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Abstract— An oblate semi-spheroidal cavity flush-mounted un- the two-dimensional problem of radiation and scattering for
der a metal plane and coupled to the half-space above it via its g slotted semi-elliptical channel under a metal plane [6].
circular interfocal aperture is considered. The cavity is filled with However, it should be pointed out that axial symmetry of

a material isorefractive to the medium that occupies the half- both the struct d th - field | ired f t
space above it. An exact solution is obtained for the radiation 0 € structure an € primary field 1S required for exac

of an electric or magnetic dipole located on the symmetry axis analytical solutions of boundary value problems in spheroidal
of the structure, either outside or inside the cavity, and axially coordinates to be obtainable by separation of variables and
oriented. Numerical results are provided. imposition of the boundary conditions.

Index Terms—Electromagnetic radiation, complex media,
spheroidal functions, isorefractive media, exact solution, series

expansion, mode coupling z

dipole(¢=¢_ n=1
N oblate semi-spheroidal cavity with metallic walls is pole(§ EO n=1)

flush-mounted under an infinite metal plane, and is
coupled to the half-space above the plane via an aperture equal |
to the interfocal circle of the spheroidal coordinate systerA\ B n=0C 1&=0D n=0E F
The cavity is filled with a material that is isorefractive to the — [ =
) ) n=0 0’ n=0

medium occupying the half-space above the metal plane. The I
primary source is an electric or magnetic dipole located on the dr2 ' d/2
axis of symmetry of the structure and axially oriented. The [
electromagnetic fields are represented everywhere by infinite £=¢ G
series of oblate spheroidal wave functions, whose unknown 1
expansion coefficients are determined analytically by imposing
the boundary conditions, as was done in [1] for the radiation
from a metallic spheroid. The notation for the spheroidal wave
functions is that of Flammer [2]. Fig. 1. Geometry of the problem.

Preliminary results of this research were given in [3]. In ) ) .
the literature, there are at least two other works that provideNe geometry of the problem is presented in Section II.
analytical results for radiation from spheroidal structure§Xact solutions for the radiation by electric and magnetic
Alexopoulos et al. [4] investigated a spheroidal object witﬂ'p‘)'? sources a.\relobta'uned fqrdlpoles either .out3|de the cavity
an impedance surface for axial dipole excitation. Sebak afRfction Il) or inside it (section 1V). Numerical results are
Sinha [5] considered a conducting spheroidal object coatBEfSented and discussed in section V. Finally, some useful
with a dielectric for an axially incident plane wave. propertles of t.he oblat_e spheroidal functions are col_lected

The exact solutions obtained herein are important for & the Appendix. The time-dependence factap(—iwt) is
least two reasons. First, they constitute new exact solutiga®itted throughout.
for boundary-value problems, thus enriching the catalog of
available canonical solutions. Second, they constitute a good Il. GEOMETRY OF THE PROBLEM
validation test for frequency-domain computer codes, because
they contain challenging features such as two different peneA Cross section of the structure through its axisof
trable materials, sharp edges, and a cavity. The technique ugggmetry is shown in Fig. 1. The c8GE of the oblate

in this paper is similar to the one employed to solve exact§eMmi-spheroidal cavity is a semi-ellipse with major ak&
and interfocal distanc€' D = d. The aperture connecting the
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a right-handed system related to the rectangular coordinatgsere

(z,y,2) by:
iz | 1— 0
x = g (€2+1)(1 —n2)cosp Ee = L = +77)7 (377 B 1_77772> H,, (6)
Y= g (524'1)(1—7] )Sin@ (1) B g £2+1 (8+ 5 ) (7)
2:5577 n ¢ §2+772 o€ €2+1 @

where) < ¢ < oo,—1 < < 1,0 < ¢ < 2m. The andc¢ = kd/2 is the product of the wavenumber and the
inverse transformation from rectangular coordinates to oblafferfocal radius. For fields inside the cavity, we add the
spheroidal coordinates is reported here for convenience: subscript 1 to the field components and repléceith Z; .

