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Exact Radiation and Scattering for an Elliptic Metal
Cylinder at the Interface between Isorefractive

Half-spaces
Danilo Erricolo,Senior Member, IEEE, Piergiorgio L. E. Uslenghi,Fellow, IEEE

Abstract— An elliptic metal cylinder located at the interface
between two isorefractive half-spaces, with its cross-sectional
major axis either parallel or perpendicular to the interface is
considered. The problems of scattering of an incident plane wave
with arbitrary polarization and direction of incidence, and of
radiation from an electric or magnetic line source parallel to
the cylinder axis are solved exactly. The particular case of a
metal strip either parallel or perpendicular to the interface is
examined in detail. Several numerical results for far fields and
surface currents are presented.

Index Terms— Electromagnetic radiation, electromagnetic
scattering, complex media.

I. I NTRODUCTION

NEW materials with interesting electromagnetic and elec-
tronic properties have recently been introduced for a va-

riety of applications: materials with various types of anisotropy
for substrates, radomes, RAM, FSS such as ferrites, ceramics,
fiber composites, honeycomb structures; bianisotropic mate-
rials; chiral materials; metamaterials; etc. Sophisticated com-
puter codes have been developed, both in frequency and time
domains, to analyze the electromagnetic behavior of complex
structures containing such penetrable materials. The accuracy
of such codes may be tested by comparison with other codes,
with measurements data, or with exact solutions of boundary-
value problems for structures of sufficient complexity to
provide challenging and meaningful comparisons. Until a few
years ago, the only exact solutions known for penetrable
bodies involved the circular cylinder and the sphere. The recent
introduction of isorefractive materials, i.e. materials having
the same refractive index but different intrinsic impedances,
has led to the development of several new exact solutions,
usually by the method of separation of variables, that provide
realistic tests for computer codes while enriching the catalog
of available canonical solutions.

Several problems involving two-dimensional isorefractive
bodies have been solved exactly [1], with particular attention
to the isorefractive wedge both in the frequency domain [2],
[3], [4] and in the time domain [5]. Exact solutions have
also been obtained for three-dimensional isorefractive bodies
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of revolution [6], [7] and for cavities filled with isorefractive
material in two dimensions [8], [9] and in three dimensions
[10]. Some of these results have been compared successfully
with numerical solutions of integral equations formulations of
the same problems [11], [12], [13].

In this work, the two-dimensional problem of a PEC cylin-
der of elliptical cross section located at the plane interface
between isorefractive half-spaces is considered. The major
axis of the cross-sectional ellipse is either in the plane of the
interface (hereinafter called ”parallel configuration”, see Fig.
1), or perpendicular to the interface (hereinafter called ”per-
pendicular configuration”, see Fig. 2). The problem is solved
exactly for a primary plane wave with arbitrary polarization
and direction of incidence in Section III, and for a primary
electric or magnetic line source parallel to the cylinder axis in
Section IV. The particular case in which the elliptic cylinder
is flattened onto a metal strip is discussed in Section V, and
some numerical results for the far fields (RCS) and surface
currents on the cylinder are shown and discussed in Section
VI. The analysis is conducted in the frequency domain, with
time-dependence factorexp(+jωt) omitted throughout.
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Fig. 1. Geometry of the problem for parallel configuration.

II. STATEMENT OF THE PROBLEM

Two configurations are analyzed. In the parallel configu-
ration, whose cross section is shown in Fig. 1, the planar
interfacey = 0 separates two half-spaces. The regiony > 0 is
occupied by medium 1, characterized by permittivityε1 and
permeabilityµ1, whereas the regiony < 0 is occupied by
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Fig. 2. Geometry of the problem for perpendicular configuration.

medium 2, characterized by permittivityε2 and permeability
µ2. The two media are isorefractive, i.e.

ε1µ1 = ε2µ2 (1)

so that the propagation constantk and the wavelengthλ are
the same in both media:

k = 2π/λ = ω
√

εhµh, (h = 1, 2) (2)

whereas the intrinsic impedances

Zh =
√

µh/εh, (h = 1, 2) (3)

are, in general, different from each other.
A metallic elliptic cylinder straddles the interface between

the media. Its cross section in any planez =constant is an
ellipse with interfocal distanceF1F2 = d and fociF1 andF2

that lie in the planey = 0 of the interface. The rectangular
coordinates(x, y, z) are related to the elliptic coordinates
(u, v, z) by:

x =
d

2
coshu cos v,

y =
d

2
sinhu sin v, (4)

z = z

where 0 ≤ u < ∞, 0 ≤ v ≤ 2π, −∞ < z < ∞. It is
sometimes useful to introduce the coordinates

ξ = cosh u, η = cos v (5)

with 1 ≤ ξ < ∞ and−1 ≤ η ≤ 1. The inverse transformation
from cartesian coordinates(x, y) to elliptic coordinates(ξ, η)
is reported here for convenience:

ξ =√
4(x2 + y2) + d2 +

√
16(x2 + y2)2 + d4 − 8d2(x2 − y2)

2d2

(6)

and

η =
2x

dξ
. (7)

The surface of the PEC elliptic cylinder is the coordinate
surfaceξ = ξ1, whereas the interfacey = 0 corresponds to
v = 0, 2π for x > 0 and tov = π for x < 0.

