ d

dz

1{
μ0; ε(z)

} d

dz
+

√
k2(z)− k2

x − k2
y{

μ0; ε(z)
}

⎤⎦FαβTE;TM

= δ(z, z′)
2i{

μ0; ε(z)
}√k2(z)− k2

x − k2
y.

(A.5)

Although the general solution of (A.5) is not trivial, four
simple expressions are obtained when the number of layers
is exactly two. For μ(r) = μ0, the magnetic layered Green’s
function of electric type can be easily computed from the
electric layered Green’s function of electric type as follows:

Gme(r, r′) = ∇×Gee(r, r′). (A.6)

The secondary contribution of the magnetic layered Green’s
function of magnetic type can be calculated by invoking
duality. Explicitly

GmmS(r, r′) = (∇× ẑ)(∇′ × ẑ)gTM(r, r′)

+
1
kβα

(∇×∇× ẑ)(∇′ ×∇′ × ẑ)gTE(r, r′),

(A.7)

and the half-space electric Green’s function of magnetic type
follows as

Gem(r, r′) = −ε−1
r (r)∇×Gmm(r, r′)εr(r′). (A.8)

When the source and observation points are in the same layer
β, the primary field contributions need to be added:

GeeP(r, r′) =
⎛⎝I +

1
k2
β

∇∇
⎞⎠ e+ikβ‖r−r′‖

4π‖r− r′‖ ,

GmmP(r, r′) = εr(r)

⎛⎝I +
1
k2
β

∇∇
⎞⎠ e+ikβ‖r−r′‖

4π‖r− r′‖ ,

GmeP(r, r′) = ∇× I
e+ikβ‖r−r′‖

4π‖r− r′‖ ,

GemP(r, r′) = −∇× I
e+ikβ‖r−r′‖

4π‖r− r′‖ .

(A.9)

By following the steps (A.3)–(A.9), the resulting Green’s
functions are still relatively singular, hence difficult to be
computed numerically. However, for the particular case of
half-space geometry, there exists a strategy to reduce the
singularity of the Green’s functions (and its integral over a
cubic region), so that their numerical computation become
fast and stable.

For half-space geometry, when the source and obser-
vation points belong to different layers, a straightforward
mathematical manipulation is sufficient to isolate and sim-
plify the singularities occurring in the expressions. Con-
versely, when source and observation points belong to the
same layer, the singularity reduction can be achieved by
rewriting the corresponding Green’s function as follows:

Gu(r, r′) = GuP(r, r′)−GC
uI(r, r′) + GuS(r, r′) + GF

uI(r, r′).
(A.10)

In the above, GC
uI is the closed-form expression of the

homogeneous Green’s function due to the image source:
its value can be calculated by substituting r′ = r′I in GuP ,
where r′I = x′x̂ + y′ŷ − z′ẑ is the location of the image
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source. The function GF
uI is the spectral representation of

the homogeneous Green’s function due to the image source:
the homogeneous spectral Green’s function can be calculated
from (A.3), (A.6), (A.7), and (A.8) as limit case that εβ → εα,
and substituting r′ = r′I . In (A.10), the quantity

GuL(r, r′) = GuS(r, r′) + GF
uI(r, r′) (A.11)

represents the Green’s function contribution due to the
superposition of the fields generated at the interface and the
fields due to the image source. Mathematically, GuL(r, r′) is
less singular than GuS(r, r′). Therefore, the expression

Gu(r, r′) = GuP(r, r′)−GC
uI(r, r′) + GuL(r, r′) (A.12)

is less singular than (A.2). Using multiple substitutions and
some tedious math, singular-free and simplified solutions
can be derived, as shown in the following subsections.

Here, the steps described in this appendix have been
performed, and the resulting equations have been simplified,
uniformed, and tested using a specifically designed version
of the freeware FDTD code GPRMAX [20] that accepts
magnetic dipoles as sources. Intermediate derivations are
omitted, but the final formulas are presented in explicit form,
ready to be implemented in routines.

