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Exact dipole radiation for an oblate spheroidal
cavity filled with isorefractive material and

aperture-coupled to a half space
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Abstract— An oblate semi-spheroidal cavity flush-mounted un-
der a metal plane and coupled to the half-space above it via its
circular interfocal aperture is considered. The cavity is filled with
a material isorefractive to the medium that occupies the half-
space above it. An exact solution is obtained for the radiation
of an electric or magnetic dipole located on the symmetry axis
of the structure, either outside or inside the cavity, and axially
oriented. Numerical results are provided.

Index Terms— Electromagnetic radiation, complex media,
spheroidal functions, isorefractive media, exact solution, series
expansion, mode coupling

I. I NTRODUCTION

A N oblate semi-spheroidal cavity with metallic walls is
flush-mounted under an infinite metal plane, and is

coupled to the half-space above the plane via an aperture equal
to the interfocal circle of the spheroidal coordinate system.
The cavity is filled with a material that is isorefractive to the
medium occupying the half-space above the metal plane. The
primary source is an electric or magnetic dipole located on the
axis of symmetry of the structure and axially oriented. The
electromagnetic fields are represented everywhere by infinite
series of oblate spheroidal wave functions, whose unknown
expansion coefficients are determined analytically by imposing
the boundary conditions, as was done in [1] for the radiation
from a metallic spheroid. The notation for the spheroidal wave
functions is that of Flammer [2].

Preliminary results of this research were given in [3]. In
the literature, there are at least two other works that provide
analytical results for radiation from spheroidal structures.
Alexopoulos et al. [4] investigated a spheroidal object with
an impedance surface for axial dipole excitation. Sebak and
Sinha [5] considered a conducting spheroidal object coated
with a dielectric for an axially incident plane wave.

The exact solutions obtained herein are important for at
least two reasons. First, they constitute new exact solutions
for boundary-value problems, thus enriching the catalog of
available canonical solutions. Second, they constitute a good
validation test for frequency-domain computer codes, because
they contain challenging features such as two different pene-
trable materials, sharp edges, and a cavity. The technique used
in this paper is similar to the one employed to solve exactly
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the two-dimensional problem of radiation and scattering for
a slotted semi-elliptical channel under a metal plane [6].
However, it should be pointed out that axial symmetry of
both the structure and the primary field is required for exact
analytical solutions of boundary value problems in spheroidal
coordinates to be obtainable by separation of variables and
imposition of the boundary conditions.
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Fig. 1. Geometry of the problem.

The geometry of the problem is presented in Section II.
Exact solutions for the radiation by electric and magnetic
dipole sources are obtained for dipoles either outside the cavity
(section III) or inside it (section IV). Numerical results are
presented and discussed in section V. Finally, some useful
properties of the oblate spheroidal functions are collected
in the Appendix. The time-dependence factorexp(−iωt) is
omitted throughout.

II. GEOMETRY OF THE PROBLEM

A cross section of the structure through its axisz of
symmetry is shown in Fig. 1. The cutBGE of the oblate
semi-spheroidal cavity is a semi-ellipse with major axisBE
and interfocal distanceCD = d. The aperture connecting the
cavity to the half-spacez > 0 above the metallic planeAF
is a circular hole with centerO at the origin of coordinates
and diameterd. The oblate spheroidal coordinates(η, ξ, ϕ) are



2

a right-handed system related to the rectangular coordinates
(x, y, z) by:





x =
d

2

√
(ξ2 + 1)(1− η2) cos ϕ

y =
d

2

√
(ξ2 + 1)(1− η2) sin ϕ

z =
d

2
ξη

(1)

where 0 ≤ ξ < ∞,−1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π. The
inverse transformation from rectangular coordinates to oblate
spheroidal coordinates is reported here for convenience:




ϕ = arctan y
x

η = z
|z|

√
−[4(x2+y2+z2)−d2]+

√
4[(x2+y2+z2)−d2]2+16d2z2

2d2

ξ =
√

[4(x2+y2+z2)−d2]+
√

4[(x2+y2+z2)−d2]2+16d2z2

2d2

(2)
The surfaceξ = constant is an oblate spheroid (i.e. a flattened
ellipsoid of revolution) with major axisd