An electric dipole located atp,n0 = 1) on the positive z-

= arctan ¥ . . . . N .
v axis and axially oriented, with momeBtre /k corresponding

\/ [4(962“’2”2 4] +¢§d22+y2+zz —FP 164727 to an electric Hertz vectoll'® = Zexp(ikR)/(kR) where
\/[4(;,2+y +22)—d2] /A (2 + 42+ 22)— A2 1 164222 R is the distance of the observation point, &, ¢) from the
= 242 @ dipole, generates a primary magnetic field [1]:
The surfac€ = constant is an oblate spheroid (i.e. a flattened o )
e : : : : : . 2k%Y (=)™
ellipsoid of revolution) with major axigly/£2 + 1 and minor H: — 7w
axis d¢, with z as the symmetry axis; the circular aperture ’ VE +1 = p1.nNiy
of diameterd that lies in the(x,y) plane and is centered at Rﬁi(—ic, i§<)Rf) (—ic,i€s)S1n(—ic,n), (8)

the origin corresponds t§ = 0, whereas the curved wall

of the cavity corresponds to half the sphergid= &;. The 5

surface|r| = constant is a hyperboloid of revolution with where R( )( ) are radial oblate spheroidal functions of the
as the symmetry axis) > 0 (n < 0) for z > 0 (z < 0), and first and th|rd kind, respectively, ansl ,, are angular oblate
asymptotic cone of semi-apertufle= arccos7; in particular, Spheroidal functions [2]. The quantit (¢-) is the smaller
In| = 1 is the z-axis, whereag = 0 is the = = 0 plane (larger) betweerf and . It should be noted that the sum-
with the circle¢ = 0 excluded. The surface = constant is Mation in (8) extends to alk > 1, notn > 0 as erroneously

a half-plane originating in the z-axis. The medium occupyingfated in [1]. The total field in the absence of the cavity is
the half-space > 0 is characterized by an electric permittivity

¢ and a magnetic permeability, whereas the cavity is filled A

with a material of permittivitye; and permeability:; . The two : z
media are isorefractive, hence they have the same propage i diol 1
constant R .- ipole (€, 1)
-~ Vs
k= w\/epn = w\/e1ji, (3) Em) T
! - ’ 1
|
|
1
|

z=0

The primary source is an electric or magnetic dipole locat
on the z-axis and axially oriented. The case of a dipole
(& = &),n = 1) on the positive z-axis (see Fig. 1) is discuss¢ &) S~. - SN
in section 1, whereas the case of a dipoldg@t= &y, n = —1) DTN
inside the cavity is examined in section IV. It should be nott ~
that the electric and magnetic dipole cases are not the ¢
of each other, because the metal boundaries are consid
perfect electric conductors on both cases.

but, in general, different intrinsic impedances: ?N(
N
1 N ,’ .
Z=y = Elrz =y = |2 @) LN 0,
e €1 I !
1
!
1
]

Fig. 2. Incident and reflected fields for electric dipole source
I1l. DIPOLE SOURCES OUTSIDE THE CAVITY

A. Electric dipole the field of the dipole above the PEC plane- 0, that is the
superposition of the primary field and the reflected field due to
For a primary electric source located on the z-axis anfle image dipole located &£, —1). The field H’, produced
axially oriented, the electric and magnetic fields everywhe i -

y 9 ywhety (§,m) by the image dipole equals the field;, produced at

are of the type: (¢,—n) by the original dipole (see Fig. 2):

~

E Eg(s né+ Ey(&,n)7, E, =0, (5)

( 1)@, H¢=H, =0, H;(&ﬁ) = HZD(& =), 9)



hence, the total field &, n) is: where
S 28%Y = (=)
H+H. = =

MRS o Wl R B g
The surface current densities on the PEC surfaces are the

Ry (—ic i) [Sin(—ie,n) + S1a(—ic, =)l (10)  totq) tangential magnetic field rotated Bg°. By using (65):
which, with the aid of (66) and (67) in appendix, may be

A

C:Zo

(20)

R (—ic,ie<)x

rewritten as: Hy,| _ 4k%Y; (_1)l~bl y
Hi + H" 4Zk2Y = (71)1 o C\/@ 1=0 ﬁl,2l+1N1,2l+1
= — x ;
? ‘ \/ﬁ =0 ﬁ1,2l+1N1,21+1 5 51,2l+1(—107 77) oL @1
1 ; 2 o .
ngl-&-l(_icv i5<)Rf%l+1(—iC, i€5)S1,2141(—ic,m).  (11) §1 Ry 5 (—icyi&) + (67 + 1) Ry 5, (—ic, i&)