For each Green’s function, the superscript αβ indicates
that the source point is on the layer β, and the observation
point is on the layer α; being a half-space problem, the two
possible layers are either “a” (air) or “e” (earth).

The following notations will be used:

k2
0 = ω2μ0ε0, k2

D = ω2μ0ε0εD + iωμ0σD,

ε̃D = k2
D

k2
0

,

kaz =
√
k2

0 − k2
x − k2

y , kez =
√
k2
D − k2

x − k2
y ,

C1 = kez − kaz
kez + ε̃Dkaz

, C2 = k2
0

kez + kaz
,

C3 = k2
D

kez + ε̃Dkaz
, C4 = ε̃Dkez + kaz

kez + ε̃Dkaz
,

r = ∥∥r− r′
∥∥ = √(x − x′)2 +

(
y − y′

)2 + (z − z′)2,

rI =
∥∥r− r′I

∥∥ = √(x − x′)2 +
(
y − y′

)2 + (z + z′)2.

(A.13)

A.1. Electric Green’s Function of Electric Type. The electric
Green’s function of electric type relates electric fields with

electric current sources in a half-space geometry, according
to (A.1). The homogeneous electric Green’s function of
electric type, both in air or earth, is

Ga;e
eeP(r, r′) = e+ik0,Dr

4πk2
0;D

⎡⎢⎢⎢⎢⎢⎣
Ga;e
PXX Ga;e

PXY Ga;e
PXZ

Ga;e
PYX Ga;e

PYY Ga;e
PYZ

Ga;e
PZX Ga;e

PZY Ga;e
PZZ

⎤⎥⎥⎥⎥⎥⎦,

Ga;e
PXX =

3x2

r5
− 3ix2k0;D

r4
− x2k2

0;D + 1

r3
+
ik0;D

r2
+
k2

0;D

r
,

Ga;e
PXY =

3xy
r5

− i3k0;Dxy

r4
− k2

0;Dxy

r3
,

Ga;e
PXZ =

3xz
r5

− i3k0;Dxz

r4
− k2

0;Dxz

r3
,

Ga;e
PYX =

3xy
r5

− i3k0;Dxy

r4
− k2

0;Dxy

r3
,

Ga;e
PYY =

3y2

r5
− 3iy2k0;D

r4
− y2k2

0;D + 1

r3
+
ik0;D

r2
+
k2

0;D

r
,

Ga;e
PYZ =

3yz
r5

− i3k0;Dyz

r4
− k2

0;Dyz

r3
,

Ga;e
PZX =

3xz
r5

− i3k0;Dxz

r4
− k2

0;Dxz

r3
,

Ga;e
PZY =

3yz
r5

− i3k0;Dyz

r4
− k2

0;Dyz

r3
,

Ga;e
PZZ =

3z2

r5
− 3iz2k0;D

r4
− z2k2

0;D + 1

r3
+
ik0;D

r2
+
k2

0;D

r
.

(A.14)

The homogeneous electric Green’s function of electric type
due to the image source is

Ga;e
eeI(r, r′) = Ga;e

eeP

(
r, r′I

)
. (A.15)

The electric half-space Green’s functions of electric type for
source and observation points both in the air (or in the earth)
can be written as follows:

Gaa;ee
ee (r, r′) = Ga;e

eeP(r, r′)−Ga;e
eeI(r, r′) + Gaa;ee

eeL (r, r′), (A.16)
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where

Gaa
eeL = i

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′)

kez + ε̃Dkaz

e+ikaz(z+z′)

4π2k2
0

G̃
aa

eeLdkxdky ,

G̃
aa

eeL =

⎡⎢⎢⎢⎢⎢⎢⎣
kazkez + k2

y −kxky −ε̃Dkxkaz
−kxky kazkez + k2

x −ε̃Dkykaz

−kxkez −kykez ε̃D
(
k2
x + k2

y

)
⎤⎥⎥⎥⎥⎥⎥⎦,

Gee
eeL = i

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′)

kez + ε̃Dkaz

e−ikez(z+z′)