√
ξ2 + 1 and minor

axis dξ, with z as the symmetry axis; the circular aperture
of diameterd that lies in the(x, y) plane and is centered at
the origin corresponds toξ = 0, whereas the curved wall
of the cavity corresponds to half the spheroidξ = ξ1. The
surface|η| = constant is a hyperboloid of revolution withz
as the symmetry axis,η > 0 (η < 0) for z > 0 (z < 0), and
asymptotic cone of semi-apertureθ = arccos η; in particular,
|η| = 1 is the z-axis, whereasη = 0 is the z = 0 plane
with the circleξ = 0 excluded. The surfaceϕ = constant is
a half-plane originating in the z-axis. The medium occupying
the half-spacez > 0 is characterized by an electric permittivity
ε and a magnetic permeabilityµ, whereas the cavity is filled
with a material of permittivityε1 and permeabilityµ1. The two
media are isorefractive, hence they have the same propagation
constant

k = ω
√

εµ = ω
√

ε1µ1, (3)

but, in general, different intrinsic impedances:

Z = Y −1 =
√

µ

ε
6= Z1 = Y −1

1 =
√

µ1

ε1
. (4)

The primary source is an electric or magnetic dipole located
on the z-axis and axially oriented. The case of a dipole at
(ξ = ξ0, η = 1) on the positive z-axis (see Fig. 1) is discussed
in section III, whereas the case of a dipole at(ξ = ξ0, η = −1)
inside the cavity is examined in section IV. It should be noted
that the electric and magnetic dipole cases are not the dual
of each other, because the metal boundaries are considered
perfect electric conductors on both cases.

III. D IPOLE SOURCES OUTSIDE THE CAVITY

A. Electric dipole

For a primary electric source located on the z-axis and
axially oriented, the electric and magnetic fields everywhere
are of the type:

E = Eξ(ξ, η)ξ̂ + Eη(ξ, η)η̂, Eϕ = 0,
H = Hϕ(ξ, η)ϕ̂, Hξ = Hη = 0,

(5)

where

Eξ = − iZ

c

√
1− η2

ξ2 + η2

(
∂

∂η
− η

1− η2

)
Hϕ, (6)

Eη =
iZ

c

√
ξ2 + 1
ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)
Hϕ, (7)

and c = kd/2 is the product of the wavenumber and the
interfocal radius. For fields inside the cavity, we add the
subscript 1 to the field components and replaceZ with Z1.

An electric dipole located at(ξ0, η0 = 1) on the positive z-
axis and axially oriented, with momentẑ4πε/k corresponding
to an electric Hertz vectorΠ(e) = ẑ exp(ikR)/(kR) where
R is the distance of the observation point(η, ξ, φ) from the
dipole, generates a primary magnetic field [1]:

Hi
ϕ =

2k2Y√
ξ2
0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

×

R
(1)
1,n(−ic, iξ<)R(3)

1,n(−ic, iξ>)S1,n(−ic, η), (8)

where R
(1),(3)
1,n are radial oblate spheroidal functions of the

first and third kind, respectively, andS1,n are angular oblate
spheroidal functions [2]. The quantityξ<(ξ>) is the smaller
(larger) betweenξ and ξ0. It should be noted that the sum-
mation in (8) extends to alln ≥ 1, not n ≥ 0 as erroneously
stated in [1]. The total field in the absence of the cavity is

Fig. 2. Incident and reflected fields for electric dipole source

the field of the dipole above the PEC planez = 0, that is the
superposition of the primary field and the reflected field due to
the image dipole located at(ξ0,−1). The fieldHr

ϕ produced
at (ξ, η) by the image dipole equals the fieldHi

ϕ produced at
(ξ,−η) by the original dipole (see Fig. 2):

Hr
ϕ(ξ, η) = Hi

ϕ(ξ,−η), (9)
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hence, the total field at(ξ, η) is:

Hi
ϕ+Hr

ϕ =
2k2Y√
ξ2
0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(1)
1,n(−ic, iξ<)×

R
(3)
1,n(−ic, iξ>) [S1,n(−ic, η) + S1,n(−ic,−η)] , (10)

which, with the aid of (66) and (67) in appendix, may be
rewritten as:

Hi
ϕ + Hr

ϕ = − 4ik2Y√
ξ2
0 + 1

∞∑

l=0

(−1)l

ρ̃1,2l+1Ñ1,2l+1

×

R
(1)
1,2l+1(−ic, iξ<)R(3)

1,2l+1(−ic, iξ>)S1,2l+1(−ic, η). (11)

In the presence of the cavity, the total magnetic field is:

