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Abstract

A new method to address radar target detection problems in multipath environments is considered. The novelty of the proposed

method is that it exploits prior knowledge on the environment and combines it with ray-tracing electromagnetic modeling to

determine some information about the possible multipath structure. This information is used to separate the environment into

different regions based upon the behavior of the multipath components. Specifically, as a case study, we consider a radar and a

target in the presence of a perfectly reflecting planar surface. For this environment, three regions are determined based upon the

amount of overlap among the multipath components. For each region, receivers are designed exploiting the multipath structure.

Thus, a different viewpoint to analyze radar detection problems is suggested. The two main results are the improvement in the

target probability of detection, by properly accounting for the multipath, and a priori determination of the best performing detector

based upon the location of the target and the available signal-to-noise ratio.

I. INTRODUCTION

This work is focused on improving the probability of detection of a radar target by taking advantage of prior knowledge

of the radar-target environment and devising appropriate detectors based upon the region where the target is located. The

improvement is computed with respect to a conventional detection problem based on a model of the return signal that accounts

only for the direct signal from the target.

Radar detection problems are still challenging in all environments where multipath effects are present, notwithstanding the

fact that they have been widely studied through advanced electromagnetic (EM) modeling [1], [2]. One approach to deal with

multipath problems is to take the advantage of diversity [3]. In addition, with adaptive radars it has been well understood
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that prior knowledge of the environment and its effective parameters may be used to enhance the detection, estimation and

tracking performance of radar systems, e.g. [4]–[9], and references therein. Recently, with the development of advanced and

computationally efficient EM tools, EM propagation models and simulations are being incorporated into radar and sensing

problems as well, e.g. [10], [11]. Along these lines, this work investigates the problem of target detection in a multipath

environment. Our work considers diverse receiving strategies by exploiting prior knowledge of the radar-target environment

through advanced EM modeling of the corresponding multipath structure.

This article is organized as in the following. First, we consider a basic case study to show how to conduct an electromagnetic

analysis that takes the advantage of prior knowledge of the environment where the radar operates. As a result, we obtain the

propagation time of each multipath component. Then, the propagation time information is used to partition the environment

into regions where diverse receiving strategies are applied. The criterion to determine the regions is the amount of overlap,

in the time-domain, of the multipath components of the received signal. The amount of overlap depends on the environment,

the location of radar and target, and the duration of the transmitted pulse. Accordingly, the general received signal model is

specialized within each region to account for the presence of significant overlap or its absence. Then, within each region, a

different receiver is devised thus justifying the statement of diverse receiving strategies. Neyman-Pearson tests (NP) as optimum

detectors, and Generalized Likelihood Ratio Tests (GLRT) as sub-optimum detectors are devised for each region.

There are two main contributions in this article. First, it is possible to improve the probability of detection when the multipath

components are distinguishable, compared to a conventional detector that does not take multipath information into account. A

qualitative analysis is provided for the improvement in the target probability of detection via multipath exploitation when the

multipath components are distinguishable and partially overlap in the time-domain. Second, it is possible to design detectors

that have the best performance based upon prior knowledge of the region where the target is located.

Preliminary results were presented in [18]–[20].

II. MULTIPATH MODEL AND TIME-DELAY ANALYSIS

We examine the case study shown in Fig. 1 because it contains only a few parameters and it has the advantage of allowing

for an analytic discussion of this detection problem. This is a 2D geometry, where the origin of the cartesian coordinate system

is the location of the radar and the target is located in a vertical plane at (xt, zt).

A high frequency ray-tracing electromagnetic analysis of this geometry provides the following expression for the received

signal of interest with a two-ray model

rs(t) = α1(t)s(t− τ1) + α2(t)s(t− τ2), (1)

where rs(t) and s(t) are the baseband equivalents of the received signal of interest and transmitted signal respectively, α1(t)

and α2(t) are complex parameters accounting for propagation and scattering effects, and τ1 and τ2 are time delays along the

corresponding propagation paths. Although there would be three propagation paths and three time delays for the geometry

depicted in Fig. 1, a two-ray model is sufficient to show the potential improvement of multipath exploitation. We assume a

planar surface that provides only a specular reflection. For applications related to modeling the reflection from rough surfaces,
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one would have to add a contribution from diffuse reflection mechanisms. These mechanisms have been investigated, for

example, in [21], [22].