In the presence of the cavity, the total magnetic field is: whereas, by using (69):

— gt r d > .
Htp B gga + Hap + Hap Ig; z 2 O7 (12) B 42]&‘21/1 o0 (_1)lbl( ,)P21l+1 (0)
= Hiyp z <0, H1¢|TI:0 — . — _ %
where VE+1 =0 P12+1N1 2141
1 .. e 3 P
d 4ik?Y & (—1)lal(e) {Rg,%lJrl(_ZQ i€) + ¢ )Rg,%l+1(_lca lf)} - (22)
H, =— 5 — = X
Ve +1 1=0 Pr21+1N12141 On the surface of the ground plane:

Rf%lﬂ(*’ica i§)S12141(—ic,m)  (13) 1KY S (~1)LPL. (0)
7 T 20+1
is the diffracted field due to the cavity and the coupling hole, (H, + Hj + Hg)nzo == JEr14 5 ]{ x
that satisfies the radiation condition at infinity as well as the 07 % i=0 PL2+17,2141
boundary condition on the metal plane= 0 outside the hole, [nglﬂ(—iq i§<)R§3%l+l(—ic7 i&>) + al(e)Rggng(—z’c, i&)| -
while ’ ’ ’ (23)
4iR%Y) S (—1) RO o _ L . . .
_\/ﬁ — ~ [ 12041 (=i, i)+ The diffracted far field is obtained with the aid of the
0 1=0 P1,21+14V1,2141 asymptotic expansions in appendix, and by noting ¢hat kr
(RE) 1 (—ic,i€)] Sy (—ie,n) (14) @ndn o~ cosf aseg — oc:

Hy, =

1 1,2141

is the total field inside the cavity, and satisfies the boundary Hd| ethr 4ik2Y & al(e)SLng(—iq cosf)
condition on the flat annular ring0 < ¢ < &,n = 0). The eleg—oe 7 T /22
) V& + 112
modal coefficients.*) in (13), andb\” andc!”) in (14), are CRE=
determined by imposing the boundary condition
o -0 (15) The limit when the cavity recedes to infinify$; — o),

le—
. o , _i.e., the case of a circular hole in an infinite metallic screen
on the curved portion of the cavity’s surface, and the Cont'”“'%parating two isorefractive half-spaces, may be obtained from

of the tangential components of the total electric and magnegjg, previous formulas by assuming thahas a vanishingly
fields across the apertuge= 0: small positive imaginary part. By using (74-77), we obtain
(H,+ H} + Hg>§:o,n = Higleg_,> (16) from (18) and (19):

d —
En|g:0,n - E1n|5:0,—n’ 17) Cl(e)

51,21+1N1,21+1
(24)

~ —Lemizet, (25)

c&1—00 2

where it is noted that the unit vectgris in opposite directions
atz = =0, thatn changes sign abruptly when the= 0 plane () - R® (—ic, igy)ei2
is crossed, and that, + E7 = 0 at{ = 0. Condition (15), &1 —00 1+¢ Rg?’%lﬂ(fic, i0) 1,2041 ) )
with the aid of (7) yields: ' (26)

1 .
2 Rg,%lﬂ(*wa i0) ()

’ o &1 . 1 o
ngm(—zc, i€1) + Rgglﬂ(—w, i&1) () 1 Ri;Hl(—zc, i0) () o
(e) &E+1 a ~ — : R1 2l+1(_zc’ 150)7
T ey o §1 53 — 18 oo 1+<R$Hﬂﬁaw)’
Ry i (—icyi&a) + i 1R1,21+1(—107 i&1) @7)

where the prime means derivative with respec{ tevaluated hence, from (13) and (14):
at £ = £;. Conditions (16) and (17) yield:
4ik?Y 1

(e) _ _ (e)p(e) _ d ~ 7 5(e)
a’l - _Cl bl - H‘P|c§1—>oo \/fgﬁ 1 + CZ ’ (28)
e 1 . 3 ..
el R (—ic i0)REY, . (<, io) 4ik2Y;, 1