Hϕ = Hi
ϕ + Hr

ϕ + Hd
ϕ for z ≥ 0,

= H1ϕ for z ≤ 0,
(12)

where

Hd
ϕ = − 4ik2Y√

ξ2
0 + 1

∞∑

l=0

(−1)la
(e)
l

ρ̃1,2l+1Ñ1,2l+1

×

R
(3)
1,2l+1(−ic, iξ)S1,2l+1(−ic, η) (13)

is the diffracted field due to the cavity and the coupling hole,
that satisfies the radiation condition at infinity as well as the
boundary condition on the metal planez = 0 outside the hole,
while

H1ϕ = − 4ik2Y1√
ξ2
0 + 1

∞∑

l=0

(−1)lb
(e)
l

ρ̃1,2l+1Ñ1,2l+1

[
R

(1)
1,2l+1(−ic, iξ)+

c
(e)
l R

(3)
1,2l+1(−ic, iξ)

]
S1,2l+1(−ic, η) (14)

is the total field inside the cavity, and satisfies the boundary
condition on the flat annular ring(0 ≤ ξ ≤ ξ1, η = 0). The
modal coefficientsa(e)

l in (13), andb
(e)
l and c

(e)
l in (14), are

determined by imposing the boundary condition

E1η|ξ=ξ1
= 0 (15)

on the curved portion of the cavity’s surface, and the continuity
of the tangential components of the total electric and magnetic
fields across the apertureξ = 0:

(
Hi

ϕ + Hr
ϕ + Hd

ϕ

)
ξ=0,η

= H1ϕ|ξ=0,−η , (16)

Ed
η

∣∣
ξ=0,η

= − E1η|ξ=0,−η , (17)

where it is noted that the unit vectorη̂ is in opposite directions
at z = ±0, thatη changes sign abruptly when thez = 0 plane
is crossed, and thatEi

η + Er
η = 0 at ξ = 0. Condition (15),

with the aid of (7) yields:

c
(e)
l = −

R
(1)′

1,2l+1(−ic, iξ1) +
ξ1

ξ2
1 + 1

R
(1)
1,2l+1(−ic, iξ1)

R
(3)′
1,2l+1(−ic, iξ1) +

ξ1

ξ2
1 + 1

R
(3)
1,2l+1(−ic, iξ1)

(18)

where the prime means derivative with respect toξ, evaluated
at ξ = ξ1. Conditions (16) and (17) yield:

a
(e)
l = −c

(e)
l b

(e)
l =

− c
(e)
l R

(1)
1,2l+1(−ic, i0)R(3)

1,2l+1(−ic, iξ0)

ζR
(1)
1,2l+1(−ic, i0) + (1 + ζ)c(e)

l R
(3)
1,2l+1(−ic, i0)

(19)

where

ζ =
Z

Z1
. (20)

The surface current densities on the PEC surfaces are the
total tangential magnetic field rotated by90◦. By using (65):

H1ϕ|ξ=ξ1
=

4k2Y1

c
√

ξ2
0 + 1

∞∑

l=0

(−1)lb
(e)
l

ρ̃1,2l+1Ñ1,2l+1

×

S1,2l+1(−ic, η)

ξ1R
(3)
1,2l+1(−ic, iξ1) + (ξ2

1 + 1)R(3)′
1,2l+1(−ic, iξ1)

, (21)

whereas, by using (69):

H1ϕ|η=0 =− 4ik2Y1√
ξ2
0 + 1

∞∑

l=0

(−1)lb
(e)
l P 1

2l+1(0)

ρ̃1,2l+1Ñ1,2l+1

×
[
R

(1)
1,2l+1(−ic, iξ) + c

(e)
l R

(3)
1,2l+1(−ic, iξ)

]
. (22)

On the surface of the ground plane:

(
Hi

ϕ + Hr
ϕ + Hd

ϕ

)
η=0

= − 4ik2Y√
ξ2
0 + 1

∞∑

l=0

(−1)lP 1
2l+1(0)

ρ̃1,2l+1Ñ1,2l+1

×
[
R

(1)
1,2l+1(−ic, iξ<)R(3)

1,2l+1(−ic, iξ>) + a
(e)
l R

(3)
1,2l+1(−ic, iξ)

]
.

