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Symmetry properties of spheroidal functions with respect to
their parameter

Danilo Erricolo, Tadahiro Negishi

Abstract—Spheroidal wave functions depend on a parameter c. Their
behavior with respect to changes of sign of c is investigated and explicit
formulas are provided. Sample applications of the resulting symmetry
rules are provided for some electromagnetic scattering problems.

Index Terms—Artificial materials, Electromagnetic Radiation, Electro-
magnetic Scattering, Electromagnetic Analysis, Electromagnetic Fields,
Electromagnetic Theory, Spheroids, Isorefractive Material

I. INTRODUCTION

Spheroidal functions are used in problems that involve the pro-
late or the oblate spheroidal coordinate system. Sample application
problems include, for example, the scattering of a charged particle
[1] and light [2], semiconductor nanodevices [3], Schrödinger’s
equation [4], and various acoustics [5] and electromagnetic problems
whose boundaries correspond to coordinate surfaces in the prolate or
oblate spheroidal coordinate system [6], [7]. In the the solution of
Helmholtz equation in electromagnetics applications, spheroidal func-
tions depend upon a parameter c = βd/2, where β is the wavenumber
and d is the focal distance. In turn, the wavenumber β = ω

√
εµ

depends on the angular frequency ω, the dielectric permittivity ε,
and on the magnetic permeability µ. For most materials, ε > 0
and µ > 0 and these are called double positive or DPS. Artificial
materials or metamaterials with ε < 0 and µ < 0 are referred to
as double negative or DNG and have been theoretically proposed
by Veselago [8]. More recently, properties of DNG metamaterials
have been investigated by many researchers, e.g. in [9], [10] because
they allow applications such as perfect lenses, super-resolution and
invisibility. For a DPS material, β > 0 and c > 0, while for a
DNG material β < 0 and c < 0 to satisfy causality [11]. New exact
solutions of electromagnetic scattering problems were obtained when
the materials involved are isorefractive [12] to each other, i.e. in the
case of two materials when

ε1µ1 = ε2µ2. (1)

A special case occurs when the two materials are anti-isorefractive
to each other; assuming medium 1 is DPS and medium 2 is DNG
one obtains

β1 = ω
√
ε1µ1 > 0⇒ c = c1 =

d

2
β1 > 0 (2)

β2 = ω
√
ε2µ2 < 0⇒ −c = c2 =

d

2
β2 < 0 (3)

As a result, when anti-isorefractive metamaterials are involved [13]–
[18] it is necessary to know the behavior of spheroidal functions for
c < 0.

The symmetry properties of the spheroidal functions with respect to
the parameter c are not provided anywhere to the best of these authors
knowledge, including classical reference such as [19]–[24] or recent
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articles such as [25] or the NIST Digital Library [26].Spheroidal
functions may be computed, for example, using Fortran [27] or
Mathematica [28], which provide values that are in agreement with
these new symmetry properties.

II. SPHEROIDAL FUNCTIONS

According to Flammer [22], the prolate spheroidal coordinates are
related to the cartesian coordinates by

x =
d

2

√
ξ2 − 1

√
1− η2 cosϕ (4)

y =
d

2

√
ξ2 − 1

√
1− η2 sinϕ (5)

z =
d

2
ξη (6)

where ξ ≥ 1, −1 ≤ η ≤ 1, and 0 ≤ ϕ ≤ 2π. Surfaces with ξ =
constant are confocal prolate spheroids, surfaces with η = constant
are confocal hyperboloids with two sheets, and surfaces with ϕ =
constant are planes originating in the z axis. On the other hand,
the oblate spheroidal coordinate system is related to the cartesian
coordinate system by

x =
d

2

√
ξ2 + 1

√
1− η2 cosϕ (7)

y =
d

2

√
ξ2 + 1

√
1− η2 sinϕ (8)

z =
d

2
ξη (9)

where ξ ≥ 0, −1 ≤ η ≤ 1. Surfaces with ξ = constant are
confocal oblate spheroids, surfaces with η = constant are confocal
hyperboloids with one sheet, and surfaces with ϕ = constant are
planes originating in the z axis. When the scalar wave equation

∇2ψ + β2ψ = 0, (10)

is solved in the prolate spheroidal coordinate system with the method
of separation of variables, the solution is written in the form