(19) Hy,| »(©) (29)

e T @1l (

CRS%ZH(_Z'C’ i0) + (1+ C)CZ(S)R%ZH(—Z'C, i0)



where and the modal coefficients are found by imposing the boundary
o0 1 . conditions:
e (—1)l Rg_ng(—zq i0)
(e = — — ®) X RY (i i
=0 Prai+1N1 2041 Ry (—ic,40) Cl(m) _ 1,21(—icC, 161) (40)
o ) B) (icie)
R@lﬂ( ic, i) ) %z+1( ic,i€)S1,21+1(—ic,m). (30) RL?Z( ic,i81)
a(m) _ C*lb(m) (m) _
= =
B. Magnetic dipole (m)Rglgl( ic, z‘O)Rf’%l(—ic i)
The derivations are similar to those for the electric dipole, (41)

', (m) p(3) . "
hence only the results are given. For a primary magnetic source Ry oi(=i6,10) + (14 Qe 1y 21( ie, i0)
located on the z-axis and axially oriented, the electric anghe tangential magnetic field on the PEC surfaces is given by:
magnetic field everywhere are of the type:

E=E,(§n)%, E:=E, =0,

: 4ik? X (—=1)IPL(0)
d l
(HE+H£+H§)17:0:_ 2 X

ﬁ = He(¢, 77)5 + H,(&n)7n, Hy,=0, (31) c\E5+1 =7 Pr2N12
where R (i, i€ ) RO (—ieyi€s) + o™ R{) (~ic,i€)] |
. (42)
Y [1-n2 [0 7
H= —=—T (Z__"T g 32
¢ 2 +12 (377 1172> o B2

4ik>? > (_l)lb(m)lel/(())
Y 241 (/0 ¢ Hig|,_o=— L y
Ho = [ (ag * §+1> Eei (39) ! VBT paNia

W (m)p@3) (.. -
for fields inside the cavity, we add the subscript 1 to the field [Ruz( ic,i§) + ¢ Ry y(—ic,ig)|, (43)
components and repladéwith Y;. A magnetic dipole located 4k

at (¢o,m0 = 1) on the positive z-axis and axially oriented, 1"|£:£1 02\/ E+1)(E2+1)(E2+n2 )X

with momentz4r /k corresponding to a magnetic Hertz vector (1) (m)

™ = Zexp(ikR)/(kR), generates a primary electric field Z b Sha(=ic,n) . (44)

[l] =1 P1 2lN1 21 R1 2[( iC7 7’51)

g 2KZ (=) “ The diffracted far field is:
v V 6(% +1 n=1 ﬁl an n ikr 2 ) (m)
(1) (3) Ed| c vz % S 21(—ic, cos0)
; oo~ T = 12102, .
Ry (—ic, i€ )Ry (—ic, i85 ) Sin(—ic,n).  (34)  Tele kr @ +1) & praNia

In the absence of a cavity, the image magnetic dipole into the (45)

PEC plane z=0 produces a field, such that In the limit when the cavity recedes to infinity:

wherefrom, with the aid of (66) and (67): E¢|651H°° ~ 7~ Beleg oo vV 50 +1)1 +( » (46)

Wz (D
VE 14 5N R (—ic,icc)x ~ Where
0 =1 P1,21V1,21 )

Rf%l(_ia i§>)51,2l(—i07 17) (36) Z(m) _

B+ B} =— |
(~1)! Ri)(=ic,i0)
= P1auN1 o1 R, (—ic, i0)
Rf%l(_ic’igO)Rf)%l(_icvif)Sl,Ql(—iC,77), 47

The total electric field in the presence of the cavity filled
with isorefractive material is:

E,=E.+FE,+E. forz>0, where, obviously, different ranges qf apply for = < 0 and
® ¥ ¥ (37)
= FE,, for 2 <0, z > 0.
where
AR27 & (1 la(m) o . IV. DIPOLE SOURCES INSIDE THE CAVITY
Eg =-—— Z (~ )J Rf’gl(fzc, 1€)S1,21(—ic, m), A Electric dipol
VE&+1= piaNia . Electric dipole
(38) Consider an electric dipole located on the z axigét=
a2z (-1 W, &,n = —1) inside the cavity and axially oriented. The field
By =— NCESE S [31,21(—107 i€)+ of such a dipole in the presence of an infinite PEC plane at
07 %=1 PL2ANLA z =0, i.e. when the cavity recedes to infinif§; — o) and
m)R(?s) (—ic ig)} Sh.o1(—ic, n) (39) there is no coupling hole, leads to the configuration of Fig. 2
1,2t ’ ’ ’ with dipole and image dipole interchanged. Therefore, the sum



of incident and reflected fields leads to (11) withreplaced
by Yi:

: 4ik%Y] & —1)!
Higp + Hip == ) ! — ( ~) X
V& + 1= prair1 N2t
R, (—ic i€ )RY), Ly (—ic,i€5)S1 v (—ic, ). (48)
The total magnetic field is:
= H(p, for z > 0

where HY, is the perturbation introduced in the field insiddnl=0.0
the cavity by the presence of the cavity and the coupling

hole, whereang is the field that enters the half-space> 0
through the holeg = 0. These fields are given by:

o 4ik2Y1 > (-1)!B" [
- VE + =0 51,21+1N1,21+1
+C\R 12l+1( 73072{)} S12141(—ie,m),
i ARY & (—1)'Al
’ V& +1 —o P12t N1 o

Sl,Ql-‘rl(_iCa 77)7

1)

Hy 12041 (—ic, 18)+

(50)

Rf%l—&-l (—ic,i&)x
(51)

which is the same as (13) withge) replaced byAl(e). By

imposing the boundary conditions:
Al(e) = _B(E)C(E)a
e C 1 .. 1 ..
Al( )= A Rg %l+1( ic,i0) {Rg,;uﬂ(_zc» i&0)+

A R (—icyigo)]

—1 1 (3 o
Ale) [CRE,QZH(_ZC’ ZO)R§,51+1(—ZC7 &) —

(1+ C)Rf%l+l(_ic> iO)Rg %l—&-l( ic, ifo)}

(52)

(53)

Bi(e) =

(54)

Al = CRglng(_iC’ i0) + (1 + C)CZE)R§3%I+1( ic,10)
(55)
with Cge) given by (18). In particular, the far fiela‘H:ﬂcEﬂOO

is given by (24) Withal(e) replaced byAl(e).

B. Magnetic dipole

The total electric field produced by an axially oriented
magnetic dipole located & = &y, = —1) inside the cavity

is:
for 2 <0,
for z > 0.

E,=E|,+E{, + Ej,,

(56)
= Efﬁ,

The field Ef, + E7, due to the dipole in the presence of an

infinite metal plane (cavity receded to infinig¢; — oo, and
no hole) is obtained at once from (36) by replaciAgwith
Z; and introducing a1 factor to account for reversal §0°
phase shift) in the dipole orientation when imaged:
427 X (1)
VE + 17 PN

Rgl(_iﬁ i€~)S1,21(—ic,n). (57)

Ei, +Ej, = R, (—ic,i€<)x

[n|=0.9

In|=0.1

£,=2.0

Fig. 3. Geometry for the computation of field quantities. The figure shows the
locations of the dipole sources along the coordinate §ire 1.5. However,
only one source is considered for each case.

The perturbation due to the cavity and coupling hole is
427, X (—1)!B™ o
B, = 1 Z (N ) By [Rf;l(*wa i)+
VE + 115 pralNia

C’l(m)R1 o (—ic z{)} S121(—ic,n). (58)

whereas the field radiated into the half-spacé through the
coupling hole is:

4k2 >
Bl e

lA(m
1 %l( —ic, ig)Sl,Ql(_icv n)a

(59)

P1 le1 21

which is (38) Withalm) replaced by—Al(m); the same replace-
ment yields the far field from (45). Imposition of the boundary
conditions yields:

W
o Ry (—ic,i0) o .
A = DA R (e, i) R (i i) -

R} (—ic, i) R{'Y (~ic,i61)]

(61)

B = NG [CR{ Y (—ic, )R, (—ic, igo)—
(1+ QR (—ic, i0)R{Y, (=i, i) (62)
where
AU =¢RY) (=i, i0)RY), (—ic, i&)—
(1+ Q)R (—ic,i0)RY') (—ic,i€1)  (63)

V. NUMERICAL RESULTS

Computations of the oblate spheroidal functions were
performed using some of the Fortran subroutines reported
in [7], which were compared with those provided in [8].
The latter contains Fortran and Mathemaf@subroutines.
Another source for spheroidal functions that contains
Mathematic&)subroutines is [9]. Power series expansions for