(23)

The diffracted far field is obtained with the aid of the
asymptotic expansions in appendix, and by noting thatcξ ∼ kr
andη ∼ cos θ ascξ →∞:

Hd
ϕ

∣∣
cξ→∞ ∼ eikr

kr

4ik2Y√
ξ2
0 + 1

∞∑

l=0

a
(e)
l S1,2l+1(−ic, cos θ)

ρ̃1,2l+1Ñ1,2l+1

(24)

The limit when the cavity recedes to infinity(cξ1 → ∞),
i.e., the case of a circular hole in an infinite metallic screen
separating two isorefractive half-spaces, may be obtained from
the previous formulas by assuming thatc has a vanishingly
small positive imaginary part. By using (74-77), we obtain
from (18) and (19):

c
(e)
l

∣∣∣
cξ1→∞

∼ −1
2
e−i2cξ1 , (25)

b
(e)
l

∣∣∣
cξ1→∞

∼ − 2
1 + ζ

R
(1)
1,2l+1(−ic, i0)

R
(3)
1,2l+1(−ic, i0)

R
(3)
1,2l+1(−ic, iξ0)ei2cξ1 ,

(26)

a
(e)
l

∣∣∣
cξ1→∞

∼ − 1
1 + ζ

R
(1)
1,2l+1(−ic, i0)

R
(3)
1,2l+1(−ic, i0)

R
(3)
1,2l+1(−ic, iξ0),

(27)

hence, from (13) and (14):

Hd
ϕ

∣∣
cξ1→∞ ∼ 4ik2Y√

ξ2
0 + 1

1
1 + ζ

Σ(e), (28)

H1ϕ|cξ1→∞ ∼ − 4ik2Y1√
ξ2
0 + 1

1
1 + ζ

Σ(e), (29)
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where

Σ(e) =
∞∑

l=0

(−1)l

ρ̃1,2l+1Ñ1,2l+1

R
(1)
1,2l+1(−ic, i0)

R
(3)
1,2l+1(−ic, i0)

×

R
(3)
1,2l+1(−ic, iξ0)R

(3)
1,2l+1(−ic, iξ)S1,2l+1(−ic, η). (30)

B. Magnetic dipole

The derivations are similar to those for the electric dipole,
hence only the results are given. For a primary magnetic source
located on the z-axis and axially oriented, the electric and
magnetic field everywhere are of the type:

E = Eϕ(ξ, η)ϕ̂, Eξ = Eη = 0,

H = Hξ(ξ, η)ξ̂ + Hη(ξ, η)η̂, Hϕ = 0,
(31)

where

Hξ =
iY

c

√
1− η2

ξ2 + η2

(
∂

∂η
− η

1− η2

)
Eϕ, (32)

Hη = − iY

c

√
ξ2 + 1
ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)
Eϕ; (33)

for fields inside the cavity, we add the subscript 1 to the field
components and replaceY with Y1. A magnetic dipole located
at (ξ0, η0 = 1) on the positive z-axis and axially oriented,
with momentẑ4π/k corresponding to a magnetic Hertz vector
Π(m) = ẑ exp(ikR)/(kR), generates a primary electric field
[1]:

Ei
ϕ = − 2k2Z√

ξ2
0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

×

R
(1)
1,n(−ic, iξ<)R(3)

1,n(−ic, iξ>)S1,n(−ic, η). (34)

In the absence of a cavity, the image magnetic dipole into the
PEC plane z=0 produces a fieldEr

ϕ such that

Er
ϕ(ξ, η) = −Ei

ϕ(ξ,−η), (35)

wherefrom, with the aid of (66) and (67):

Ei
ϕ + Er

ϕ = − 4k2Z√
ξ2
0 + 1

∞∑

l=1

(−1)l

ρ̃1,2lÑ1,2l

R
(1)
1,2l(−ic, iξ<)×

R
(3)
1,2l(−ic, iξ>)S1,2l(−ic, η). (36)

The total electric field in the presence of the cavity filled
with isorefractive material is:

Eϕ = Ei
ϕ + Er

ϕ + Ed
ϕ, for z ≥ 0,

= E1ϕ, for z ≤ 0,
(37)

where

Ed
ϕ = − 4k2Z√

ξ2
0 + 1

∞∑

l=1

(−1)la
(m)
l

ρ̃1,2lÑ1,2l

R
(3)
1,2l(−ic, iξ)S1,2l(−ic, η),

(38)

E1ϕ = − 4k2Z1√
ξ2
0 + 1

∞∑

l=1

(−1)lb
(m)
l

ρ̃1,2lÑ1,2l

[
R

(1)
1,2l(−ic, iξ)+

c
(m)
l R

(3)
1,2l(−ic, iξ)

]
S1,2l(−ic, η), (39)

and the modal coefficients are found by imposing the boundary
conditions:

c
(m)
l = −R

(1)
1,2l(−ic, iξ1)

R
(3)
1,2l(−ic, iξ1)

, (40)

a
(m)
l = −ζ−1b

(m)
l c

(m)
l =

−c
(m)
l R

(1)′

1,2l(−ic, i0)R(3)
1,2l(−ic, iξ0)