ψmn = Smn(c, η)Rmn(c, ξ)
cos

sin
mϕ (11)

where Smn(c, η) are prolate spheroidal angular functions and
Rmn(c, ξ) are prolate spheroidal radial functions. These functions
satisfy

d

dη

[
(1− η2) d

dη
Smn(c, η)

]
+

[
λmn − c2η2 −

m2

1− η2

]
Smn(c, η) = 0 (12)

d

dξ

[
(ξ2 − 1)

d

dξ
Rmn(c, ξ)

]
−
[
λmn − c2ξ2 +

m2

ξ2 − 1

]
Rmn(c, ξ) = 0 (13)

where m = 0, 1, 2, ..., n ≥ m and λmn are separation constants of
the original scalar Helmholtz equation (10). In addition, λmn is the
eigenvalue of the differential equations (12) and (13) . One should
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notice that both angular and radial functions satisfy the same type of
differential equation.

The solution of the differential equation (10) in the oblate coordi-
nate system may be obtained by the following transformation

c→ ∓jc, ξ → ±jξ, (14)

so that it is sufficient to discuss in detail the prolate case and apply
the previous transformation to address the oblate case.

Most physical problems require angular spheroidal functions that
are finite for all possible values −1 ≤ η ≤ 1, thus limiting solutions
of the differential equation (12) to the angular functions of the first
kind S

(1)
mn(c, η) or simply Smn(c, η), which may be written as a

series expansion

Smn(c, η) =

∞∑
r=0,1

′
dmnr (c)Pmm+r(η), (15)

where Pmm+r(η) are associated Legendre functions of the first kind
and dmnr (c) are expansion coefficients. In this expression and later
on, the prime over the summation symbol means that r must take
even values when n − m is even and odd values when n − m is
odd, respectively. The normalization coefficient of the prolate angular
function is

Nmn(c) = 2

∞∑′

r=0,1

(r + 2m)!(dmnr (c))2

(2r + 2m+ 1)r!
. (16)

Radial spheroidal functions are defined as

R(`)
mn(c, ξ) =

( ∞∑′

r=0,1

dmnr (c)
(2m+ r)!

r!

)−1(
ξ2 − 1

ξ2

)m/2
×

∞∑′

r=0,1

jr+m−ndmnr (c)
(2m+ r)!

r!
b
(`)
m+r(cξ), ` = 1, ..., 4. (17)

where

b(`)n (z) =

√
π

2z
B

(`)

n+1/2(z) (18)

and B
(`)
n (z) are Bessel functions of the first and second kind,

respectively, for ` = 1, 2, and they are Hankel functions of the first
and second kind, respectively, for ` = 3, 4.

The normalization coefficient for the radial functions is

ρmn(c) =
jm−ncm∑′∞

r=0,1
dmnr (c) (2m+r)!

r!

. (19)

When c is real, the substitutions c → −jc and ξ → jξ cause
changes of sign so that the differential equations for the prolate
functions are transformed into the differential equations for the oblate
functions. Hence, these substitutions do not cause the spheroidal
functions to produce any complex number and the arguments −jc
and jξ should be understood as labels to identify the oblate functions
in terms of the prolate functions. In the oblate case, the eigenvalues
λmn(−jc) are all real because they are the solution of an eigenvalue
problem with all real values. Consequently, the expansion coefficients
drmn(−jc) are all real, and the angular functions Smn(−jc, η) and
the normalization coefficient Nmn(−jc) are all real valued.

In the prolate case, the only complex quantity in addition to
the radial functions R(3)

mn(c, ξ) and R
(4)
mn(c, ξ) is the normalization

coefficient for the radial functions, due to the term jm−n appearing
in (19); in particular,

ρ∗mn(c) = (−1)m−nρmn(c) (20)

In the oblate case, the radial functions R
(3)
mn(−jc, jξ) and

R
(4)
mn(−jc, jξ) are complex valued, as well as the radial normal-

ization coefficient ρmn(−jc), for which

ρ∗mn(−jc) = (−1)nρmn(−jc). (21)

The symmetry properties of spheroidal functions with respect to
the parameter c are given in Table I and derived next.

