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Abstract—The radiation from an isotropic line source located
at one of the focal lines of an elliptic cylindrical lens filled with
a homogeneous and lossless DNG metamaterial is determined
exactly, in the frequency domain. This exact solution is compared
to a previously derived optical solution.

Index Terms—Electromagnetic radiation, lenses, Mathieu func-
tions, metamaterial.

I. INTRODUCTION

DOUBLE-negative (DNG) metamaterials whose permittiv-
ity and permeability have real negative values at some

frequencies have attracted considerable attention in recent
years. In particular, the imaging of an isotropic line source
located at one of the focal lines of an elliptic cylindrical lens
made of DNG metamaterial has been studied in the optical
limit [1]. It has been shown that the line source is imaged onto
a non-isotropic virtual line source located at the other focal line
of the lens. In this work, an exact electromagnetic solution of
the same problem is obtained as an infinite series of elliptic-
cylinder wave functions, each term of the series consisting
of products of radial and angular Mathieu functions. The
modal expansion coefficients are determined analytically by
imposing the boundary conditions. The exact radiated far field
is obtained, and is evaluated numerically by computing the
series of eigenfunctions. The numerical results are compared
with the optical limit obtained in [1]. Some preliminary results
were previously presented at a conference [2].

The double-positive (DPS) material filling the infinite space
outside the lens is characterized by a real positive electric
permittivity ϵ and a real positive magnetic permeability µ,
while the corresponding parameters inside the DNG lens are a
real negative permittivity −ϵ and a real negative permeability
−µ. As a consequence of causality, the refractive index outside
the lens is real positive, and is the opposite of the real negative
refractive index inside the lens, while the intrinsic impedance
has the same real positive value Z =

√
(µ/ϵ) everywhere [3].

The time-dependence factor exp(+jωt) is omitted through-
out. The wave number is k = ω

√
(ϵµ) in the DPS medium

and −k in the DNG material.

II. GEOMETRY OF THE PROBLEM

A cross-sectional view of the structure in a plane z =
constant is shown in Fig. 1.
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Fig. 1. Cross section of the geometry of the problem.

The rectangular coordinates (x, y, z) are related to the elliptic
cylinder coordinates

x =
d

2
coshu cos v, (1)

y =
d

2
sinhu sin v, (2)

z = z (3)

where d is the interfocal distance, 0 ≤ u < ∞, 0 ≤ v ≤ 2π,
and −∞ < z < ∞. Curves u = constant are ellipses
and curves v = constant are hyperbolas. We define the
dimensionless real positive parameter

c =
kd

2
=

πd

λ
, (4)

where λ is the wavelength.

III. LINE SOURCE INCIDENCE

A. E-polarization

Consider an electric line source parallel to the z-axis and
located at (x0, y0) ≡ (u0, v0) inside the DNG lens, whose
primary electric field is

Ei = ẑEi
z = ẑH

(2)
0 (−kR) (5)

where

R =
√

(x− x0)2 + (y − y0)2 (6)

is the distance between the line source and the observation
point (x, y) ≡ (u, v) and H

(2)
0 is the Hankel function of the

second kind. The incident field may be expanded in a series
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of elliptic-cylinder wave functions [4]-[5]:

Ei
1z = H

(2)
0 (−kR) = 4

∞∑
m=0[

1

N
(e)
m

Re(1)m (−c, u<)Re
(4)
m (−c, u>)Sem(−c, v0)Sem(−c, v)+

1

N
(o)
m

Ro(1)m (−c, u<)Ro
(4)
m (−c, u>)Som(−c, v0)Som(−c, v)

]
(7)

where u< (u>) is the smaller (larger) between u and u0.
When the electric line source is located inside the lens at the
focal line (x0 = d/2, y0 = 0) the incident electric field only
contains even functions and it becomes

Ei
1z = 4

∞∑
m=0

1

N
(e)
m

Re(1)m (−c, 0)Re(4)m (−c, u)Sem(c, v) (8)

because of properties of Mathieu functions [5] and the fact
that the angular Mathieu functions Sem and Som are even
functions of the parameter c has been taken into account. It
should be noted that the Mathieu radial functions are not even
functions of c [6]. The scattered field inside the lens is

Es
1z = 4

∞∑
m=0

am

N
(e)
m

Re(1)m (−c, u)Sem(c, v). (9)

Outside the lens, the scattered field is

Es
2z = 4

∞∑
m=0

bm

N
(e)
m

Re(4)m (c, u)Sem(c, v), (u ≥ u1) (10)

and it satisfies the radiation condition because it contains the
radial functions of the fourth kind, Re(4)m . The modal expan-
sion coefficients a

(e)
m and b

(e)
m , are obtained by imposing the

boundary conditions on the continuity of the total tangential
components of E and H across the interface at u = u1,
yielding

am =
−Re(1)m (−c, 0)

∆

[
Re(4)

′

m (c, u1)Re
(4)
m (−c, u1)+

Re(4)m (c, u1)Re
(4)′

m (−c, u1)
]
, (11)

bm =j
Re(1)m (−c, 0)

∆
, (12)

where

∆ =Re(1)m (−c, u1)Re
(4)′

m (c, u1) + Re(1)
′

m (−c, u1)Re
(4)
m (c, u1)

(13)

and the prime means the derivative with respect to the argu-
ment u.