The electromagnetic ray-tracing analysis of the environment is always capable to predict the time-delays associated with

each multipath component as shown, for example, in [23]–[25]. The time-delays and associated time-delay differences for

all possible locations of the target can be computed with the geometrical parameters, i.e. xt, zt, and hs, as shown in [18].

Assuming a pulse duration T , we define the regions where multipath components overlap, when |τ2− τ1| ≤ T , and the regions

where the multipath components are distinguishable, when |τ2−τ1| > T . An example of partitioning the multipath environment

for T = 10 ns can be found in [18]. This prompts us to diversify the detection strategy within each region.

III. FORMULATION OF THE DETECTION PROBLEM

The signal representations and corresponding hypothesis testing problems for each region are derived. Exploiting the useful

received signal model given in (1), we assume

s(t) =


1√
T

0 ≤ t ≤ T

0 elsewhere
, (2)

α1(t) =

 unknown τ1 ≤ t ≤ T + τ1

0 elsewhere
, (3)

α2(t) =

 unknown τ2 ≤ t ≤ T + τ2

0 elsewhere
. (4)

The pulse duration T is assumed to be small compared to the coherence time of the target, so that α1(t) and α2(t) can be

approximated with two unknown complex deterministic constants α1 and α2, respectively.

Region I is defined by |τ2− τ1| � T and the received signal (under the hypothesis where target is present) is represented as

r(t) = α1s(t− τ1) + α2s(t− τ2) + w(t)

' αs(t− τ1) + w(t)

(5)

without any significant loss of the received energy. α is an unknown complex deterministic parameter, r(t) and w(t) are the

baseband equivalents of the received signal and noise, respectively. Accordingly, the detection problem can be formulated as

the following hypothesis test

H0: r(t) = w(t)

H1: r(t) = αs(t− τ1) + w(t)
t ∈ [τ1, T + τ1] (6)

where [τ1, T + τ1] is the observation interval.

Region II is defined by |τ2 − τ1| ≥ T ; hence multipath components are resolvable in time-domain and exploited in the
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receiver. Accordingly, the detection problem can be formulated as

H0 : r(t) = w(t)

H1 : r(t) = α1s(t− τ1) + α2s(t− τ2) + w(t)
(7)

where t ∈ [τ1, T + τ2], which is the observation interval. Since |τ2− τ1| ≥ T , s(t− τ1) and s(t− τ2) are orthogonal signals,

we have
∫∞
−∞ s(t− τ1) s∗(t− τ2) dt = 0, where (.)∗ is the complex conjugate operator.

The likelihood ratio test in both regions can be written as

Λ[r(t)|Θ] =
pr(t)|Θ,H1

(r(t)|Θ, H1)

pr(t)|H0
(r(t)|H0)

, (8)

where pr(t)|Θ,H1
(r(t)|Θ, H1) and pr(t)|H0

(r(t)|H0) are the likelihood functions, Θ is the vector of unknown parameters, i.e.

Θ =

 [α] in Region I

[α1, α2]
T in Region II.

(9)

In the Transition Region, the time-delay difference is shorter than the transmitted pulse duration T but not as short as in

Region I, i.e |τ2−τ1| < T . Thus multipath return signals along different paths are neither highly clumped nor resolvable in time-

domain. The received signal in the Transition Region under the hypotheses H0 and H1 are the same as (7) in Region II. However,

s(t− τ1) and s(t− τ2) are no longer orthogonal signals since |τ2 − τ1| < T and we have
∫∞
−∞ s(t− τ1) s∗(t− τ2) dt = ρ,

which is a real number in this particular scenario.

