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[1] A partially covered cavity, or trench, located along the edge of two intersecting
metallic walls perpendicular to each other is considered. The cross section of the cavity
is a quarter ellipse and is slotted along the interfocal distance. The cavity is filled with
a double‐negative (DNG) metamaterial that is isoimpedance to the material filling the
half‐space above the trench. This two‐dimensional boundary value problem is solved
exactly, in the frequency domain, when the primary field is either a plane wave of arbitrary
polarization and direction of incidence or an electric or magnetic line source. Numerical
results are exhibited and discussed.
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1. Introduction

[2] We consider the two‐dimensional geometry of Figure 1
where a partially covered cavity is located at the corner of two
metallic walls perpendicular to each other. The cavity has a
cross section that is a quarter ellipse, and is slotted from the
focus to the center of the ellipse. The cavity is partially covered
by a thin metallic strip that extends from the focal line away
from the central line of the ellipse, as part of the metallic wall
under which the cavity is flush mounted. The cavity is filled
with a double‐negative lossless metamaterial whose electric
permittivity and magnetic permeability are real and opposite to
the corresponding parameters of the quarter‐space above the
cavity. Causality requires that the index of refraction of the
DNG material be negative and its intrinsic impedance positive.
[3] Two types of sources are considered. One is a plane wave

with arbitrary direction of incidence in the quarter space (x > 0,
y > 0) and polarized with the electric or the magnetic field
parallel to the z axis. The other one is an electric or magnetic line
source parallel to the z axis. This two‐dimensional boundary
value problem is solved exactly, in the frequency domain. In
elliptic cylindrical coordinates, the primary and secondary field
components are expanded in infinite series of eigenfunctions
that are products of radial and angular Mathieu functions, where
the Stratton‐Chu normalization is adopted [see, e.g., Stratton,
1941; Staff of the Computation Laboratory, 1967; Bowman
et al., 1987]. Since the angular Mathieu functions are the
same for positive and negative refractive index, it is possible
to determine analytically themodal expansion coefficients of the
secondary fields, by imposing the boundary conditions.
[4] The only two‐dimensional problem involving radiation

and scattering by a cavity flush mounted under a metallic plane

for which an exact analytical solution exists is that of a slotted
semielliptical channel [Uslenghi, 1992, 2004a]. A related
geometry is the cavity‐backed gap in a corner [Uslenghi, 1999;
Erricolo and Uslenghi, 2005]. These geometries involve
materials inside and outside the channel that are isorefractive to
each other. Recently, the analysis performed by Uslenghi
[1992, 2004a] was extended to the case of a trench filled
with DNG metamaterial [Akgol et al., 2009a, 2009b]. The
present work is an extension of the geometry analyzed by
Uslenghi [1999] and Erricolo and Uslenghi [2005] to the case
of a corner cavity filled with DNG metamaterial.
[5] Numerical results are shown for fields both inside and

outside the cavity, for several cavity configurations and
different primary sources.

2. Geometry of the Problem

[6] A cross‐sectional view of the structure in a plane z =
constant is shown in Figure 1. It is identical to that con-
sidered by Erricolo and Uslenghi [2005], except for the
material filling the trench.
[7] The metallic walls OA(x = 0) and OE(y = 0) are per-

pendicular to each other. The trench OBC is flush mounted
under the horizontal wall OE, and its cross section is a
quarter ellipse with semimajor axis OC and semiminor axis
OB. The wall OE is slotted along the slit of width OD equal
to half the interfocal distance d of the elliptical trench. The
trench is partially covered by the thin metal baffle DC.
[8] The rectangular coordinates (x, y, z) are related to the

elliptic cylinder coordinates (u, v, z) by

x ¼ d

2
cosh u cos v;

y ¼ d

2
sinh u sin v;

z ¼ z;

ð1Þ1Department of Electrical and Computer Engineering, University of
Illinois at Chicago, Chicago, Illinois, USA.