4π2k2
0

G̃
ee

eeLdkxdky ,

G̃
ee

eeL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kazkez + k2
y −kxky +kxkez

ε̃D

−kxky kazkez + k2
x

+kykez
ε̃D

+kxkaz +kykaz

(
k2
x + k2

y

)
ε̃D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.17)

The electric half-space Green’s function of electric type for a
source point in the earth and observation point in the air is

Gae
ee = i

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′)

kez + ε̃Dkaz

e+i(kazz−kezz′)

4π2k2
0

G̃
ae

eedkxdky ,

G̃
ae

ee =

⎡⎢⎢⎢⎢⎢⎣
kazkez + k2

y −kxky −kxkaz
−kxky kazkez + k2

x −kykaz

−kxkez −kykez k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦.
(A.18)

The electric half-space Green’s function of electric type for a
source point in the air and observation point in the earth is

Gea
ee = i

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′)

kez + ε̃Dkaz

e+i(kazz′−kezz)

4π2k2
0

G̃
ea

eedkxdky ,

G̃
ea

ee =

⎡⎢⎢⎢⎢⎢⎣
kazkez + k2

y −kxky +kxkez

−kxky kazkez + k2
x +kykez

+kxkaz +kykaz k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦.
(A.19)

A.2. Magnetic Green’s Function of Electric Type. The magnetic
Green’s function of electric type relates magnetic field to
electric currents in a half-space geometry, according to (A.1).

The homogeneous magnetic Green’s function of electric
type for the air and earth cases is given

Ga;e
meP =

1− ik0;Dr

4πr3

⎡⎢⎣ 0 z − z′ y′ − y
z′ − z 0 x − x′
y − y′ x′ − x 0

⎤⎥⎦e+ik0;Dr .

(A.20)

The homogeneous magnetic Green’s function of electric type
for the air and earth cases due to the image source is given by

Ga;e
meI =

1− ik0;DrI
4πr3

I

⎡⎢⎣ 0 z + z′ y′ − y
−z − z′ 0 x − x′
y − y′ x′ − x 0

⎤⎥⎦e+ik0;DrI .

(A.21)

The air-air and earth-earth magnetic half-space Green’s
function of electric type can be written as follows:

Gaa;ee
me (r, r′) = Ga;e

meP(r, r′)−Ga;e
meI(r, r′) + Gaa;ee

meL (r, r′),
(A.22)

where

Gaa
meL =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

+ikaz(z+z′)

4π2k2
0

G̃
aa

meLdkxdky ,

G̃
aa

meL =

⎡⎢⎢⎢⎢⎢⎣
+kxkyC1 +k2

yC1 + C2kaz −C3ky

−k2
xC1 − C2kaz −kxkyC1 +C3kx

+C2ky −C2kx 0

⎤⎥⎥⎥⎥⎥⎦,

Gee
meL =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

−ikaz(z+z′)

4π2k2
0

G̃
ee

meLdkxdky ,

G̃
ee

meL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
kxkyC1 −C2kez + k2

yC1 −C3

ε̃D
ky

+C2kez − k2
xC1 −kxkyC1 +

C3

ε̃D
kx

+C2ky −C2kx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(A.23)

The magnetic half-space Green’s function of electric type for
source point in the earth and observation point in the air is

Gae
me =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

+ikazz−ikezz′

4π2k2
0

G̃
ae

medkxdky ,

G̃
ae

me =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
kxkyC1 k2

yC1 + C2kaz −C3

ε̃D
ky

−k2
xC1 − C2kaz −kxkyC1

C3

ε̃D
kx

C2ky −C2kx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(A.24)