IV. OPTIMUM AND SUB-OPTIMUM DETECTORS

The optimum and sub-optimum detectors are sought assuming that w(t) is a zero-mean complex circular white Gaussian

noise (CWGN), with known power spectral density (PSD) σ2. A conventional approach, based on projecting the received

waveform along the first M functions of an orthonormal basis and letting M diverge, is adopted. Precisely, having chosen

the basis ß = {φi(t)}∞i=1, the received signal is represented by components Ri = 〈r(t), φi(t)〉, where 〈·, ·〉 denotes the scalar

product in the space of finite energy signals. Then the likelihood ratio (8) can be written as

Λ[r(t)|Θ] = lim
M→∞

ΛM [rM (t)|Θ]

= lim
M→∞

pRM|Θ,H1
(RM|Θ, H1)

pRM|H0
(RM|H0)

,
(10)

where RM is the vector containing the first M coefficients of the received signal waveform and rM (t) is the projection of the

received signal on the subspace spanned by the first M functions of the basis, [26], [27]. Since we have zero mean CWGN

with PSD σ2, Ri is complex Gaussian with (i) µi mean and variance σ2 under H1 hypothesis; and (ii) zero mean and variance

σ2 under H0 hypothesis. Thus, the likelihood function is readily found as

lim
M→∞

ΛM [rM (t)|Θ] = lim
M→∞

M∏
i=1

1
πσ2 exp

(
− |Ri−µi|2

σ2

)
M∏
i=1

1
πσ2 exp

(
− |Ri|2

σ2

) , (11)
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where µi is the expected value of Ri.

First we assume that Θ is a known set of parameters in order to deduct the optimal detector. Although this hypothesis is

not realistic for real world radar and sonar problems, it provides an upper bound for any receiver operating under the same

signal model. It is also important to observe whether a Uniformly Most Powerful (UMP) test exists or does not exist.

A. Region I: Multipath returns are highly clumped

We formulate the detection problem, based on (6), as

H1: Ri = 〈r(t), φi(t)〉 =

 α+W1, i = 1

Wi, i > 1

H0: Ri = 〈r(t), φi(t)〉 = Wi

(12)

where φ1(t) = s(t− τ1), so that µ1 = α and µi 6=1 = 0. By evaluating the likelihood ratio (11) with the knowledge of Θ and

taking the logarithm, one obtains the log-likelihood ratio, up to a constant and irrelevant factor, as

ln Λ[r(t)|Θ] =
|R1|2 − |R1 − α|2

σ2
. (13)

Then the corresponding NP test, which we call NP1, is given as, [27], [28],

<
{√

2

σ2
α∗R1

}
H1

≷
H0

γ1, (14)

where <{.} is the real part operator and γ1 is the threshold. This is a hypothetical test with the perfect measurement or

the knowledge of α in the detector. Although (14) is not a UMP test with respect to α, it provides an upper bound to

the performance of any practically implementable detector. GLRT is a common technique to devise detectors with unknown

parameters, particularly when no UMP test exists. GLRT uses the maximum likelihood estimates (MLE) of unknown parameters

under both hypotheses in the likelihood ratio [27], [28].

Thus, the corresponding GLRT detector with respect to α is given as

2

σ2
|R1|2

H1

≷
H0

γ′1, (15)

which we call GLRT1. It can be realized with a standard matched-filter followed by square modulus [27], [28].

B. Region II: Multipath returns are entirely resolvable

The basis functions ß = {φi(t)}Mi=1 are selected as

φ1(t) = s(t− τ1) τ1 ≤ t ≤ T + τ1

φ2(t) = s(t− τ2) τ2 ≤ t ≤ T + τ2

(16)
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so that the detection problem for Region II becomes

H1: Ri = 〈r(t), φi(t)〉 =


α1 +W1, i = 1

α2 +W2, i = 2

Wi, i > 2

H0: Ri = 〈r(t), φi(t)〉 = Wi.

(17)

By evaluating the likelihood ratio (11) in Region II with the knowledge of Θ and taking the logarithm, we obtain the

corresponding log-likelihood ratio, up to a constant and irrelevant factor, as

ln Λ[r(t)|Θ] =− |R1 − α1|2 + |R2 − α2|2
σ2

+
|R1|2 + |R1|2

σ2
.

(18)

After simple manipulations, the log-likelihood ratio test, which we call NP2, is derived as

<
{√

2

σ2
[α∗1R1 + α∗2R2]

}
H1

≷
H0

γ2, (19)

where γ2 is the threshold. This is a hypothetical test with the perfect measurement or the knowledge of α1 and α2 in the

detector. Additionally, it is not a UMP test with respect to α1 and α2, thus GLRT approach is applied next. GLRT substitutes

the unknown signal parameters with Θ̂ = [α̂1, α̂2]T in the log-likelihood ratio (18). Θ̂ is the MLE of Θ under H1 that

maximizes the corresponding likelihood function, [28], [29], i.e.