III. DERIVATIONS

1) Prolate functions: The symmetry properties of the prolate
spheroidal functions require a careful review of the process that leads
to their computation, since closed form expressions are not available.
The starting point of this review are the differential equations (12),
(13) that are of the same type and are satisfied by the angular and
radial functions, respectively. The computation of the solution of
the prolate spheroidal equation starts from the determination of its
eigenvalue λmn. In particular, it must be noticed that the differential
equation depends on the parameter c only through c2 so that the
eigenvalue λmn must satisfy

λmn = λmn(c
2)⇐⇒ λmn(−c) = λmn(c). (22)

Next the expansion coefficients dmnr (c) of the series that define the
prolate functions are evaluated. The angular functions are defined by
the series expansion given in eq. (15) and when this series expansion
is substituted into the differential equation (12), one obtains the
recursion formula

(2m+ r + 2)(2m+ r + 1)c2

(2m+ 2r + 3)(2m+ 2r + 5)
dmnr+2(c)+[

(m+ r)(m+ r + 1)− λmn(c)+

2(m+ r)(m+ r + 1)− 2m2 − 1

(2m+ 2r − 1)(2m+ 2r + 3)
c2
]
dmnr (c)+

r(r − 1)c2

(2m+ 2r − 3)(2m+ 2r − 1)
dmnr−2(c) = 0 (23)

that allows only to compute the ratios dmnr (c)/dmnr−2(c). Unique
values for the expansion coefficients are obtained by imposing a
normalization condition. Using Flammer’s convention, when n−m
is even,

Smn(c, 0) = Pmn (0) =
(−1)

n−m
2 (n+m)!

2n
(
n−m

2

)
!
(
n+m

2

)
!

(24)

and

S′mn(c, 0) = Pm
′

n (0) =
(−1)

n−m−1
2 (n+m+ 1)!

2n
(
n−m−1

2

)
!
(
n+m+1

2

)
!
, (25)

when n−m is odd. Since the previous normalization condition does
not depend on c and the recurrence relation (23) depends on c directly
through c2 and indirectly through λmn, which has even symmetry,
one concludes that

dmnr (−c) = dmnr (c). (26)

As a result, the angular functions (15) have even symmetry

Smn(−c, η) = Smn(c, η) (27)

and so do the corresponding normalization coefficients

Nmn(−c) = Nmn(c). (28)

The radial prolate spheroidal functions are defined using the same
expansion coefficients as the angular prolate spheroidal functions.
The radial functions of the first kind are defined according to (17),
with ` = 1, and in order to investigate their behavior with respect
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TABLE I: Symmetry properties for prolate spheroidal functions

Prolate Oblate

Eigenvalues λmn(−c) = λmn(c) λmn(jc) = λmn(−jc)
Expansion coefficients dmnr (−c) = dmnr (c) dmnr (jc) = dmnr (−jc)

Angular functions
Smn(−c, η) = Smn(c, η) Smn(jc, η) = Smn(−jc, η)

normalization coefficient Nmn(−c) = Nmn(c) Nmn(jc) = Nmn(−jc)

Radial functions
R

(1)
mn(−c, ξ) = (−1)nR

(1)
mn(c, ξ) R

(1)
mn(jc, jξ) = (−1)nR

(1)
mn(−jc, jξ)

R
(2)
mn(−c, ξ) = −(−1)nR

(2)
mn(c, ξ) R

(2)
mn(jc, jξ) = −(−1)nR

(2)
mn(−jc, jξ)

R
(3)
mn(−c, ξ) = (−1)nR

(4)
mn(c, ξ) R

(3)
mn(jc, jξ) = (−1)nR

(4)
mn(−jc, jξ)

R
(4)
mn(−c, ξ) = (−1)nR

(3)
mn(c, ξ) R

(4)
mn(jc, jξ) = (−1)nR

(3)
mn(−jc, jξ)

normalization coefficient ρmn(−c) = (−1)mρmn(c) ρmn(jc) = (−1)mρmn(−jc)

to changes of sign in c, we observe that the answer depends on
the behavior of the spherical Bessel function jm+r(cξ). Using the
property

jn(−z) = (−1)njn(z) (29)

we obtain

R(1)
mn(−c, ξ) =

( ∞∑′

r=0,1

dmnr (c)
(2m+ r)!

r!