The magnetic half-space Green’s function of electric type for
source point in the air and observation point in the earth is

Gea
me =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

+ikazz′−ikezz

4π2k2
0

G̃
ea

medkxdky ,

G̃
ea

me =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

kxkyC1 k2
yC1 − C2kez −C3ky

−k2
xC1 + C2kez −kxkyC1 C3kx

k2
0ky

kez + kaz
− k2

0kx
kez + kaz

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(A.25)
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A.3. Magnetic Green’s Function of Magnetic Type. The homo-
geneous magnetic Green’s function of magnetic type for the
air case and the earth case are both for the real and image
sources

Ga
mmP = Ga

eeP , Ga
mmI = Ga

eePI ,

Ge
mmP = ε̃DGe

eeP , Ge
mmI = ε̃DGe

eeI .
(A.26)

The magnetic half-space Green’s functions of magnetic type
for source and observation points both in air (or earth) are

Gaa;ee
mm = Ga;e

mmP −Ga;e
mmI + Gaa;ee

mmL, (A.27)

where

Gaa
mmL= i

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′)

kez + kaz

eikaz(z+z′)

4π2k2
0

G̃
aa

mmLdkxdky ,

G̃
aa

mmL =

⎡⎢⎢⎢⎢⎢⎣
kazkez + k2

yC4 −kxkyC4 −kxkaz
−kxkyC4 kazkez + k2

xC4 −kykaz

−kxkez −kykez k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦,

Gee
mmL = i

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′)

kez + kaz

e−ikez(z+z′)

4π2k2
0

G̃
ee

mmLdkxdky ,

G̃
ee

mmL =

⎡⎢⎢⎢⎢⎢⎣
kezkaz + k2

yC4 −kxkyC4 +kxkez

−kxkyC4 kezkaz + k2
xC4 +kykez

+kxkaz +kykaz k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦.
(A.28)

The magnetic half-space Green’s function of magnetic type
for source point in the earth and observation point in the air
is

Gae
mm = i

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′)

kaz + kez

e+ikazz−ikezz′

4π2k2
0

G̃
ae

mmdkxdky ,

G̃
ae

mm =

⎡⎢⎢⎢⎢⎢⎣
kazkez + k2

yC4 −kxkyC4 −kxkaz
−kxkyC4 kazkez + k2

xC4 −kykaz

−kxkez −kykez k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦.
(A.29)

The magnetic half-space Green’s function of magnetic type
for source point in the air and observation point in the earth
is

Gea
mm = i

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′)

kez + kaz

e+ikazz′−ikezz

4π2k2
0

G̃
ea

mmdkxdky ,

G̃
ea

mm =

⎡⎢⎢⎢⎢⎢⎣
kazkez + k2

yC4 −kxkyC4 +kxkez

−kxkyC4 kazkez + k2
xC4 +kykez

+kxkaz +kykaz k2
x + k2

y

⎤⎥⎥⎥⎥⎥⎦.
(A.30)

A.4. Electric Green’s Function of Magnetic Type. The electric
Green’s function of magnetic type relates electric fields
with magnetic currents in a half-space geometry, according
to (A.1). The homogeneous electric Green’s function of
magnetic type is

Ga;e
emP =

ik0;Dr − 1
4πr3

⎡⎢⎣ 0 z − z′ y′ − y
z′ − z 0 x − x′
y − y′ x′ − x 0

⎤⎥⎦e+ik0;Dr . (A.31)

The homogeneous electric Green’s function of magnetic type
due to the image source is:

Ga;e
emI =

ik0;DrI − 1
4πr3

I

⎡⎢⎣ 0 z + z′ y′ − y
−z − z′ 0 x − x′
y − y′ x′ − x 0

⎤⎥⎦e+ik0;DrI .