Θ̂ = [α̂1, α̂2]T = [R1, R2]T . (20)

The corresponding GLRT, which we call GLRT2, can be written as

2

σ2

[
|R1|2 + |R2|2

] H1

≷
H0

γ′2. (21)

C. Transition Region

For this region, no particular detector is devised since there is no stable structure of the multipath. Therefore, we analyze

the performance of NP2 and GLRT2, which exploit multipath, in comparison with NP1 and GLRT1, which exploit the direct

return path only.

V. PERFORMANCE ASSESSMENT

In this section, we assess the performance of the proposed detectors GLRT2 (21) and NP2 (19), which exploit multipath,

as well as the conventional detectors GLRT1 (15) and NP1 (14), which only account for the direct return signals.

Before discussing the performance of these detectors, we need to define the corresponding probabilities of false alarm and

detection.
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A. Probabilities of False Alarm and Detection

The probability of false alarm of NP1 is

PFANP1
= Q

(
γ1√
|α|2

)
(22)

yielding the threshold

γ1 = |α|Q−1 (PFANP1
) , (23)

and the corresponding probability of detection

PDNP1
= Q

(
Q−1(PFANP1

)−
√
|α|2
σ2/2

)
, (24)

where Q(.) and Q−1(.) are the Complementary Cumulative Distribution Function (CCDF), and inverse CCDF of a standard

Gaussian random variable, respectively, pp. 20-28 of [28]. The probability of false alarm of GLRT1 is

PFAGLRT1
= Qχ2

2
(γ′1) (25)

yielding the threshold

γ′1 = Q−1
χ2
2

(PFAGLRT1
) (26)

and the corresponding probability of detection,

PDGLRT1
= Qχ′2

2 (λ)

(
Q−1
χ2
2

(PFAGLRT1
)
)
, (27)

where Qχ2
2
(.) and Qχ′2

2 (λ)(.) are the CCDF of a χ2
2, and a χ′22 (λ) where non-centrality parameter λ = 2|α|2/σ2, respectively,

pp. 20-28 of [28].

The test statistics of NP2 under both hypotheses are Gaussian, thus the probability of false alarm is obtained as

PFANP2
= Q

(
γ2√

(|α1|2 + |α2|2)

)
(28)

yielding the threshold,

γ2 = Q−1(PFANP2
)
√
|α1|2 + |α2|2 (29)

and the probability of detection,

PDNP2
= Q

(
Q−1(PFANP2

)−
√
|α1|2 + |α2|2

σ2/2

)
. (30)

When we consider GLRT2 under H0, the test statistics is the product between 2/σ2 and the sum of the square magnitudes

of two complex circular Gaussian variables with zero mean and variance σ2. It can be shown that this test statistics has χ2
4
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distribution. Consequently, the probability of false alarm can be written as

PFAGLRT2
= Qχ2

4
(γ′2) (31)

yielding the threshold,

γ′2 = Q−1
χ2
4

(PFAGLRT2
) . (32)

However, when we consider GLRT2 under H1, the test statistics is the product between 2/σ2 and the sum of the square

magnitudes of two complex circular Gaussian random variables with non-zero mean and variance σ2. Again, it can be shown

that the test statistics has a χ′24 (λ12) distribution, [28]. As a consequence, the probability of detection of GLRT2 can be written

as

PDGLRT2
= Qχ′2

4 (λ12)

(
Q−1
χ2
4

(PFAGLRT2
)
)

(33)

where

λ12 =
2

σ2
(|α1|2 + |α2|2) = λ1 + λ2 (34)

where λ1 = 2|α1|2/σ2 and λ2 = 2|α2|2/σ2. It is also important to note that λ = λ1, i.e. α = α1, in Region II.

In the Transition Region, we explore the use of two detection strategies. Accordingly, we first determine their statistical

characterizations. Then the corresponding probabilities of false alarm and detection are provided.