0.045

spheroidal wave functions with small argumeratre discussed

in [10]. The computations of our series are similar to those | — =1 |
encountered in [11] and [12]. In particular, in order to achieve EE N s =2

convergence, use of the technique described in [13] was made.oos Ee ‘ ‘ : : : : o

As examples of the computation of some field expressions woal ©
derived in this paper, we consider the evaluation of the S
quantities H,, and E,, since they act as scalar potentials oost - - ]
according to (5-7) and (31-33). = L

One application of interest is the evaluation of the field °%[% = : : ]
that penetrates the cavity when the dipole source is located :
outside the cavity or, conversely, the field that is diffracted
out of the cavity when the dipole source is located inside the oo
cavity. We chose to evaluate the field along the coordinate
lines |n| = constant, see Figs. 1 and 3.

All the diagrams shown in Figs. 4-6 show the field quantities ‘ ‘ Ty s ST TN

0015} =

0.005

as a function of the dimensionless variabg (d|n|) since this e
guantity corresponds to
Fig. 5. Total magnetic fieldH,| due to an electric dipole located inside
&, whenz >0 the cavity at(§op = 1.5,m0 = —1) and evaluated along the coordinate line
henz < 0 (64) In| = 0.1 of Fig. 3 for ¢ = 6. Results shown correspond t¢:= 1 (solid
—&W £= line), ¢ = 0.5 (dashed line), and = 2 (dotted line).

In fact, n changes sign across the plane- 0 and¢ > 0, so

that 2z/(d|n|) may be looked upon ag| that is associated . . o N
with a positive sign outside the cavity and with a negatiJ@e n| = 0.7 of Fig. 3. Anpther result is given n Fig. S,
sign inside the cavity. Different values of the dimensionled8@t Shows the total magnetic figlff,|, computed using (49),

parameter: = kd/2 are chosen. A physical meaning foiis for an electric dipole source located inside the cavity and
found by observing thatl/A = ¢/ and, in particular, that evaluated along the coordinate lihg = 0.1 of Fig. 3. These
d— \ whene — 7. two results appear to show that the fields are rather insensitive

The results shown in Figs. 4-5 correspond to the cavi[ the variation of the material properties only when the source

of Fig. 3 with &, = 2 for the dipole source located at' located outside Fhe caVIty._ . )
(& = 1.5,7 = +1). These two figures show results for The next numerical result is provided to show the spatial

three different values of the ratio = Z/Z, : 1/2,1,2. As variation of the field. Hence, in Fig. 6 the total electric field

an example of an electric dipole source located outside tHae! 1S compute.d using (56) with = 1 andc = 3 along three
cavity, Fig. 4 shows the results for the total magnetic fiefdifferent curvesis| =0.1,0.7,0.9.

|H,,| computed using (12) and evaluated along the coordinaternally, Fig. 7 shows a contour plot of the magnitude of the
electric field due to a magnetic source outside the cavity. The
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Fig. 4. Total magnetic fieldH,| due to an electric dipole located outsideFig. 6.  Total electric field E,| due to a magnetic dipole located inside
the cavity at(ép = 1.5,m0 = 1) and evaluated along the coordinate linethe cavity at(§o = 1.5,m0 = —1) and evaluated fof = 1 andc = 3.

|n| = 0.7 of Fig. 3 for ¢ = 1. Results shown correspond t:= 1 (solid The results are computed along three lidgs = const and correspond to
line), ¢ = 0.5 (dashed line), and = 2 (dotted line). |n| = 0.1 (solid-line), |n| = 0.7 (dashed-line) andl;| = 0.9 (dotted-line).