)−1(
ξ2 − 1

ξ2

)m/2
×

∞∑′

r=0,1

jr+m−ndmnr (c)
(2m+ r)!

r!
jm+r(−cξ) (30)

resulting in the following cases. When n−m is even,

R(1)
mn(−c, ξ) =

(
ξ2−1
ξ2

)m/2
∑∞
`=0 d

mn
2` (c) (2m+2`)!

(2`)!

×

∞∑
`=0

j2`+m−ndmn2` (c)
(2m+ 2`)!

(2`)!
(−1)m+2`jm+2`(cξ)

=

{
R

(1)
mn(c, ξ) m even ⇒ n even

−R(1)
mn(c, ξ) m odd ⇒ n odd

(31)

and when n−m is odd,

R(1)
mn(−c, ξ) =

(
ξ2−1
ξ2

)m/2
∑∞
`=0 d

mn
2`+1(c)

(2m+2`+1)!
(2`+1)!

∞∑
`=0

j2`+m−n+1×

dmn2`+1(c)
(2m+ 2`+ 1)!

(2`+ 1)!
(−1)m+2`+1jm+2`+1(cξ)

=

{
−R(1)

mn(c, ξ) m even ⇒ n odd
R

(1)
mn(c, ξ) m odd ⇒ n even

(32)

Hence, by combining the results of (31) and (32) we obtain

R(1)
mn(−c, ξ) = (−1)nR(1)

m (c, ξ). (33)

For the radial functions of the second kind, we replace the spherical
Bessel functions of the first kind jm+r(cξ) with the spherical Bessel
functions of the second kind ym+r(cξ) in (17). Then using the
property

yn(−z) = (−1)n+1yn(z) (34)

we have

R(2)
mn(−c, ξ) =

( ∞∑′

r=0,1

dmnr (c)
(2m+ r)!

r!

)−1(
ξ2 − 1

ξ2

)m/2
×

∞∑′

r=0,1

jr+m−ndmnr (c)
(2m+ r)!

r!
ym+r(−cξ) (35)

resulting in the following cases. When n−m is even,

R(2)
mn(−c, ξ) =

(
ξ2−1
ξ2

)m/2
∑∞
`=0 d

mn
2` (c) (2m+2`)!

(2`)!

×

∞∑
`=0

j2`+m−ndmn2` (c)
(2m+ 2`)!

(2`)!
(−1)m+2`+1ym+2`(cξ)

=

{
−R(2)

mn(c, ξ) m even ⇒ n even
R

(2)
mn(c, ξ) m odd ⇒ n odd

(36)

and when n−m is odd,

R(2)
mn(−c, ξ) =

(
ξ2−1
ξ2

)m/2
∑∞
`=0 d

mn
2`+1(c)

(2m+2`+1)!
(2`+1)!

∞∑
`=0

j2`+m−n+1×

dmn2`+1(c)
(2m+ 2`+ 1)!

(2`+ 1)!
(−1)m+2`+2ym+2`+1(cξ)

=

{
R

(1)
mn(c, ξ) m even ⇒ n odd

−R(1)
mn(c, ξ) m odd ⇒ n even

(37)

Hence, by combining (36) and (37) we obtain

R(2)
mn(−c, ξ) = −(−1)nR(2)

m (c, ξ) (38)

For the radial functions of the third and fourth kind, we replace
the spherical Bessel functions of the first kind jm+r(cξ) with the
spherical Hankel functions of the first and second kind h

(1)
m+r(cξ)

and h(2)
m+r(cξ), respectively, in (17). Then recalling that

R(3),(4)
mn (c, ξ) = R(1)

mn(c, ξ)± jR(2)
mn(c, ξ) (39)

and using the previous results (33), (38), we obtain

R(3)
mn(−c, ξ) = (−1)nR(1)

mn(c, ξ)− j(−1)nR(2)
mn(c, ξ)

= (−1)nR(4)
mn(c, ξ) (40)

R(4)
mn(−c, ξ) = (−1)nR(1)

mn(c, ξ) + j(−1)nR(2)
mn(c, ξ)

= (−1)nR(3)
mn(c, ξ) (41)

where it should be noticed that R(3)
mn is expressed in terms of

R
(4)
mn(c, ξ) in (40) and, similarly, R(4)

mn is expressed in terms of R(3)
mn

in (41). Finally, the normalization coefficient of the radial functions
(19) behaves according to

ρmn(−c) = (−1)mρmn(c) (42)
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2) Oblate functions : The derivations carried out for the prolate
functions are valid for the oblate functions provided that the substi-
tutions given in equation (14) are made.