The probabilities of false alarm of NP1 and GLRT1 in this region are the same as (22) and (25), respectively, but the

probabilities of detection are different and obtained as

PDNP1T
= Q

(
Q−1 (PFANP1

)− |α1|2 + <{ρα∗1α2}√
|α1|2σ2/2

)
(35)

and

PDGLRT1T
= Qχ′2

2 (λT )

(
Q−1
χ2
2

(PFAGLRT1
)
)

(36)

where

λT =
2

σ2
|α1 + ρα2|2. (37)

The probabilities of false alarm and detection of NP2 (19) and GLRT2 (21) in the Transition Region, are not the same as (28),

(30), (31) and (33), respectively. The covariance of the random variables R1 and R2 in detectors has to be taken into account

to characterize the probability distribution functions. The covariance of R1 and R2 is readily found by COV [R1, R
∗
2] = ρσ2.

The probabilities of false alarm and detection of NP2 are obtained respectively as

PFANP2T
= Q

(
γ2√

|α1|2 + |α2|2 + 2ρ<{α1α∗2}

)
, (38)
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PDNP2T
=

Q

(
Q−1(PFANP2T

)−
√
|α1|2 + |α2|2 + 2ρ<{α1α∗2}

σ2/2

)
.

(39)

The test statistics of GLRT2 is the sum of square magnitudes of two correlated complex circular Gaussian random variables

R1 and R2 with the covariance matrix CR, where

CR = σ2

 1 ρ

ρ 1

 , (40)

by letting R = [R1, R2]T . We represent (21) in the Transition Region with two statistically independent random variables,

obtaining

[(1 + ρ)Rs + (1− ρ)Rd]
H1

≷
H0

γ′2, (41)

where Rs = |R1+R2|2
σ2(1+ρ) , and Rd = |R1−R2|2

σ2(1−ρ) . They are two independent random variables that have χ2
2 distribution under H0,

χ′22 (λs) and χ′22 (λd) distributions, respectively, under H1, where

λs =
(1 + ρ)|α1 + α2|2

σ2
(42)

λd =
(1− ρ)|α1 − α2|2

σ2
(43)

so that the test statistics of (41) is

TR = (1 + ρ)Rs + (1− ρ)Rd. (44)

Now we can compute the probabilities of false alarm and detection for (41). The probability of false alarm can be obtained as

PFAGLRT2T
= P [TR|H0 > γ′2] = P

[
2∑
k=1

ckχ
2
2 > γ′2

]
, (45)

where TR|H0 is the test statistics of (41) under H0, c1 = 1+ρ, and c2 = 1−ρ are the constant coefficients of two independent

χ2
2 random variables. By the theorem for finite linear combinations of independent central χ2 probabilities (see Appendix-A,

[31]) we obtain the probability of false alarm explicitly as

PFAGLRT2T
= F1(1 + ρ, γ′2) + F2(1− ρ, γ′2)

=
1 + ρ

2ρ
exp

{
− γ′2

2(1 + ρ)

}
− 1− ρ

2ρ
exp

{
− γ′2

2(1− ρ)

}
.

(46)

In a similar manner, the probability of detection can be obtained as

PDGLRT2T
= P [TR|H1 > γ′2] = P

[
2∑
k=1

ckχ
2
2(λ′k) > γ′2

]
, (47)

where TR|H1 is the test statistics of (41) under H1, c1 = 1 + ρ, c2 = 1− ρ are the constant coefficients of two independent

χ′22 (λ′k) distributions with non-centrality parameters λ′1 = λs and λ′2 = λd, which are given by (42) and (43), respectively.
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The cumulative distribution function of the sum of M independent χ2
vk

(λk) with different coefficients is given in Appendix-B,

[31]. As a consequence, the probability of detection is obtained in an analytic form as

PDGLRT2T
=

1

2
+

1

π

∫ ∞
0

sin θ(u)

uρ(u)
du, (48)

where

θ(u) =
1

2

2∑
k=1

[
2 tan−1(cku) + λkcku(1 + c2ku

2)−1
]
− 1

2
γ2u,

ρ(u) =

2∏
k=1

(1 + c2ku
2)

1
2 exp

{
1

2

2∑
k=1

λk(cku)2

(1 + c2ku
2)

}
.

B. Simulation Results and Discussion

Now that the appropriate probabilities for the detectors in consideration have been introduced, we are ready to compare

the performance of these detectors. Since GLRT1 and GLRT2 are not optimum detectors, first it is necessary to assess the

performance loss with respect to NP1 and NP2 which assume perfect knowledge of signal parameters.