ζR
(1)′
1,2l(−ic, i0) + (1 + ζ)c(m)

l R
(3)′
1,2l(−ic, i0)

. (41)

The tangential magnetic field on the PEC surfaces is given by:

(
Hi

ξ + Hr
ξ + Hd

ξ

)
η=0

= − 4ik2

cξ
√

ξ2
0 + 1

∞∑

l=1

(−1)lP 1′
2l (0)

ρ̃1,2lÑ1,2l

×
[
R

(1)
1,2l(−ic, iξ<)R(3)

1,2l(−ic, iξ>) + a
(m)
l R

(3)
1,2l(−ic, iξ)

]
,

(42)

H1ξ|η=0 = − 4ik2

cξ
√

ξ2
0 + 1

∞∑

l=1

(−1)lb
(m)
l P 1′

2l (0)

ρ̃1,2lÑ1,2l

×
[
R

(1)
1,2l(−ic, iξ) + c

(m)
l R

(3)
1,2l(−ic, iξ)

]
, (43)

H1η|ξ=ξ1
=

4k2

c2
√

(ξ2
0 + 1)(ξ2

1 + 1)(ξ2
1 + η2)

×
∞∑

l=1

(−1)lb
(m)
l

ρ̃1,2lÑ1,2l

S1,2l(−ic, η)

R
(3)
1,2l(−ic, iξ1)

. (44)

The diffracted far field is:

Ed
ϕ

∣∣
cξ→∞ ∼ eikr

kr

4k2Z√
(ξ2

0 + 1)

∞∑

l=1

a
(m)
l

ρ̃1,2lÑ1,2l

S1,2l(−ic, cos θ).

(45)

In the limit when the cavity recedes to infinity:

Ed
ϕ

∣∣
cξ1→∞ ∼ − E1ϕ|cξ1→∞ ∼ 4k2Z√

(ξ2
0 + 1)

1
1 + ζ

Σ(m), (46)

where

Σ(m) =
∞∑

l=1

(−1)l

ρ̃1,2lÑ1,2l

R
(1)′

1,2l(−ic, i0)

R
(3)′
1,2l(−ic, i0)

×

R
(3)
1,2l(−ic, iξ0)R

(3)
1,2l(−ic, iξ)S1,2l(−ic, η), (47)

where, obviously, different ranges ofη apply for z ≤ 0 and
z ≥ 0.

IV. D IPOLE SOURCES INSIDE THE CAVITY

A. Electric dipole

Consider an electric dipole located on the z axis at(ξ =
ξ0, η = −1) inside the cavity and axially oriented. The field
of such a dipole in the presence of an infinite PEC plane at
z = 0, i.e. when the cavity recedes to infinity(ξ1 →∞) and
there is no coupling hole, leads to the configuration of Fig. 2
with dipole and image dipole interchanged. Therefore, the sum
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of incident and reflected fields leads to (11) withY replaced
by Y1:

Hi
1ϕ + Hr

1ϕ = − 4ik2Y1√
ξ2
0 + 1

∞∑

l=0

(−1)l

ρ̃1,2l+1Ñ1,2l+1

×

R
(1)
1,2l+1(−ic, iξ<)R(3)

1,2l+1(−ic, iξ>)S1,2l+1(−ic, η). (48)

The total magnetic field is:

Hϕ = Hi
1ϕ + Hr

1ϕ + Hs
1ϕ, for z ≤ 0,

= Hd
ϕ, for z ≥ 0,

(49)

whereHs
1ϕ is the perturbation introduced in the field inside

the cavity by the presence of the cavity and the coupling
hole, whereasHd

ϕ is the field that enters the half-spacez ≥ 0
through the holeξ = 0. These fields are given by:

Hs
1ϕ = − 4ik2Y1√

ξ2
0 + 1

∞∑

l=0

(−1)lB
(e)
l

ρ̃1,2l+1Ñ1,2l+1

[
R

(1)
1,2l+1(−ic, iξ)+

+C
(e)
l R

(3)
1,2l+1(−ic, iξ)

]
S1,2l+1(−ic, η), (50)

Hd
ϕ = − 4ik2Y√

ξ2
0 + 1

∞∑

l=0

(−1)lA
(e)
l

ρ̃1,2l+1Ñ1,2l+1

R
(3)
1,2l+1(−ic, iξ)×

S1,2l+1(−ic, η), (51)

which is the same as (13) witha(e)
l replaced byA(e)

l . By
imposing the boundary conditions:

Al(e) = −B
(e)
l C

(e)
l , (52)

A
(e)
l =

ζ

∆(e)
R

(1)
1,2l+1(−ic, i0)

[
R

(1)
1,2l+1(−ic, iξ0)+

c
(e)
l R

(3)
1,2l+1(−ic, iξ0)

]
(53)

Bl(e) =
−1
∆(e)

[
ζR

(1)
1,2l+1(−ic, i0)R(3)

1,2l+1(−ic, iξ0)−

(1 + ζ)R(3)
1,2l+1(−ic, i0)R(1)

1,2l+1(−ic, iξ0)
]

(54)

∆(e) = ζR
(1)
1,2l+1(−ic, i0) + (1 + ζ)c(e)

l R
(3)
1,2l+1(−ic, i0)

(55)

with c
(e)
l given by (18). In particular, the far fieldHd

ϕ

∣∣
cξ→∞

is given by (24) witha
(e)
l replaced byA(e)

l .

B. Magnetic dipole

The total electric field produced by an axially oriented
magnetic dipole located at(ξ = ξ0, η = −1) inside the cavity
is:

Eϕ = Ei
1ϕ + Er

1ϕ + Es
1ϕ, for z ≤ 0,

= Ed
ϕ, for z ≥ 0.

(56)

The fieldEi
1ϕ + Er

1ϕ due to the dipole in the presence of an
infinite metal plane (cavity receded to infinity,cξ1 →∞, and
no hole) is obtained at once from (36) by replacingZ with
Z1 and introducing a−1 factor to account for reversal (180◦

phase shift) in the dipole orientation when imaged:

Ei
1ϕ + Er

1ϕ =
4k2Z1√
ξ2
0 + 1

∞∑

l=1

(−1)l

ρ̃1,2lÑ1,2l

R
(1)
1,2l(−ic, iξ<)×

R
(3)
1,2l(−ic, iξ>)S1,2l(−ic, η). (57)

|η|=0.0

|η|=0.1

|η|=0.5

|η|=0.7

|η|=0.9

ξ
1
=2.0

Fig. 3. Geometry for the computation of field quantities. The figure shows the
locations of the dipole sources along the coordinate lineξ = 1.5. However,
only one source is considered for each case.

The perturbation due to the cavity and coupling hole is

Es
1ϕ =

4k2Z1√
ξ2
0 + 1

∞∑

l=1

(−1)lB
(m)
l

ρ̃1,2lÑ1,2l

[
R

(1)
1,2l(−ic, iξ)+

C
(m)
l R

(3)
1,2l(−ic, iξ)

]
S1,2l(−ic, η). (58)

whereas the field radiated into the half-space≥ 0 through the
coupling hole is:

Ed
ϕ =

4k2Z√
ξ2
0 + 1

∞∑

l=1

(−1)lA
(m)
l

ρ̃1,2lÑ1,2l

R
(3)
1,2l(−ic, iξ)S1,2l(−ic, η),

(59)

which is (38) witha
(m)
l replaced by−A

(m)
l ; the same replace-

ment yields the far field from (45). Imposition of the boundary
conditions yields:

B
(m)
l C

(m)
l = −ζA

(m)
l , (60)

A
(m)
l =

R
(1)′

1,2l(−ic, i0)

∆(m)

[
R

(1)
1,2l(−ic, iξ0)R

(3)
1,2l(−ic, iξ1)−

R
(3)
1,2l(−ic, iξ0)R

(1)
1,2l(−ic, iξ1)

]
, (61)

B
(m)
l =

−R
(3)
1,2l(−ic, iξ1)

∆(m)

[
ζR

(1)′

1,2l(−ic, i0)R(3)
1,2l(−ic, iξ0)−

(1 + ζ)R(3)′

1,2l(−ic, i0)R(1)
1,2l(−ic, iξ0)

]
, (62)

where

∆(m) =ζR
(1)′

1,2l(−ic, i0)R(3)
1,2l(−ic, iξ1)−

(1 + ζ)R(3)′

1,2l(−ic, i0)R(1)
1,2l(−ic, iξ1) (63)

V. NUMERICAL RESULTS

Computations of the oblate spheroidal functions were
performed using some of the Fortran subroutines reported
in [7], which were compared with those provided in [8].
The latter contains Fortran and Mathematicac©subroutines.
Another source for spheroidal functions that contains
Mathematicac©subroutines is [9]. Power series expansions for
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spheroidal wave functions with small argumentc are discussed
in [10]. The computations of our series are similar to those
encountered in [11] and [12]. In particular, in order to achieve
convergence, use of the technique described in [13] was made.