IE(pI The reciprocity theorem allows us to calculate the axial
‘ component of the field on the z axis produced by an arbitrarily
located and oriented dipole, from the solutions derived in the
previous sections.
] Future research will compare the results obtained in this
paper with numerical solutions of integral equations. Also,
the formulas obtained herein will be specialized to the low-
4 frequency case << 1, thereby providing a test case for more
general theories that describe coupling to a cavity via a small
aperture.
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APPENDIX
Fig. 7. Contour plot of the electric fieltd&,| due to a magnetic dipole

located outside the cavity d€p = 1.5,770 = 1) and evaluated fo{ = 1
andc = 3. This plot shows the total electric field inside the cavity computed SOME PROPERTIES OF OBLATE SPHEROIDAL FUNCTIONS

using (38), while outside the cavity only the scattered field (37) is considered. The notation is that of Flammer [2]. We limit our con-
siderations to the functions of interest in this paper: the
angular functionsS; ,,(—ic,n); the radial functions of the first

contour plot was obtained by computing the total field, givegind R!') (—ic, i¢); and the radial functions of the third kind

by (38), inside the cavity and only the scattered field, giveps), . . . .
by (37), outside the cavity. In fact, the incident and reflecte 1’”( i, i¢). The subscripts: and! are integers.

field contribution, given by (36), is the same that would be 1) Wronskian relation:
obtained from a perfectly conducting plane and, in addition, " 3y’ ay @
is much stronger than the scattered field close to the sourd®y ,(—ic,i§) Ry, (—ic,i§) — Ry, (—ic,i&) Ry, (—ic,if) =

)

Therefore, the incident and reflected field contribution was i 65
removed to better appreciate the effect of the aperture and the c(€2+1) (65)
cavity.

As a final remark, the quantities that correspond to thvehere the prime means the derivative with resped.to
sum of incident and reflected fields given in (11), (36), (48), 2) Special values:
(57) were evaluated using the direct expression for the field
radiated by a dipole source and its image, instead of the series

S1.91(—ic, —n) = —S1.01(—ic, 66
expansions using oblate spheroidal functions. g il , " B 51'21( ﬁ) (67)
The computation time of the results reported in figures 4- 1*2”1(_7’6’._") = Svara(—icn) 67)
6 is less than 2 seconds for the evaluation of the field along S1,21(—1c¢,0) =0 (68)
coordinate lines, for which 300 points were considered. The g (—ic,0) = PL..(0) = (D420 + 2)! (69)
computations of the contour plot required about 1 hour and 40 1,204+1 D e VT DY
minutes to evaluate the field in a rectangular grid of 1’000’000 o . v
points. All simulations were run on a personal computer at - S1,21(—ic,7) = o-Py(n) =Py (0) =
0 0
3.06GHz. K n=0 n=0
(=1)=D(21 4 2)! (70)
2211 — NI+ 1)!
VI. CONCLUSIONS 9
. . . . S —ic, =9 —ic,0) =0 71
Analytical results for a new canonical problem involving a dn va (=ie:m) =0 12141(=ie;0) (71)

spheroidal cavity, sharp edges, two isorefractive media and a

dipole sources located along the axis of symmetry and axiallshere Ferrer's definition of associated Legendre functions is
oriented were presented. This new analytical solution enrichgsed.

the catalog of electromagnetic problems for which exact

solutions are known. This solution is important, for example, R (—ic,0) =0 (72)
. . 1,21 )

to conduct a mutual validation with other methods, such as P )

discussed in [11]-[12]. Numerical results were provided and —Rglng(—ic, i€) = R(llglﬂ(—z‘q i0) =0 (73)

discussed. 9 = £€=0 ’




3) Asymptotic expansions:

R (—ic, i€ ~(c1)SRE
1’2l( ) c&—o00 ( ) Cf Ime>0 PLACE
e~iet PHOTO
i(—1)" 74
i(—1) 2eE (74) HERE
1 . cos c€
Ri%l“(iw’ i) oo (71)ZHT Tme=0
s (75)
2c€
ic§
R®) (—ic,i ~—i(—1) 76
1,2[( f) cé—o0 ( ) Cg ( )
ick
(3) L I+1
R —ic, 1 ~ (-1 77
a(cie )|~ () (77)
4) Limit d=0: Whend — 0 (hencec — 0), the oblate
spheroidal coordinate system reduces to the spherical coordi-
nate systenir, 9, ).
éii% Sy n(—ic,n) = Pl(cos ) (78)
. . ™ PLACE
lim RY}) (—ic,i¢) = | 5Ty (k) (79 PHOTO
d—0 ’ 2kr 2 HERE
. BV _icey T 2p(1)
}113%) Ry, (—ic,i§) = 4 | 2ern+%(k;r) (80)
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