In the perpendicular configuration, whose cross section is
shown in Fig. 2, the interface between medium 1(x > 0)
and medium 2(x < 0) is the planex = 0; thus, the interface
corresponds tov = π/2 for y > 0 and to v = 3π/2 for
y < 0. The interfocal segmentF1F2 is now perpendicular to
the interface.

For either configuration, it is expedient to introduce the
parameter

c =
kd

2
. (8)

as well as the reflection coefficientR and transmission coef-
ficient T for the electric field when incidence on the interface
occurs from medium 1:

R =
1− ζ

1 + ζ
, T =

2
1 + ζ

, (9)

where
ζ = Z1/Z2; (10)

note that
1 + R = T, 1−R = ζT. (11)

The primary field is either a plane wave or a line source. For
a plane wave incident from the first quadrant and propagating
in a direction that forms the angleϕ0 with the negative x-axis
and the angle(π/2− ϕ0) with the negative y-axis (see Figs.
1 and 2), either the electric or the magnetic field is taken as
parallel to the z-axis and given by the phasor

ejk(x cos ϕ0+y sin ϕ0) =

=
√

8π

∞∑
m=0

jm

[
1

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+
1

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cosϕ0)

]
, (12)

whereRe, o(1)
m are the even and odd radial Mathieu functions

of the first kind,Se, om are the even and odd angular Mathieu
functions, andN (e),(o)

m are normalization coefficients; here and
in the following, the Stratton-Chu notation is adopted [14],
[15].

For an isotropic electric or magnetic line source parallel
to the z-axis and located in the first quadrant at(x0, y0) ≡
(u0, v0) ≡ (ξ0, η0), the primary electric or magnetic field is
given by the Hankel function of zero order and of the second
kind:

H
(2)
0 (kr) =

4
∞∑

m=0

[
1

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)+

1

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)
]

, (13)
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whereξ<(ξ>) is the smaller (larger) betweenξ andξ0, Re, o(4)
m

are the even and odd radial Mathieu functions of the fourth
kind, andr is the distance of the observation point from the
line source:

r =
√

(x− x0)2 + (y − y0)2. (14)

The solutions listed in the following sections are obtained by
imposing the boundary conditions at the planar interface (i.e.,
continuity of the tangential electric and magnetic fields across
the interface), zero tangential electric field at the surface of
the PEC cylinder, and the two-dimensional radiation condition
at infinity for all fields generated by primary and secondary
sources of finite extent. No details are provided, but the results
can be verified by using the properties of Mathieu functions
listed in the appendix of [8]. For the case of perpendicular
configuration, those properties must be supplemented by the
following:

Se2`+1(c, η)|v=π/2,3π/2 = 0, (15)

So2`(c, η)|v=π/2,3π/2 = 0, (16)

∂

∂v
Se2`(c, η)

∣∣∣∣
v=π/2,3π/2

= 0, (17)

∂

∂v
So2`+1(c, η)

∣∣∣∣
v=π/2,3π/2

= 0, (18)

where` = 0, 1, 2, ... is any non-negative integer.

III. PLANE WAVE INCIDENCE

The most general polarization of the incident plane wave
is easily obtained by superposition of the solutions for E-
polarization (electric field parallel to the z-axis) and H-
polarization (magnetic field parallel to the z-axis).

A. Parallel configuration with E-polarization.

If the incident plane wave has an electric fieldEi = ẑEi
z

parallel to the z-axis withEi
z given by (12), then the total

electric fieldsE1z in medium 1 andE2z in medium 2 may be
written as

E1z = Ei
z + Er

z + Es
1z, (19)

E2z = Et
z + Es

2z, (20)

whereEr
z andEt

z are the reflected and transmitted fields that
would occur in the absence of the metallic cylinder, whereas
Es

hz (h = 1, 2) are the scattered fields due to the presence of
the cylinder. The fieldsEr

z andEt
z are associated with reflected

and transmitted plane waves, whereasEs
hz must satisfy the

radiation condition.
It is found that:

Ei
z + Er

z =

=
√

8π

∞∑
m=0

jm

[
1 + R

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cosϕ0)

+
1−R

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cosϕ0)

]
, (21)

Et
z = TEi

z, (22)

Es
hz =

√
8π

∞∑
m=0

jm

[
a
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+
a
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
(23)

where the modal coefficientsa(e),(o)
h,m are given by:

a
(e)
1,m = a

(e)
2,m = − T

Re(1)
m (c, ξ1)

Re(4)
m (c, ξ1)

, (24)

a
(o)
1,m = ζa

(o)
2,m = −ζT

Ro(1)
m (c, ξ1)

Ro(4)
m (c, ξ1)

. (25)

The normalized bistatic radar cross section (RCS) for an
observation point in medium 1(0 < ϕ < π) is:

σ||,E(ϕ)
λ

= 8π

∣∣∣∣∣
∞∑

m=0

(−1)m

[
a
(e)
1,m

N
(e)
m

Sem(c, cos ϕ)Sem(c, cos ϕ0)