As examples of the computation of some field expressions
derived in this paper, we consider the evaluation of the
quantities Hϕ and Eϕ, since they act as scalar potentials
according to (5-7) and (31-33).

One application of interest is the evaluation of the field
that penetrates the cavity when the dipole source is located
outside the cavity or, conversely, the field that is diffracted
out of the cavity when the dipole source is located inside the
cavity. We chose to evaluate the field along the coordinate
lines |η| = constant, see Figs. 1 and 3.

All the diagrams shown in Figs. 4-6 show the field quantities
as a function of the dimensionless variable2z/(d|η|) since this
quantity corresponds to

{
ξ, whenz ≥ 0

−ξ, whenz ≤ 0
(64)

In fact, η changes sign across the planez = 0 and ξ ≥ 0, so
that 2z/(d|η|) may be looked upon as|ξ| that is associated
with a positive sign outside the cavity and with a negative
sign inside the cavity. Different values of the dimensionless
parameterc = kd/2 are chosen. A physical meaning forc is
found by observing thatd/λ = c/π and, in particular, that
d = λ whenc = π.

The results shown in Figs. 4-5 correspond to the cavity
of Fig. 3 with ξ1 = 2 for the dipole source located at
(ξ0 = 1.5, η = ±1). These two figures show results for
three different values of the ratioζ = Z/Z1 : 1/2, 1, 2. As
an example of an electric dipole source located outside the
cavity, Fig. 4 shows the results for the total magnetic field
|Hϕ| computed using (12) and evaluated along the coordinate

−2 −1 0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
x 10

−3

|H
φ|

2z/|dη|

ζ=1/2
ζ=1
ζ=2

Fig. 4. Total magnetic field|Hϕ| due to an electric dipole located outside
the cavity at(ξ0 = 1.5, η0 = 1) and evaluated along the coordinate line
|η| = 0.7 of Fig. 3 for c = 1. Results shown correspond to:ζ = 1 (solid
line), ζ = 0.5 (dashed line), andζ = 2 (dotted line).

−2 −1 0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

|H
φ|

2z/|dη|

ζ=1/2
ζ=1
ζ=2

Fig. 5. Total magnetic field|Hϕ| due to an electric dipole located inside
the cavity at(ξ0 = 1.5, η0 = −1) and evaluated along the coordinate line
|η| = 0.1 of Fig. 3 for c = 6. Results shown correspond to:ζ = 1 (solid
line), ζ = 0.5 (dashed line), andζ = 2 (dotted line).

line |η| = 0.7 of Fig. 3. Another result is given in Fig. 5,
that shows the total magnetic field|Hϕ|, computed using (49),
for an electric dipole source located inside the cavity and
evaluated along the coordinate line|η| = 0.1 of Fig. 3. These
two results appear to show that the fields are rather insensitive
to the variation of the material properties only when the source
is located outside the cavity.

The next numerical result is provided to show the spatial
variation of the field. Hence, in Fig. 6 the total electric field
|Eϕ| is computed using (56) withζ = 1 andc = 3 along three
different curves:|η| = 0.1, 0.7, 0.9.

Finally, Fig. 7 shows a contour plot of the magnitude of the
electric field due to a magnetic source outside the cavity. The

−2 −1 0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

|E
φ|

2z/|dη|

|η|=0.1
|η|=0.7
|η|=0.9

Fig. 6. Total electric field|Eϕ| due to a magnetic dipole located inside
the cavity at(ξ0 = 1.5, η0 = −1) and evaluated forζ = 1 and c = 3.
The results are computed along three lines|η| = const and correspond to
|η| = 0.1 (solid-line), |η| = 0.7 (dashed-line) and|η| = 0.9 (dotted-line).
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Fig. 7. Contour plot of the electric field|Eϕ| due to a magnetic dipole
located outside the cavity at(ξ0 = 1.5, η0 = 1) and evaluated forζ = 1
andc = 3. This plot shows the total electric field inside the cavity computed
using (38), while outside the cavity only the scattered field (37) is considered.

contour plot was obtained by computing the total field, given
by (38), inside the cavity and only the scattered field, given
by (37), outside the cavity. In fact, the incident and reflected
field contribution, given by (36), is the same that would be
obtained from a perfectly conducting plane and, in addition,
is much stronger than the scattered field close to the source.
Therefore, the incident and reflected field contribution was
removed to better appreciate the effect of the aperture and the
cavity.