B. H-polarization

The analysis is similar to that for E-polarization. For a
magnetic line source located at F1 in Fig.1, the incident
magnetic field is

Hi = ẑHi
z, (14)

with

Hi
1z =

4
∞∑

m=0

1

N
(e)
m

Re(1)m (−c, 0)Re(4)m (−c, u)Sem(c, v). (15)

The scattered magnetic field inside the lens is

Hs
1z = 4

∞∑
m=0

cm

N
(e)
m

Re(1)m (−c, u)Sem(c, v), (16)

and the total magnetic fields outside the lens is

Hs
2z = 4

∞∑
m=0

dm

N
(e)
m

Re(4)m (c, u)Sem(c, v). (17)

The modal coefficients are obtained from the application of
the boundary conditions and, because of duality, one finds
cm = am and dm = bm.

C. Far Field Expressions

For E polarization, the scattered field is given by equation
(10). When the Mathieu radial function Re(4)m (c, u) is replaced
by its asymptotic expression jm exp(−jkρ+ jπ/4)

√
kρ, one

finds

Es
2z ≈ 4

exp(−jkρ+ jπ/4)√
kρ

∞∑
m=0

bm
jm

N
(e)
m

Sem(c, v). (18)

In order to obtain results that are not dependent upon the
distance ρ from the origin, we divide the previous expression
by exp(−jkρ + π/4)/

√
kρ so that we obtain the far field

radiation pattern

P (v) = 4

∞∑
m=0

bm
jm

N
(e)
m

Sem(c, v). (19)

The same far field pattern holds for H polarization.

IV. NUMERICAL RESULTS

We compare the far-field radiation pattern of eq. (19) with
the geometrical optics solution presented in [1]. For this
purpose, we consider three ellipses with u1 = 0.5, u1 = 0.6,
and u1 = 0.8. Each ellipse is represented normalized to its
major axis 2a in Fig. 2, which emphasizes also the variation
in eccentricity

χ =
d

2a
=

1

coshu1
(20)

by showing a comparison with a circle. The ellipses have ma-
jor axes with different lengths so that we compare numerical
results in terms of the ratio between the wavelength and the
major axis, i.e.

r =
2a

λ
=

d coshu1

λ
. (21)

Hence, the eccentricity controls the different behavior of the
solutions corresponding to the same value of the ratio r. The
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Fig. 2. Normalized cross sections of the ellipses considered in the numerical
examples and comparison with a circle.

solution presented in [1] is formulated in terms of the power
emitted per unit angle, computed as

p(v) =
1− χ2

1 + χ2 − 2χ cos v
, (22)

which corresponds to r = ∞. Therefore the previous formula
is compared with the magnitude square of the far-field radia-
tion pattern (19), i.e.

|P (v)|2 = 16

∣∣∣∣∣
∞∑

m=0

bm
jm

N
(e)
m

Sem(c, v)

∣∣∣∣∣
2

. (23)

Fig. 3 shows the normalized polar plot of |P (v)|2 and the
geometrical optics solution p(v) for an ellipse with u1 = 0.5
and eccentricity χ = 0.8868. A second set of results is shown
in Fig. 4 for an ellipse with u1 = 0.6 and eccentricity χ =
0.844. A third set of results is shown in Fig. 5 for an ellipse
with u1 = 0.8 and eccentricity χ = 0.748. In all cases, when
the ellipse is electrically small, r = 0.1, the far-field result
is significantly different from the geometrical optics solution
and it is closer to an omnidirectional pattern. However, when
the ellipse becomes electrically larger, a better agreement with
the geometrical optics solution (corresponding to (r = ∞) is
observed.

Finally, all the numerical results correspond to the sum-
mation of up to the first 40 terms of the series (23) and
the evaluation of Mathieu function was accomplished using
an extension of the Fortran code described in [7] combined
with the acceleration technique [8]. The series (23) converges
slowly and one needs to stop the summation before numerical
instabilities occur.
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Fig. 3. Comparison between the far-field pattern |P (v)|2 and the geometrical
optics solution p(v) of eq. (22) computed for an ellipse with u1 = 0.5. The
values are normalized to their maxima and plotted on a linear scale. The
results represent: far-field pattern for r = 0.1 or c = 0.235 (dash-dot line);
far-field pattern for r = 1 or c = 2.348 (dashed line); far-field pattern for
r = 6.1 or c = 16.995 (thin solid line); and, geometrical optics solution
(thick solid line, r = ∞).
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Fig. 4. Comparison between the far-field pattern |P (v)|2 and the geometrical
optics solution p(v) of eq. (22) computed for an ellipse with u1 = 0.6. The
values are normalized to their maxima and plotted on a linear scale. The
results represent: far-field pattern for r = 0.1 or c = 0.235 (dash-dot line);
far-field pattern for r = 1 or c = 2.348 (dashed line); far-field pattern for
r = 5.1 or c = 13.5155 (thin solid line); and, geometrical optics solution
(thick solid line, r = ∞).
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Fig. 5. Comparison between the far-field pattern |P (v)|2 given by eq. (23)
and the geometrical optics solution p(v) of eq. (22) computed for an ellipse
with u1 = 0.8. The values are normalized to their maxima and plotted on a
linear scale. The results represent: far-field pattern for r = 0.1 or c = 0.235
(dash-dot line); far-field pattern for r = 1 or c = 2.348 (dashed line); far-
field pattern for r = 3 or c = 7.047 (thin solid line); and, geometrical optics
solution (thick solid line, r = ∞).

V. CONCLUSIONS

The exact electromagnetic solution for the two-dimensional
problem of a DNG lens fed by a line source located at one
focal point was compared with the geometrical optics solution
of the same problem. The numerical comparison show that
the agreement with the geometrical optics solution improves
for electrically large ellipses and, for the same value of the
ratio r, the agreement is better when the ellipse has a smaller
eccentricity.

This solution extends also the list of exact canonical solu-
tions of boundary value electromagnetic scattering problems
involving metamaterials.
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