+
a
(o)
1,m

N
(o)
m

Som(c, cosϕ)Som(c, cos ϕ0)

]∣∣∣∣∣

2

. (26)

The magnetic field is given by

Hh =
j

cZh

√
ξ2 − η2

(
∂Ehz

∂v
û− ∂Ehz

∂u
v̂

)
, (h = 1, 2),

(27)
and the electric current density on the surfaceξ = ξ1 of the
metal cylinder is

Jh = Hhv|ξ=ξ1
ẑ, (28)

where

Hhv|ξ=ξ1
=

T

cZh

√
8π

ξ2
1 − η2

∞∑
m=0

jm

[
Sem(c, η)Sem(c, cos ϕ0)

N
(e)
m Re(4)

m (c, ξ1)

+ ζh
Som(c, η)Som(c, cos ϕ0)

N
(o)
m Ro(4)

m (c, ξ1)

]
, (29)

with
ζ1 = ζ, ζ2 = 1. (30)

B. Parallel configuration with H-polarization

If the incident plane wave has a magnetic fieldHi = ẑHi
z

parallel to the z-axis withHi
z given by (12), then the total

magnetic fieldsH1z in medium 1 andH2z in medium 2 may
be written as

H1z = Hi
z + Hr

z + Hs
1z, (31)

H2z = Ht
z + Hs

2z, (32)

where the fields in the absence of the metal cylinder are:

Hi
z + Hr

z =

=
√

8π

∞∑
m=0

jm

[
1−R

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+
1 + R

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cosϕ0)

]
, (33)

Ht
z = ζTHi

z, (34)
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whereas the scattered fields due to the presence of the cylinder
are:

Hs
hz =

√
8π

∞∑
m=0

jm

[
b
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cosϕ0)

+
b
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
, (h = 1, 2),

(35)

with modal coefficients

b
(e)
1,m = b

(e)
2,m = −ζT

Re(1)′
m (c, ξ1)

Re(4)′
m (c, ξ1)

, (36)

b
(o)
1,m = ζ−1b

(o)
2,m = − T

Ro(1)′
m (c, ξ1)

Ro(4)′
m (c, ξ1)

; (37)

here and in the following, the prime on a radial function means
derivative with respect toξ.

The normalized bistatic RCS,σ||,H(ϕ)/λ for an observation

point in medium 1(0 < ϕ < π) is given by (26) witha
(e),(o)
1,m

replaced byb(e),(o)
1,m .

The electric surface current density on the metal cylinder is

Jh = − Hhz|ξ=ξ1
v̂, (h = 1, 2), (38)

where

Hhz|ξ=ξ1
=

− jT
ζ

ζh

√
8π

ξ2
1 − 1

∞∑
m=0

jm

[
ζh

Sem(c, η)Sem(c, cos ϕ0)

N
(e)
m Re(4)′

m (c, ξ1)

+
Som(c, η)Som(c, cos ϕ0)

N
(o)
m Ro(4)′

m (c, ξ1)

]
, (39)

with ζh given by (30).

C. Perpendicular configuration with E-polarization

With reference to Fig. 2, the incident electric fieldEi
z is

still given by (12), and the total fieldsE1z in x > 0 andE2z

in x < 0 by (19) and (20).
In the absence of the metal cylinder,

Ei
z + Er

z =
√

8π×
∞∑

m=0

jm

[
1 + R(−1)m

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cosϕ0)

+
1−R(−1)m

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cosϕ0)

]
, (40)

and Et
z is given by (22), whereas the scattered fields due to

the presence of the cylinder are

Es
hz =

√
8π

∞∑
m=0

jm

[
c
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cosϕ0)

+
c
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
, (h = 1, 2),

(41)

where

c
(e)
1,2` = c

(e)
2,2` = − T

Re(1)
2` (c, ξ1)

Re(4)
2` (c, ξ1)

, (42)

c
(e)
1,2`+1 = ζc

(e)
2,2`+1 = −ζT

Re(1)
2`+1(c, ξ1)

Re(4)
2`+1(c, ξ1)

, (43)

c
(o)
1,2` = ζc

(o)
2,2` = −ζT

Ro(1)
2` (c, ξ1)

Ro(4)
2` (c, ξ1)

, (44)

c
(o)
1,2`+1 = c

(o)
2,2`+1 = − T

Ro(1)
2`+1(c, ξ1)

Ro(4)
2`+1(c, ξ1)

, (45)

with ` = 0, 1, 2, ... a non-negative integer.
The normalized bistatic RCS,σ⊥,E(ϕ)/λ for an observation

point in medium 1(−π/2 < ϕ < π/2) is given by (26) with
a
(e),(o)
1,m replaced byc(e),(o)

1,m .
The electric current density on the surface of the metal

cylinder is given by (28) whereH2v|ξ=ξ1
is still given by

(29) with h = 2, whereas

H1v|ξ=ξ1
=

T

cZ1

√
8π

ξ2
1 − η2

×
∞∑

l=0

(−1)`

[
Se2`(c, η)Se2`(c, cosϕ0)