Copyright 2011 by the American Geophysical Union.
0048‐6604/11/2010RS004471

RADIO SCIENCE, VOL. 46, RS4005, doi:10.1029/2010RS004471, 2011

RS4005 1 of 8



where 0 ≤ u < ∞, 0 ≤ v ≤ 2p, −∞ < z < ∞. Sometimes, it is
expedient to introduce the coordinates

� ¼ cosh u; � ¼ cos v; ð2Þ

with 1 ≤ x < ∞ and −1 ≤ h ≤ 1. However, the advantage of
using (u, v) instead of (x, h) is the removal of sign ambi-
guities since the pair (u, v) corresponds to only one pair
(x, h) but the reverse is not true. Curves with u (x) constant
are ellipses and curves with v (h) constant are hyperbolas.
The variable x asymptotically approaches 2r/d, where r is
the distance from the origin. The variable v represents the
angle between the asymptote y = x tan v and the hyperbola
whose parametric equations are (1) when v is held constant.
Additional information on the elliptic cylinder coordinate
system may be found in the work by Stratton [1941].
[9] Outside the cavity, the electric permittivity is " and the

magnetic permeability is m, whereas inside the cavity the same
quantities become −" and −m, respectively. Therefore, the
intrinsic impedance is the same inside and outside the cavity.
More generally, this type of analysis could be performed
under the less restrictive condition that the intrinsic impe-
dances inside and outside the trench be different from each
other. However, the formulas would become more compli-
cated because of the introduction of an additional parameter.
[10] The wave vector is k =

ffiffiffiffiffiffi
"�

p
outside the cavity and

� ffiffiffiffiffiffi
"�

p
inside the cavity. We define a dimensionless

parameter c = kd/2 in the material outside the cavity and −c
inside the cavity filled with DNG material. Causality, and
not just the radiation condition, dictates that in a DNG
metamaterial the signs of the square roots must be chosen so
that the refractive index is negative but the intrinsic
impedance is positive [see Ziolkowski and Heyman, 2001].

3. Plane Wave Incidence

3.1. E Polarization

[11] Consider a plane wave incident perpendicularly to the
trench axis and polarized parallel to z axis, with primary
electric field

Ei ¼ ẑEi
1z ¼ ẑ exp jk x cos’0 þ y sin’0ð Þ½ �: ð3Þ

The incident field may be expanded in a series of elliptic‐
cylinder functions [Bowman et al., 1987]

Ei
1z ¼

ffiffiffiffiffiffi
8�

p X∞
m¼0

jm � 1

N eð Þ
m

Re 1ð Þ
m c; uð ÞSem c; vð ÞSem c; ’0ð Þ

"

þ 1

N oð Þ
m

Ro 1ð Þ
m c; uð ÞSom c; vð ÞSom c; ’0ð Þ

#
: ð4Þ

The total electric field in medium 1 can be written as the
sum of a geometric‐optics field E1z

go due to the corner
reflector without the trench and a diffracted field E1z

d due to
the presence of the trench

E1z ¼ Ego
1z þ Ed

1z: ð5Þ

The geometric‐optics field is the sum of four terms

Ego
1z ¼ Ei

1z þ EOE
1z þ EOA

1z þ EOA;OE
1z ; ð6Þ

where, referring to Figure 2, the field E1z
OE corresponds to a

wave with incidence angle 2p − ’0, with respect to the
negative x axis, multiplied by a reflection coefficient −1, the
field E1z

OA corresponds to a wave with incidence angle p − ’0
multiplied by a reflection coefficient −1, and the field E1zOA,OE
corresponds to a doubly reflected wave, i.e., a wave with
incidence angle p + ’0 and reflection coefficient 1.
[12] When the even and odd functions of ’0 are separated

out in the various field components, it is found that the
overall geometric‐optics field is

Ego
1z ¼ 8

ffiffiffiffiffiffi
2�

p X∞
l¼1

�1ð Þl
N oð Þ
2l

Ro 1ð Þ
2l c; uð ÞSo2l c; vð ÞSo2l c; ’0ð Þ: ð7Þ

The diffracted field can be written as

Ed
1z ¼ 8

ffiffiffiffiffiffi
2�

p X∞
l¼1

�1ð Þl
N oð Þ
2l

alRo
4ð Þ
2l c; uð Þ � So2l c; vð ÞSo2l c; ’0ð Þ: ð8Þ

Figure 1. Geometry of the problem.