This analysis was provided in [18] by the same authors of this article and the results are briefly summarized in the following

paragraph.

The degradation in the detection performance of the proposed GLRT2 with respect to NP2 was found less than 2 dB in

signal-to-noise ratio (SNR) for a low probability of false alarm, i.e. PFA = 10−3. For the convenience of making a comparison,

the conventional GLRT1 and NP1 were tested under the same multipath environment as GLRT2 and NP2. The degradation in

the conventional case was found to be 1 dB in SNR for the same PFA = 10−3. The fact that the degradation between NP1

and GLRT1 is smaller than the degradation between GLRT2 and NP2 is expected, since GLRT2 requires the estimation of

two unknown parameters. In practice, imperfect prior knowledge on τ1 and τ2 can lead to a further performance loss.

The primary goal of this paper is to show that diverse receiving strategies can be utilized in challenging multipath radar-

target environments for better detection performances. In a conventional approach, GLRT1 would be applied for all regions

of a radar-target geometry such as those described in this article. In the proposed approach, NP1 and GLRT1 are devised as

optimum and sub-optimum detectors in Region I only, whereas NP2 and GLRT2 are devised as optimum and sub-optimum

detectors in Region II. Thus it is important to assess the performance improvement of (i) NP2 relative to NP1; and, (ii) GLRT2

relative to GLRT1, particularly when multipath returns are resolvable as in Region II, and partially overlap in time-domain as

in the Transition Region.

1) Performance Comparison in Region II: The performance of the detectors in this region depends upon the ratio λ2/λ1.

Therefore we perform the comparison of the two detection strategies based upon the various values of the ratio λ2/λ1.

In Fig. 3 we compare NP2 and NP1 with respect to the SNR value of the direct return path, namely SNR = 10 log10 2|α1|2/σ2.

Both receivers are tested under the same multipath environment. Despite of NP1, NP2 exploits the reflected return path which is

assumed to be proportional to the direct path strength. Thus, Fig. 3 assesses the quantitative measure of the optimal performance

improvement of the receiver that exploits multipath compared to the traditional receiver that relies on the direct return path

only. We observe that (i) the performance of NP2 is always superior to the one of NP1 that the improvement amount depends
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upon the ratio λ2/λ1 between the multipath returns; and, (ii) their performance merges when the second return path is weak

compared to the direct return path, i.e. λ2 = 0.01λ1.

In Fig. 2 we compare sub-optimum receivers GLRT2 and GLRT1, under the same multipath environment, with respect

to the SNR value of the direct return path. In general, the performance of GLRT2 is also superior to the one of GLRT1,

depending upon the SNR value of the multipath returns. However, GLRT1 outperforms GLRT2 when the second return path is

weak compared to the direct return path. This is well understandable because GLRT2 has an extra cost of estimating a second

unknown parameter which requires a certain level of SNR.

In Fig. 4 we present another comparison for a lower value of the probability of false alarm, in order to emphasize that

GLRT2 outperforms GLRT1 unless λ2 � λ1. One can observe that for lower values of the probability of false alarm it is even

more evident that GLRT2 outperforms GLRT1.

2) Performance Comparison in the Transition Region: The performance in the Transition Region depends upon the degree of

overlap of the multipath returns. Therefore we perform a comparison of the two detection strategies based upon the correlation

coefficient of the multipath returns. In the following analysis we assume |α1| = |α2|, so that direct and reflected path returns

have same SNR value, i.e. λ1 = λ2.

First we compare the two detectors assuming very low and very high correlation of multipath signal returns: (i) ρ = 0.01 and

(ii) ρ = 0.99. We observe that (1) when the correlation coefficient is very low the signals are essentially distinguishable and

the probability of detection behaves similar to what was found in Region II as shown in Fig. 5(a); and, (2) when the correlation

coefficient is very high then the signals are essentially highly clumped and the probability of detection behaves similar to what

was found in Region I as shown in Fig. 5(b). In fact, ρ = 0.01 and ρ = 0.99 are not belong to Transition Region but Region II

and Region I, respectively. However, it is necessary with Fig. 5 to validate the expressions of the probabilities of false alarm

and detection in the Transition Region, i.e. (36), (46) and (48).