N
(e)
2` Re(4)

2` (c, ξ1)

+ jζ
Se2`+1(c, η)Se2`+1(c, cos ϕ0)

N
(e)
2`+1Re(4)

2`+1(c, ξ1)

+ ζ
So2`(c, η)So2`(c, cosϕ0)

N
(o)
2` Ro(4)

2` (c, ξ1)

j
So2`+1(c, η)So2`+1(c, cosϕ0)

N
(o)
2`+1Ro(4)

2`+1(c, ξ1)

]
. (46)

D. Perpendicular configuration with H-polarization

The incident magnetic fieldHi
z is given by (12), and the

total magnetic fieldsH1z in x > 0 andH2z in x < 0 by (31)
and (32) (see Fig. 2). In the absence of the metal cylinder,

Hi
z + Hr

z =
√

8π

∞∑
m=0

jm

[
1−R(−1)m

N
(e)
m

Re(1)
m (c, ξ)Sem(c, η)Sem(c, cos ϕ0)

+
1 + R(−1)m

N
(o)
m

Ro(1)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
, (47)

andHt
z is given by (34); the scattered fields due to the presence

of the cylinder are

Hs
hz =

√
8π

∞∑
m=0

jm

[
d
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ)Sem(c, η)Sem(c, cosϕ0)

+
d
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ)Som(c, η)Som(c, cos ϕ0)

]
, (48)
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where

d
(e)
1,2` = d

(e)
2,2` = −ζT

Re(1)′

2` (c, ξ1)

Re(4)′
2` (c, ξ1)

, (49)

d
(e)
1,2`+1 = ζ−1d

(e)
2,2`+1 = − T

Re(1)′

2`+1(c, ξ1)

Re(4)′
2`+1(c, ξ1)

, (50)

d
(o)
1,2` = ζ−1d

(o)
2,2` = − T

Ro(1)′

2` (c, ξ1)

Ro(4)′
2` (c, ξ1)

, (51)

d
(o)
1,2`+1 = d

(o)
2,2`+1 = −ζT

Ro(1)′

2`+1(c, ξ1)

Ro(4)′
2`+1(c, ξ1)

, (52)

The normalized bistatic RCS,σ⊥,H(ϕ)/λ for an observation
point in medium 1(−π/2 < ϕ < π/2) is given by (26) with
a
(e),(o)
1,m replaced byd(e),(o)

1,m .
The surface current density on the metal cylinder is given

by (38) whereH2z|ξ=ξ1
is still given by (39) withh = 2,

whereas

H1z|ξ=ξ1
= T

√
8π

ξ2
1 − 1

×
∞∑

l=0

(−1)`

[
−jζ

Se2`(c, η)Se2`(c, cos ϕ0)

N
(e)
2` Re(4)′

2` (c, ξ1)

+
Se2`+1(c, η)Se2`+1(c, cos ϕ0)

N
(e)
2`+1Re(4)′

2`+1(c, ξ1)

− j
So2`(c, η)So2`(c, cos ϕ0)

N
(o)
2` Ro(4)′

2` (c, ξ1)

ζ
So2`+1(c, η)So2`+1(c, cosϕ0)

N
(o)
2`+1Ro(4)′

2`+1(c, ξ1)

]
. (53)

IV. L INE SOURCE INCIDENCE

A. Parallel configuration with electric line source

For an isotropic electric line source that generates an electric
field ẑEi

z with Ei
z given by (13), the total electric fieldsE1z

in medium 1 andE2z in medium 2 of Fig. 1 are still given by
(19) and (20), where now the reflected and transmitted fields
in the absence of the metal cylinder are

Er
z = RH

(2)
0 (kr̃), Et

z = TEi
z, (54)

where

r̃ =
√

(x− x0)2 + (y + y0)2 (55)

is the distance from the image line source at(x0,−y0) to the
observation point. Consequently,

Ei
z + Er

z =

4
∞∑

m=0

[
1 + R

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)+

1−R

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)
]

.

(56)

The scattered fields due to the presence of the cylinder are

Es
hz =

4
∞∑

m=0

[
a
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ0)Re(4)

m (c, ξ)Sem(c, η0)Sem(c, η)+

a
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ0)Ro(4)

m (c, ξ)Som(c, η0)Som(c, η)

]
, (h = 1, 2),

(57)

wherea
(e),(o)
h,m are given by (24),(25).

The surface current density on the metal cylinder is given
by (28) with:

Hhv|ξ=ξ1
=

4T

cZh

√
ξ2
1 − η2

∞∑
m=0

[
Re(4)

m (c, ξ0)

N
(e)
m Re(4)

m (c, ξ1)
Sem(c, η)Sem(c, η0)

+ ζh
Ro(4)

m (c, ξ0)

N
(o)
m Ro(4)

m (c, ξ1)
Som(c, η)Som(c, η0)

]
, (h = 1, 2).