As a final remark, the quantities that correspond to the
sum of incident and reflected fields given in (11), (36), (48),
(57) were evaluated using the direct expression for the field
radiated by a dipole source and its image, instead of the series
expansions using oblate spheroidal functions.

The computation time of the results reported in figures 4-
6 is less than 2 seconds for the evaluation of the field along
coordinate lines, for which 300 points were considered. The
computations of the contour plot required about 1 hour and 40
minutes to evaluate the field in a rectangular grid of 1’000’000
points. All simulations were run on a personal computer at
3.06GHz.

VI. CONCLUSIONS

Analytical results for a new canonical problem involving a
spheroidal cavity, sharp edges, two isorefractive media and a
dipole sources located along the axis of symmetry and axially
oriented were presented. This new analytical solution enriches
the catalog of electromagnetic problems for which exact
solutions are known. This solution is important, for example,
to conduct a mutual validation with other methods, such as
discussed in [11]-[12]. Numerical results were provided and
discussed.

The reciprocity theorem allows us to calculate the axial
component of the field on the z axis produced by an arbitrarily
located and oriented dipole, from the solutions derived in the
previous sections.

Future research will compare the results obtained in this
paper with numerical solutions of integral equations. Also,
the formulas obtained herein will be specialized to the low-
frequency casec << 1, thereby providing a test case for more
general theories that describe coupling to a cavity via a small
aperture.
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APPENDIX

SOME PROPERTIES OF OBLATE SPHEROIDAL FUNCTIONS

The notation is that of Flammer [2]. We limit our con-
siderations to the functions of interest in this paper: the
angular functionsS1,n(−ic, η); the radial functions of the first
kind R

(1)
1,n(−ic, iξ); and the radial functions of the third kind

R
(3)
1,n(−ic, iξ). The subscriptsn and l are integers.

1) Wronskian relation:

R
(1)
1,n(−ic, iξ)R(3)′

1,n (−ic, iξ)−R
(1)′

1,n (−ic, iξ)R(3)
1,n(−ic, iξ) =

i

c(ξ2 + 1)
(65)

where the prime means the derivative with respect toξ.

2) Special values:

S1,2l(−ic,−η) = −S1,2l(−ic, η) (66)

S1,2l+1(−ic,−η) = S1,2l+1(−ic, η) (67)

S1,2l(−ic, 0) = 0 (68)

S1,2l+1(−ic, 0) = P 1
2l+1(0) =

(−1)l(2l + 2)!
22l+1l!(l + 1)!

(69)

∂

∂η
S1,2l(−ic, η)

∣∣∣∣
η=0

=
∂

∂η
P 1

2l(η)
∣∣∣∣
η=0

= P 1′
2l (0) =

(−1)(l−1)(2l + 2)!
22l(l − 1)!(l + 1)!

(70)

∂

∂η
S1,2l+1(−ic, η)

∣∣∣∣
η=0

= S′1,2l+1(−ic, 0) = 0 (71)

where Ferrer’s definition of associated Legendre functions is
used.

R
(1)
1,2l(−ic, 0) = 0 (72)

∂

∂ξ
R

(1)
1,2l+1(−ic, iξ)

∣∣∣∣
ξ=0

= R
(1)′

1,2l+1(−ic, i0) = 0 (73)
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3) Asymptotic expansions:

R
(1)
1,2l(−ic, iξ)

∣∣∣
cξ→∞

∼ (−1)l sin cξ

cξ
−→

Imc>0

i(−1)l e
−icξ

2cξ
(74)

R
(1)
1,2l+1(−ic, iξ)

∣∣∣
cξ→∞

∼ (−1)l+1 cos cξ

cξ
−→

Imc>0

(−1)l+1 e−icξ

2cξ
(75)

R
(3)
1,2l(−ic, iξ)

∣∣∣
cξ→∞

∼ −i(−1)l e
icξ

cξ
(76)

R
(3)
1,2l+1(−ic, iξ)

∣∣∣
cξ→∞

∼ (−1)l+1 eicξ

cξ
(77)

4) Limit d=0: When d → 0 (hencec → 0), the oblate
spheroidal coordinate system reduces to the spherical coordi-
nate system(r, θ, ϕ).

lim
d→0

S1,n(−ic, η) = P 1
n(cos θ) (78)

lim
d→0

R
(1)
1,n(−ic, iξ) =

√
π

2kr
Jn+ 1

2
(kr) (79)

lim
d→0

R
(3)
1,n(−ic, iξ) =

√
π

2kr
H

(1)

n+ 1
2
(kr) (80)
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