(A.32)

The electric half-space Green’s functions of magnetic type for
source and observation points both in air (or in earth) are

Gaa;ee
em = Ga;e

emP −Ga;e
emI + Gaa;ee

emL , (A.33)

where

Gaa
emL =

∫∫ +∞

−∞
eikx(x−x′)+iky(y−y′) e

ikaz(z+z′)

4π2k2
0

G̃
aa

emLdkxdky ,

G̃
aa

emL =

⎡⎢⎢⎢⎢⎢⎣
−kxkyC1 +k2

xC1 − C2kez +C2ky

−k2
yC1 + C2kez +kxkyC1 −C2kx

−C3ky +C3kx 0

⎤⎥⎥⎥⎥⎥⎦,

Gee
emL =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

−ikez(z+z′)

4π2k2
0

G̃
ee

emLdkxdky ,

G̃
ee

emL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−kxkyC1 +k2
xC1 + C2kaz +C2ky

−k2
yC1 − C2kaz +kxkyC1 −C2kx

−C3

ε̃D
ky +

C3

ε̃D
kx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(A.34)

The electric half-space Green’s function of magnetic type for
source point in earth and observation point in air is

Gae
em =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

+ikazz−ikezz′

4π2k2
0

G̃
ae

emdkxdky ,

G̃
ae

em =

⎡⎢⎢⎢⎢⎢⎣
−kxkyC1 +k2

xC1 − C2kez +C2ky

−k2
yC1 + C2kez +kxkyC1 −C2kx

−C3ky +C3kx 0

⎤⎥⎥⎥⎥⎥⎦.
(A.35)
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The electric half-space Green’s function of magnetic for
source point in air and observation point in earth is

Gea
em =

∫∫ +∞

−∞
e+ikx(x−x′)+iky(y−y′) e

+ikazz′−ikezz

4π2k2
0

G̃
ea

emRdkxdky ,

G̃
ea

emR =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−kxkyC1 +k2
xC1 + C2kaz +C2ky

−k2
yC1 − C2kaz +kxkyC1 −C2kx

−C3

ε̃D
ky +

C3

ε̃D
kx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(A.36)

A.5. Integral of Green’s Functions. Formulas for the integral
of half-space Green’s functions along a cubic region are
provided. These formulas are necessary to compute the
functions Su(r, r′), whenever they appear in (34)–(37). The
integral of the half-space Green’s function is intentionally
expressed in a 2D spectral-like form, so that 2D FFT
algorithms are applicable. The intermediate steps to obtain
these formulas are omitted, although relevant citations have
been properly distributed throughout this subsection. The
integral to be computed is of the form

Svu(r, r′) =
∫ x′+Δ
x′−Δ

∫ y′+Δ

y′−Δ

∫ z′+Δ
z′−Δ

Gv
u(r, r′)dx′dy′dz′. (A.37)

This integral has a form that is independent from the type,
but depends upon the location of the source and observation
points.

The simplest cases are the air-earth and earth-air cases,
having, respectively, the following form:

Saeu (r, r′) = 8
4π2k2

0

∫∫ +∞

−∞
sin(kxΔ)

kx

sin
(
kyΔ

)
ky

sin(kezΔ)
kez

× G̃
ae

u e
+ikx(x−x′)+iky(y−y′)e+ikazz−ikezz′dkxdky ,

Seau (r, r′) = 8
4π2k2

0

∫∫ +∞

−∞
sin(kxΔ)

kx

sin
(
kyΔ

)
ky

sin(kazΔ)
kaz

× G̃
ea

u e
+ikx(x−x′)+iky(y−y′)e+ikazz′−ikezzdkxdky.