(58)

B. Parallel configuration with magnetic line source

For an isotropic line source that generates a magnetic field
ẑHi

z with Hi
z given by (13), the total magnetic fieldsH1z in

medium 1 andH2z in medium 2 of Fig. 1 are still given by
(31) and (32), where now the reflected and transmitted fields
in the absence of the metal cylinder are

Hr
z = −RH

(2)
0 (kr̃), Ht

z = ζTHi
z, (59)

with r̃ given by (55). Consequently,

Hi
z + Hr

z =

4
∞∑

m=0

[
1−R

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)+

1 + R

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)
]

.

(60)

The scattered fields due to the presence of the cylinder are

Hs
hz =

4
∞∑

m=0

[
b
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ0)Re(4)

m (c, ξ)Sem(c, η0)Sem(c, η)+

b
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ0)Ro(4)

m (c, ξ)Som(c, η0)Som(c, η)

]
, (h = 1, 2),

(61)

whereb
(e),(o)
h,m are given by (36), (37).

The surface current density on the metal cylinder is given
by (38) with:
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Hhz|ξ=ξ1
=

−4jT√
ξ2
1 − 1

ζ

ζh
×

∞∑
m=0

[
ζh

Re(4)
m (c, ξ0)

N
(e)
m Re(4)′

m (c, ξ1)
Sem(c, η)Sem(c, η0)+

Ro(4)
m (c, ξ0)

N
(o)
m Ro(4)′

m (c, ξ1)
Som(c, η)Som(c, η0)

]
, (h = 1, 2). (62)

C. Perpendicular configuration with electric line source

An isotropic electric line source that generates an incident
electric field parallel to the z-axis withEi

z given by (13),
produces total electric fieldsE1z in medium 1 andE2z in
medium 2 of Fig. 2 that are given by (19) and (20). The
reflected and transmitted fields in the absence of the metal
cylinder are

Er
z = RH

(2)
0 (k ˜̃r), Et

z = TEi
z (63)

where

˜̃r =
√

(x + x0)2 + (y − y0)2 (64)

is the distance of the image line source located at(−x0, y0)
from the observation point. Consequently,

Ei
z + Er

z = 4
∞∑

m=0

[
1 + R(−1)m

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>) ×

Sem(c, η0)Sem(c, η)+
1−R(−1)m

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)
]

.

(65)

The scattered fields due to the presence of the cylinder are:

Es
hz =

4
∞∑

m=0

[
c
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ0)Re(4)

m (c, ξ)Sem(c, η0)Sem(c, η)+

c
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ0)Ro(4)

m (c, ξ)Som(c, η0)Som(c, η)

]
, (h = 1, 2),

(66)

wherec
(e),(o)
h,m are given by (42)-(45).

The surface current density on the metal cylinder is given
by (28) with:

H1v|ξ=ξ1
=

4
cZ1

√
ξ2
1 − η2

×
∞∑

m=0

[
1 + R(−1)m

N
(e)
m

Re(4)
m (c, ξ0)

Re(4)
m (c, ξ1)

Sem(c, η)Sem(c, η0)

+
1−R(−1)m

N
(o)
m

Ro(4)
m (c, ξ0)

Ro(4)
m (c, ξ1)

Som(c, η)Som(c, η0)

]
, (67)

H2v|ξ=ξ1
=

4T

cZ2

√
ξ2
1 − η2

×
∞∑

m=0

[
Re(4)

m (c, ξ0)

N
(e)
m Re(4)

m (c, ξ1)
Sem(c, η)Sem(c, η0)

+
Ro(4)

m (c, ξ0)

N
(o)
m Ro(4)

m (c, ξ1)
Som(c, η)Som(c, η0)

]
. (68)

D. Perpendicular configuration with magnetic line source

For an isotropic line source that generates a magnetic filed
parallel to the z-axis withHi

z given by (13), the total magnetic
fields H1z in medium 1 andH2z in medium 2 of Fig. 2 are
given by (31) and (32) where the reflected and transmitted
fields in the absence of the metal cylinder are

Hr
z = −RH

(2)
0 (k ˜̃r), Ht

z = ζTHi
z (69)

with ˜̃r given by (64). Consequently,

Hi
z + Hr

z = 4×
∞∑

m=0[
1−R(−1)m

N
(e)
m

Re(1)
m (c, ξ<)Re(4)

m (c, ξ>)Sem(c, η0)Sem(c, η)+

1 + R(−1)m

N
(o)
m

Ro(1)
m (c, ξ<)Ro(4)

m (c, ξ>)Som(c, η0)Som(c, η)
]

.

(70)

The scattered fields due to the presence of the cylinder are

Hs
hz =

4
∞∑

m=0

[
d
(e)
h,m

N
(e)
m

Re(4)
m (c, ξ0)Re(4)

m (c, ξ)Sem(c, η0)Sem(c, η)+

d
(o)
h,m

N
(o)
m

Ro(4)
m (c, ξ0)Ro(4)

m (c, ξ)Som(c, η0)Som(c, η)

]
, (h = 1, 2),

(71)

whered
(e),(o)
h,m are given by (49)-(52).