IV. SAMPLE APPLICATION

The novelty of this article is to provide rules for the evaluation
of spheroidal functions when c < 0, which occurs when metama-
terials are involved and articles describing some applications have
already been published, e.g. [13]–[18]. However, these articles do
not explain how some of the analytical expressions are obtained when
spheroidal functions are involved and c < 0. Hence, we provide as
a sample application of the symmetry properties a justification for
the analytical formulas for the field due to a dipole source used at
the beginning of [13]–[18]. These articles provide exact analytical
solutions, which we define as series expansions requiring the explicit
closed form analytical (not numerical) determination of the modal
expansion coefficients. In the case of spheroidal functions, exact
solutions require axial symmetry of the geometry, materials, and
primary sources involved in the boundary value problem. Hence,
exact solutions exist only when the source is a dipole, provided that
the dipole is located along the axis of symmetry and axially oriented,
as shown in Fig. 1 [6].

In the following examples, the dipole is always located at (ξ0, η =
1) and the material is either DPS or DNG depending upon the case
considered. We consider a time-harmonic electromagnetic analysis

µ,ε z

x
y

ξ = ξ0

F1

F2

d

µ,ε z

x
y

ξ = ξ0
focal circle

d
Fig. 1: A dipole source located in a prolate (left) and an oblate (right)
coordinate system.

where all quantities vary in sinusoidal fashion and are expressed in
terms of their phasors, using the IEEE time convention exp(jωt).
Expressions written according to the time convention exp(−jωt)
used in physics are obtained by taking the complex conjugate of
the expressions provided in this article, which require the use of
eqs. (20)-(21)

1) Prolate spheroidal coordinates:
a) DPS material: The material is characterized by the parameter

c, the wavenumber β = 2c/d and the electric dipole source has a
Hertz vector potential Π = ẑ exp(−jβR)/(βR) resulting in the
magnetic field

Hϕ(ξ, η) =
2β2Y√
ξ20 − 1

×

∞∑
n=1

(−j)n−1

ρ1,n(c)N1,n(c)
R

(1)
1,n(c, ξ<)R

(4)
1,n(c, ξ>)S1,n(c, η), (43)

where ξ< and ξ> represent the smaller and the greater, respectively,
between ξ0 and ξ.

b) DNG material: The material is characterized by the param-
eter −c, the wavenumber β = −2c/d and the electric dipole source
has a Hertz vector potential Π = −ẑ exp(jβR)/(βR) and applying
these substitutions in (43) yields

Hϕ(ξ, η) = −
2β2Y√
ξ20 − 1

×

∞∑
n=1

(−j)n−1

ρ1,n(c)N1,n(c)
R

(1)
1,n(c, ξ<)R

(3)
1,n(c, ξ>)S1,n(c, η) (44)

2) Oblate spheroidal coordinates:
a) DPS material: The material is characterized by the parameter

c, the wavenumber β = 2c/d and the electric dipole source has a
Hertz vector potential Π = ẑ exp(−jβR)/(βR) resulting in the
magnetic field

Hϕ(ξ, η) =
2β2Y√
ξ20 + 1

∞∑
n=1

(−j)n

ρ1,n(−jc)N1,n(−jc)
×

R
(1)
1,n(−jc, jξ<)R

(4)
1,n(−jc, jξ>)S1,n(−jc, η). (45)

b) DNG material: The material is characterized by the param-
eter −c, the wavenumber β = −2c/d and the electric dipole source
has a Hertz vector potential Π = −ẑ exp(jβR)/(βR) and applying
these substitutions in (45) yields

Hϕ(ξ, η) = −
2β2Y√
ξ20 + 1

∞∑
n=1

(−j)n

ρ1,n(−jc)N1,n(−jc)
×

R
(1)
1,n(−jc, jξ<)R

(3)
1,n(−jc, jξ>)S1,n(−jc, η). (46)

V. CONCLUSIONS

New symmetry properties of the spheroidal functions that are
important for applications involving metamaterials were derived and
sample applications were provided.
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