(A.38)

In these expressions, the only undetermined point can be
explicitly computed using De L’Hôpital rule

lim
kx;y;az;ez→ 0

sin
(
Δkx;y;az;ez

)
kx;y;az;ez

= Δ. (A.39)

When sources are both in air (or earth) the integration
becomes too difficult to be computed in an exact form, and
some approximations are needed. The general form is

Saa;ee
u = Sa;e

uP − Sa;e
uI + Saa;ee

uL . (A.40)

The spectral contribution is easily computed

SaauL =
8

4π2k2
0

∫∫ +∞

−∞
sin(kxΔ)

kx

sin
(
kyΔ

)
ky

sin(kazΔ)
kaz

× G̃
aa

u e
+ikx(x−x′)+iky(y−y′)e+ikaz(z+z′)dkxdky ,

(A.41)

SeeuL =
8

4π2k2
0

∫∫ +∞

−∞
sin(kxΔ)

kx

sin
(
kyΔ

)
ky

sin(kezΔ)
kez

× G̃
ee

uLe
+ikx(x−x′)+iky(y−y′)e−ikez(z+z′)dkxdky.

(A.42)

The integral of the homogeneous part has two main
problems.

(i) Formulas contain the r term which is difficult to
be integrated over a cubic region, but easier to be
integrated over a spherical region.

(ii) When r = r′, the integration contains a singular
point.

To address these issues, the work done by Gao and Torres-
Verdin [35] is helpful. Their main idea is that the integral
over a cubic region of the homogeneous Green’s function can
be approximated to the integral over a spherical region of the
homogeneous Green’s function, having volume equal to the
one of the cube. Using this approximation, one can show that
the primary field contribution is

Sa;e
uP(r, r′) =

(
sin
(
k0;Dψ

)
k0;Dψ

− cos
(
k0;Dψ

))

× 4πψ

k2
0;D

Ga;e
uP(r, r′) r′ /∈ cube,

(A.43)

where ψ = 2Δ(3/(4π))1/3.
Care is needed in applying this approximation, since its

validity fails for |r − r′| → 0. The range of validity is a
nonlinear function of both k and Δ. It is advised to test
the error of this approximation by comparing (A.43) with
a thorough numerical integration of the half-space Green’s
function over a cube including the singularity.

If r′ ∈ cube, then the integration is performed in a
volume that contains the source (i.e., the singular point). In
this case, the result obtained by Yaghjian in [36], together
with the duality theorem, shall be used, yielding

Sa;e
eeP(r, r′) = Sa;e

mmP(r, r′)

=
(

2
(
1− ik0;Dψ

)
e+ik0;Dψ − 3

3k2
0;D

)
I r′ ∈ cube,

Sa;e
emP(r, r′) = Sa;e

meP(r, r′) = 0 r′ ∈ cube.
(A.44)

Within the validity of the forward model, the image source
can be considered always outside of the region of integration;
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hence, the integral of the homogeneous Green’s function due
to the image source is simply

Sa;e
uI (r, r′) =

(
sin
(
k0;Dψ

)
k0;Dψ

− cos
(
k0;Dψ

))× 4πψ

k2
0;D

Ga;e
uP

(
r, r′I

)
.

(A.45)

A.6. Application to RF Tomography. In the procedure
described in [1, 2], it is generally unlikely that Green’s
functions need to be computed at sporadic points; in general,
Green’s functions need to be calculated along horizontal
layers, or the entire 3D space. To this aim, rather than
computing the double integration in kx, ky variables using
classical numerical solvers, a fast FFT-based method can be
used. Using 2D FFT, Green’s functions and their integral can
be computed along predetermined horizontal layers in “one
shot,” after properly filling the corresponding 2D Fourier
space.

More exactly, by keeping the variable z and r′ fixed, the
spectral part of the Green’s functions or their integral can be
recast in the following form:

P
(
x, y

) = F
(
x, y

)∣∣
z,r′ = FP − FI

+
∫∫ +∞

−∞
F̃L
(
kx, ky , z, x′, y′, z′

)
e+ikxx+ikyxdkxdky.