The surface current density on the metal cylinder is given
by (38) with

H1z|ξ=ξ1
=

−4j√
ξ2
1 − 1

×
∞∑

m=0

[
1−R(−1)m

N
(e)
m

Re(4)
m (c, ξ0)

Re(4)′
m (c, ξ1)

Sem(c, η)Sem(c, η0)

+
1 + R(−1)m

N
(o)
m

Ro(4)
m (c, ξ0)

Ro(4)′
m (c, ξ1)

Som(c, η)Som(c, η0)

]
, (72)

H2z|ξ=ξ1
=

−4jζT√
ξ2
1 − 1

×
∞∑

m=0

[
Re(4)

m (c, ξ0)

N
(e)
m Re(4)′

m (c, ξ1)
Sem(c, η)Sem(c, η0)

+
Ro(4)

m (c, ξ0)

N
(o)
m Ro(4)′

m (c, ξ1)
Som(c, η)Som(c, η0)

]
. (73)
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V. THE PARTICULAR CASE OF THE STRIP

In the limit case of the metal strip,ξ1, the minor axis of
the elliptic cylinder’s cross section shrinks to zero and the
major axis equals the interfocal distanced. Thus, the formulas
obtained in the previous sections apply to the case of a metal
strip of widthd that is either on the interface between the two
media, or perpendicular to the interface and protruding a width
d/2 into each medium, when one setsξ1 = 1 (or u1 = 0).

By using the relations

Ro(1)
m (c, 1) = 0,

∂

∂u
Re(1)

m (c, ξ)
∣∣∣∣
u=0

= 0 (74)

it is seen that

a
(o)
h,m

∣∣∣
ξ1=1

= 0, b
(e)
h,m

∣∣∣
ξ1=1

= 0, (75)

c
(o)
h,m

∣∣∣
ξ1=1

= 0, d
(e)
h,m

∣∣∣
ξ1=1

= 0, (h = 1, 2) (76)

For the H-polarization cases, it is useful to observe that
in formulas such as (39), (53), (62) ,(72) and (73) one may
perform the substitution:

√
ξ2
1 − 1Re, o(4)′(c, ξ1)

∣∣∣∣
ξ1=1

=
∂

∂u
Re, o(4)

m (c, ξ)
∣∣∣∣
u=0

.

(77)

VI. N UMERICAL RESULTS

Numerical results are provided for bistatic radar cross
sections, induced currents and the particular case of the strip
derived in the previous sections. The computations of the
Mathieu functions are performed using software that is based,
in part, on some of the Fortran subroutines provided in [16].
However, since the subroutines in [16] apply the Goldstein-
Ince normalization [17],[18],[19], they were modified to ac-
count for the Stratton-Chu normalization [14],[15] used in
this work. Additionally, the subroutines taken from [16] were
translated to Fortran 90 so that computations at quadruple
precision could be run to verify the results. For all the series
involved in the following results, convergence was achieved
within the first 50 terms. In particular, each curve related to
a bistatic RCS was evaluated at 181 points, whereas the polar
plots for the induced currents were evaluated at 360 points.
The computation time for each figure on a personal computer
with a CPU that runs at 1.5GHz is about one minute.

In all the figures that follow (with the exception of the
results for the strip), the same elliptic cross-section with
size ξ1 = 2 is used for both the parallel and perpendicular
configurations of Fig. 1 and 2, respectively.

Results are presented for various values of the parameterc
given in (8), so that different cases for the size of the cross-
section versus the wavelength are examined. The effect of
different material is also accounted for by showing results for
different values ofζ given by (10).

All results related to the plane wave incidence correspond
to a field given by (12) that implies an amplitude of 1 V/m in
the electric case or 1 A/m in the magnetic case.

The first four figures deal with the bistatic RCS for an
elliptic cylinder with sizeξ1 = 2.

Fig. 3 shows the bistatic radar cross section, given by (26),
for the parallel configuration of Fig. 1, due to an E-polarized
plane wave incident at an angleϕ0 = π/4 when ζ = 1/2.
It is observed that the RCS is larger and shows a more
complex behavior with increasing values ofc. Fig. 4 shows
the bistatic radar cross section, for the parallel configuration
of Fig. 1, due to an H-polarized plane wave incident at an
angleϕ0 = π/4 when ζ = 1/2. This behavior is similar to
the one of Fig. 3. Fig. 5 shows the bistatic radar cross section,
for the perpendicular configuration of Fig. 2, due to an E-
polarized plane wave incident at an angleϕ0 = π/4 when
ζ = 1/2. Fig. 6 shows the bistatic radar cross section, for the
perpendicular configuration of Fig. 2, due to an H-polarized
plane wave incident at an angleϕ0 = π/4 whenζ = 1/2.