Second we present the performance of the detectors when ρ = 0.5. Our results indicate that the performance of the GLRT2

detector depends on the phase difference between the first and second returns, since the correlation of multipath signal returns are

non-negligible. Thus, two extreme situations, in-phase and out-of-phase, are considered in Fig. 6(a) and Fig. 6(b), respectively.

When α1 and α2 are in phase, the performance of GLRT2 is always superior to the one of GLRT1, while, when α1 and α2 are

out-of-phase, the performance of GLRT2 is only superior to GLRT1 for SNR values above 5 dB. This occurs because GLRT2

is affected by the correlation coefficient since it accounts for two signals, while GLRT1 is independent of the correlation

coefficient because it exploits the direct signal only.

Finally, the improvement in the target probability of detection of GLRT2 relative to GLRT1 at any hypothetical target

location in the multipath environment is presented in Fig. 7. It is assumed that γ′2, which is the threshold for GLRT2, is fixed

at PFAGLRT2
= 10−5 by (32). However, PFAGLRT2T

varies across the Transition Region since it depends on ρ as shown in

(46). In order to compare two detectors at the same level of PFA we make PFAGLRT1T
= PFAGLRT2T

across all regions

by changing the threshold γ′1 of GLRT1. It is also assumed that |α1| = |α2| and SNR = 10 log10(2|α1|2/σ2) = 12 dB.

Constructive and destructive effects of multipath is also shown in Fig. 7 in the sense of target probability of detection at a

certain SNR level of multipath returns.
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3) Performance Comparison in Region I: In Fig. 5(b) and Fig. 7 one can see that GLRT2 merges to GLRT1, in Region I.

VI. CONCLUSION

We considered the detection of a target by a radar in a multipath environment. We show that by taking advantage of the

multipath it is possible, in general, to increase the probability of detection of the target, compared to a conventional detection

problem based on a model of the return signal that accounts only for the direct signal return from the target.

Multipath is accounted for by leveraging on prior knowledge of the environment where the radar operates. Using this prior

knowledge and electromagnetic high-frequency ray-tracing analysis, we can predict the time of arrival of each multipath return

depending upon the assumed location of the target. In the case study considered, we show that the environment can be divided

into three regions: (1) Region II where multipath components can be clearly distinguished and where the probability of detection

is improved by properly accounting for the multipath; (2) Region I where multipath components cannot be distinguished and

there is no possibility of improving the probability of detection; and, (3) the Transition Region where, depending upon the

SNR of each individual component and the correlation coefficient of the multipath components, it is possible to improve upon a

conventional detector. Thus, it is also shown here that diverse receiving strategies, which are optimum in the particular regions

of the multipath environment, can be applied to exploit the best performing receivers.

This article provides a method to account for multipath as well as the quantitative analysis of the performance increase due

to the multipath exploitation. The method was explained by referring to a basic case study scenario, however the approach is

quite general and it could be extended to more complex environments.

APPENDIX

Suppose constant coefficients c1 > c2 > · · · > cm > 0 and γ > 0.

A. Finite Linear Combinations of Independent χ2 Variables

P

[
m∑
k=1

ckχ
2
2vk

> γ

]
=

m∑
k=1

1

(vk − 1)!

[
∂vk−1

∂cvk−1
Fk(c, γ)

]
c=ck

(49)

where

Fk[c, γ] = cn−1 exp{−γ/(2c)}
m∏

r=1,r 6=k
(c− cr)−vr , (50)

where n =
∑m
k=1 vk.

B. Finite Linear Combinations of Independent χ2
vk

(λk) Variables

P

[
m∑
k=1

ckχ
2
vk

(λk) > γ

]
=

1

2
+

1

π

∫ ∞
0

sin θ(u)

uρ(u)
du, (51)
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where

θ(u) =
1

2

m∑
k=1

[
vk tan−1(cku) + λkcku(1 + c2ku

2)−1
]
− 1

2
γu,

ρ(u) =

m∏
k=1

(1 + c2ku
2)

1
4vk exp

{
1

2

m∑
k=1

λk(cku)2

(1 + c2ku
2)

}
.

(52)
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Fig. 1. Geometry of the problem: Radar-Target over a Ground Plane.
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