(A.46)

The generic dyadic function FP;I corresponds to either SP;I

or GP;I functions, and F̃Lcorresponds to either S̃L or G̃L

deprived from the term e+ikxx+ikyx.
Physically, this quantity represents the value of the dyadic

function computed at the horizontal plane z given that the
source is fixed. Numerically, each component of this integral
can be computed extremely fast by using 2D FFT. Note
that each component is also independent, so 9 FFT can be
executed in parallel. This particular function P shall be called
“Dyadic plane.” Similarly, by keeping the observation point
r and the variable z′ fixed, we obtain the following dyadic
plane:

P
(
x′, y′

) = F
(
x′, y′

)∣∣
z′,r

= FP − FI

+
∫∫ +∞

−∞
F̃
(
kx, ky , z′, x, y, z

)
e−ikxx

′−iky y′dkxdky.

(A.47)

Physically, this operation represents the computation of the
dyadic expression spanning all source points located at the
horizontal plane at height z′. Numerically, this can be easily
computed using 2D IFFT.

Due to the properties of Fourier integral, an important
symmetric property holds{

SI ;L:P ; GI ;L:P

}(
x, y, z, x′, y′, z′

)
=
{

SI ;L:P ; GI ;L:P

}(
0, 0, z, x′ − x, y′ − y, z′

)
=
{

SI ;L:P ; GI ;L:P

}(
x − x′, y − y′, z, 0, 0, z′

)
.

(A.48)

Hence,

FI ;L;P

(
x − x′, y − y′

)∣∣∣
z′,r0

= FI ;L;P

(
x, y

)∣∣∣
z′,r

,

FI ;L;P

(
x′ − x, y′ − y

)∣∣∣
z,r′0
= FI ;L;P

(
x′, y′

)∣∣∣
z,r′

,
(A.49)

where

r0 = (0, 0, z), r′0 = (0, 0, z′). (A.50)

These properties will be extremely useful for the fast compu-
tation of numerical Green’s functions in RF tomography. In
fact, to numerically compute the proposed forward model in
[2], only the following dyadic planes need to be computed

P1

(
x̃q, ỹq

)
= See

(
r̃p, r̃q

)∣∣∣
zp ,r̃q

,

P2

(
x, y

) = See
(

r, r̃p
)∣∣∣

z,r̃p
,

P3

(
x̃p, ỹp

)
=
⎧⎪⎨⎪⎩

See
(

rbm, r̃p
)∣∣∣

zp ,rbm
Rx: dipole,

Sme
(

rbm, r̃p
)∣∣∣

zp ,rbm
Rx: loop,

P4

(
xan, yan

) =
⎧⎪⎨⎪⎩

Gee

(
r̃q, ran

)∣∣∣
z′,r̃q

Tx: Dipole,

Gem

(
r̃q, ran

)∣∣∣
z′,r̃q

Tx: loop,

P5

(
x, y

) = {Gee

(
r, ran

)
Tx: Dipole,

Gem

(
r, ran

)
Tx: loop,

P6

(
x, y

) = Gee

(
r̃q, r

)∣∣∣
z,r̃q

,

P7

(
x, y

) =
⎧⎪⎨⎪⎩

G
(

rbn, r
)∣∣∣

z,rbn
Rx: dipole,

G
(

rbn, r
)∣∣∣

z,rbn
Rx: loop,

P8

(
xan, yan

) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Gee

(
rbn, ran

)∣∣∣
zan,rbn

Tx: Dipole Rx: Dipole,

Gme

(
rbn, ran

)∣∣∣
zan,rbn

Tx: loop Rx: Dipole,

Gem

(
rbn, ran

)∣∣∣
zan,rbn

Tx : Dipole Rx: loop,

Gmm

(
rbn, ran

)∣∣∣
zan,rbn

Tx: loop Rx: loop.

(A.51)

By using the shifting property in (A.49), the computation
of the FFT or IFFT needs to be performed basically only
once per plane. All these P planes can be computed
independently and in parallel, thus dramatically accelerating
the computational time.
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