The following four figures deal with the current induced
over the surface of a PEC cylinder with sizeξ1 = 2 and due
to plane wave incidence. Fig. 7 shows the magnitude of the
current densityJz for the parallel configuration due to an E-
polarized plane wave incident atϕ0 = π/6 when ζ = 1/3.
There is a jump in the value of|Jz| at v = 0 and v = π,
which is due to the transition from medium 1 to medium 2,
as apparent from (29).
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Fig. 3. Bistatic RCS for the parallel configuration when the source is an
E-polarized plane wave incident at an angleϕ0 = π/4 andζ = 1/2. Results
correspond toc = 1 (dashed line),c = π (solid line);c = 10 (dash-dot line).
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Fig. 4. Bistatic RCS for the parallel configuration when the source is an
H-polarized plane wave incident at an angleϕ0 = π/4 andζ = 1/2. Results
correspond toc = 1 (dashed line),c = π (solid line);c = 10 (dash-dot line).
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Fig. 5. Bistatic RCS for the perpendicular configuration when the source
is an E-polarized plane wave incident at an angleϕ0 = π/4 and ζ = 1/2.
Results correspond toc = 1 (dashed line),c = π (solid line); c = 10
(dash-dot line).
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Fig. 6. Bistatic RCS for the perpendicular configuration when the source
is an H-polarized plane wave incident at an angleϕ0 = π/4 and ζ = 1/2.
Results correspond toc = 1 (dashed line),c = π (solid line); c = 10
(dash-dot line).
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Fig. 7. Polar plot of the current density|Jz | induced over the surface of an
elliptic cylinder with ξ1 = 2 for the parallel configuration when the source
is an E-polarized plane wave incident atϕ0 = π/6 and ζ = 1/3. Results
correspond toc = 1 (dashed line),c = π (solid line);c = 10 (dash-dot line).
Observe the symmetry and the jump atv = 0, π due toζ 6= 1 at the interface
from medium 1 and 2.
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Fig. 8. Polar plot of the current density|Jv| induced over the surface of an
elliptic cylinder with ξ1 = 2 for the parallel configuration when the source
is an H-polarized plane wave incident atϕ0 = π/6 and ζ = 1/3. Results
correspond toc = 1 (dashed line),c = π (solid line);c = 10 (dash-dot line).
Observe the continuity atv = 0, π at the interface between medium 1 and 2.
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Fig. 9. Polar plot of the current density|Jz | induced over the surface of
an elliptic cylinder withξ1 = 2 for the perpendicular configuration when the
source is an E-polarized plane wave incident atϕ0 = π/6 and ζ = 1/3.
Results correspond toc = 1 (dashed line),c = π (solid line); c = 10 (dash-
dot line). Observe the jump atv = π/2, 3π/2 due toζ 6= 1 at the interface
between medium 1 and 2.
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Fig. 10. Polar plot of the current density|Jv | induced over the surface of
an elliptic cylinder withξ1 = 2 for the perpendicular configuration when the
source is an H-polarized plane wave incident atϕ0 = π/6 and ζ = 1/3.
Results correspond toc = 1 (dashed line),c = π (solid line); c = 10 (dash-
dot line). Observe the continuity atv = π/2, 3π/2 at the interface between
medium 1 and 2.
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Fig. 11. Polar plot of the current density|Jz | induced over the surface of
a cylinder withξ1 = 2 for the parallel configuration when the source is an
electric line located at(ξ0 = 6, v0 = π/4) andζ = 1/2. Results correspond
to c = 1 (dashed line),c = π (solid line); c = 7 (dash-dot line). Observe the
jump atv = 0, π due toζ 6= 1 at the interface between medium 1 and 2.
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Fig. 12. Polar plot of the current density|Jv | induced over the surface of an
elliptic cylinder with ξ1 = 2 for the parallel configuration when the source
is a magnetic line located at(ξ0 = 6, v0 = π/4) and ζ = 1/2. Results
correspond toc = 1 (dashed line),c = π (solid line); c = 7 (dash-dot line).
Observe the continuity atv = 0, π at the interface between medium 1 and 2.
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Fig. 13. Polar plot of the current density|Jz | induced over the surface of a
cylinder with ξ1 = 2 for the perpendicular configuration when the source is
an electric line located at(ξ0 = 6, v0 = 0) and ζ = 2. Results correspond
to c = 1 (dashed line),c = π (solid line); c = 7 (dash-dot line). Observe
the symmetry and the jump atv = π/2 andv = 3π/2 due toζ 6= 1 at the
interface between medium 1 and 2.
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Fig. 14. Polar plot of the current density|Jv | induced over the surface of
an elliptic cylinder withξ1 = 2 for the perpendicular configuration when the
source is a magnetic line located at(ξ0 = 6, v0 = 0) and ζ = 2. Results
correspond toc = 1 (dashed line),c = π (solid line); c = 7 (dash-dot line).
Observe the symmetry and the continuity atv = π/2 andv = 3π/2 at the
interface between medium 1 and 2.
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Fig. 8 shows the magnitude of the current densityJz for
the parallel configuration due to an H-polarized plane wave
incident atϕ0 = π/6 whenζ = 1/3. Contrary to Fig. 7, there
is no jump in the value of|Jz| acrossv = 0, π, as can be easily
seen from (39) and using the propertySom(c, η)|v=0,π = 0.

Fig. 9 shows the magnitude of the current densityJz for
the perpendicular configuration due to an E-polarized plane
wave incident atϕ0 = π/6 when ζ = 1/3. There is a jump
in the value of|Jz| at v = π/2 and v = 3π/2. Referring to
(46) and (29) withh = 2, it is easy to verify (using properties
(15)-(16)) that the quantities under the summation symbols are
the same atv = π/2, 3π/2 and that the jump is related to the
different intrinsic impedances of the two media. Fig. 10 shows
the magnitude of the current densityJz for the perpendicular
configuration due to an H-polarized plane wave incident at
ϕ0 = π/6 whenζ = 1/3. Contrary to the previous case, there
is continuity in the value of|Jz| at v = π/2, 3π/2.

The following four figures deal with the current induced
over the surface of a PEC cylinder with sizeξ1 = 2 and due
to line sources. Fig. 11 shows the magnitude of the current
density Jz for the parallel configuration due to an isotropic
electric line located at(ξ0 = 6, v0 = π/4) when ζ = 1/2.
There is a jump in the value of|Jz| at v = 0 and v = π.
In fact, from (58), in a neighborhood ofv = 0 or v = π the
contribution from the odd Mathieu functions is zero, since
Som(c,±1) = 0, and the presence ofZh determines the
dependence upon the medium that causes the jump, when
ζ 6= 1. Fig. 12 shows the magnitude of the current density
Jz for the parallel configuration due to an isotropic magnetic
line located at(ξ0 = 6, v0 = π/4) when ζ = 1/2. Contrary
to the case of the electric line, this time there is no jump in
the value of|Jz| at v = 0 and v = π. In fact, from (62),
in a neighborhood ofv = 0 or v = π, the contribution from
the odd Mathieu functions is zero, sinceSom(c,±1) = 0 and
the dependence upon the medium disappears, regardless of the
value ofζ. Fig. 13 shows the magnitude of the current density
Jz for the perpendicular configuration due to an isotropic
electric line located at(ξ0 = 6, v0 = 0) when ζ = 2. The
curves represented are symmetric because of the symmetry in
the geometry as well as for the location of the line source.
Similar to Fig. 11, there are two jumps: atv = π/2 and at
v = 3π/2. In fact, using properties (15)-(16), the quantities
inside the summation symbols in equations (67) and (68) are
continuous aroundv = π/2, 3π/2. However, the coefficients
outside the summation symbols are not the same and, hence,
this causes a jump whenζ 6= 1. Fig. 14 shows the magnitude
of the current densityJz for the perpendicular configuration
due to an isotropic magnetic line located at(ξ0 = 6, v0 = 0)
whenζ = 2. The curves represented are symmetric because of
the symmetry in the geometry as well as for the location of the
line source. Contrary to Fig. 13 there no jumps: atv = π/2
and atv = 3π/2. In fact, using the properties (15)-(16), one
can easily see that the quantities inside the summation symbols
in (72) and (73) are the same aroundv = π/2, 3π/2 and that
the coefficients that multiply the summation symbols are the
same because of (11).

The computations for the line sources were carried out by

separately applying Shanks transform to the real and imaginary
parts of the terms of the series involved, similar to what is
described in [20].

The last numerical examples consider the current induced
over a strip by an H-polarized plane wave. Fig. 15 reproduces
the results given in Fig. 4.18 of [15] for incidence at an angle
ϕ0 = π/2 andζ=1.

Figs. 16 and 17 examine the current induced over the surface
of a strip that is illuminated by an H-polarized plane wave at
three different values of incidence:ϕ0 = π/6, π/3, π/2 and
for of d/λ = 0.45 and d/λ = 1.27. In all casesζ = 1.
These figures reproduce Fig. 4.16a-c and Fig. 4.16c-d of [15],
respectively. The qualitative agreement is good, but there exist
quantitative differences between Fig. 4.16-c of [15] and the
top part of Fig. 16, as well as Fig. 4-16-a of [15] and Fig. 17.
The results reported here have been verified and are correct.
Therefore, the results presented herein are a correction to Fig.
4-16 of [15] as well as to its source reported in [21].
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Fig. 15. Magnitude of the total magnetic field on a strip for an H-polarized
plane wave incident at an angleϕ0 = π/2, with ζ = 1. Results correspond
to c = 0.5 (dashed line),c = 1 (solid line); c = 2 (dash-dot line).

VII. C ONCLUSION

The new canonical boundary-value problems solved herein
enrich the catalog of exact solutions while providing a good
testbed for the validation of frequency-domain computer
codes. When the two isorefractive media are the same, i.e.
ζ = 1, the solutions in this work become the known formulas
for a metal elliptic cylinder immersed in a linear, homogeneous
and isotropic medium [15].
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Fig. 16. Scattered magnetic fieldH1z(x) due to an H-polarized plane wave
incident atϕ0 = π/6, dashed-line,ϕ0 = π/3, solid-line, andϕ0 = π/2
dash-dot line. The top part of this figure shows|H1z(x)|2 and the lower part
the shows the argument of|H1z(x)| whend/λ = 0.45.
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Fig. 17. Scattered magnetic fieldH1z(x) due to an H-polarized plane wave
incident atϕ0 = π/6, dashed-line,ϕ0 = π/3, solid-line, andϕ0 = π/2
dash-dot line. The top part of this figure shows|H1z(x)|2 and the lower part
the shows the argument of|H1z(x)| whend/λ = 1.27.