Figure 2. Geometric‐optics contribution for plane wave
incidence.
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The total electric field inside the trench is

E2z ¼ 8
ffiffiffiffiffiffi
2�

p X∞
l¼1

�1ð Þl
N oð Þ
2l

bl � Ro 4ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; uð Þ

"

� Ro 4ð Þ
2l �c; uð Þ� � So2l c; vð ÞSo2l c; ’0ð Þ: ð9Þ

The magnetic field is obtained using the relation

H1;2 ¼ j

�cZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p @E 1;2ð Þz
@v

û� @E 1;2ð Þz
@u

v̂

� �
: ð10Þ

[13] The modal coefficients can be found by applying the
boundary conditions. The tangential component of the total
electric and magnetic fields in both media are equal across
u = 0,

E1zju¼0 ¼ E2zju¼0; H1vju¼0 ¼ �H2vju¼0: ð11Þ

[14] Mode matching is possible because the Mathieu
angular functions inside the DNG material have a parameter
−c < 0 and are related to the Mathieu functions for c > 0 by

Sem �c; vð Þ ¼ Sem c; vð Þ ð12Þ

Som �c; vð Þ ¼ Som c; vð Þ; ð13Þ

since the expansion coefficients depend on (±c)2. The
Mathieu radial functions have the same expansion coeffi-
cients as the Mathieu angular functions, but the arguments
of the various Bessel functions in the series expansions
contain the quantity cexp(±u) so that the Mathieu radial
functions for −c < 0 have different values from the Mathieu
radial functions for c > 0. Therefore, applying the boundary
conditions yields the modal coefficients al and bl as

al ¼ �Ro 4ð Þ
2l �c; 0ð ÞRo 1ð Þ

2l
′ c; 0ð Þ

D1
; ð14Þ

bl ¼ �Ro 1ð Þ
2l

′ c; 0ð ÞRo 4ð Þ
2l c; 0ð Þ

D1
; ð15Þ

where

D1 ¼ Ro 4ð Þ
2l �c; 0ð ÞRo 1ð Þ

2l
′ �c; 0ð ÞRo

4ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; u1ð Þ

þ Ro 4ð Þ
2l

′ c; 0ð ÞRo 4ð Þ
2l �c; 0ð Þ � Ro 4ð Þ

2l c; 0ð ÞRo 4ð Þ
2l

′ �c; 0ð Þ: ð16Þ

[15] Within the quarter space (x > 0, y > 0), the bistatic
RCS s(e)(�) is, in general, given by [see, e.g., Bowman
et al., 1987]

� eð Þ �ð Þ ¼ lim
�!∞ 2��

jEsj
jEij ð17Þ

and in the case of this partially covered trench it becomes

� eð Þ �ð Þ
	

¼ 128�
X∞
l¼1

al

N oð Þ
2l

So2l c; vð ÞSo2l c; ’0ð Þ
�����

�����
2

; ð18Þ

which is obtained by evaluating Ro2l
(4)(c, u) in (8) with an

asymptotic expression of the Mathieu radial function
[Uslenghi, 2004b].

3.2. H Polarization

[16] The analysis is similar to that for E polarization,
hence only the results are given. The incident magnetic
field is

H i ¼ ẑH i
1z; ð19Þ

Hi
1z ¼ exp jk x cos’0 þ y sin’0ð Þ½ �

¼
ffiffiffiffiffiffi
8�

p X∞
m¼0

jm

N eð Þ
m

Re 1ð Þ
m c; uð ÞSem c; vð ÞSem c; ’0ð Þ

"

þ jm

N oð Þ
m

Ro 1ð Þ
m c; uð ÞSom c; vð ÞSom c; ’0ð Þ

#
: ð20Þ

[17] The total magnetic field in medium 1 is

H1z ¼ Hgo
1z þ Hd

1z; ð21Þ

where the geometric‐optics field H1z
go is

Hgo
1z ¼ 8

ffiffiffiffiffiffi
2�

p X∞
l¼0

�1ð Þl
N eð Þ
2l

Re 1ð Þ
2l c; uð ÞSe2l c; vð ÞSe2l c; ’0ð Þ; ð22Þ

corresponding to the sum of four plane waves that are
equivalent to those of Figure 2, provided that the electric
field is replaced with a z directed magnetic field and all
reflection coefficients are 1. Only the even Mathieu func-
tions of even order appear because of the boundary condi-
tions of the two metallic walls. The diffracted field due to
the slotted trench is

Hd
1z ¼ 8

ffiffiffiffiffiffi
2�

p X∞
l¼0

�1ð Þl
N eð Þ
2l

clRe
4ð Þ
2l c; uð Þ � Se2l c; vð ÞSe2l c; ’0ð Þ; ð23Þ

the field inside the trench is

H2z ¼ 8
ffiffiffiffiffiffi
2�

p X∞
l¼0

�1ð Þl
N eð Þ
2l

dl

� Re 4ð Þ
2l

′ �c; u1ð Þ
Re 1ð Þ

2l
′ �c; u1ð Þ

Re 1ð Þ
2l �c; uð Þ � Re 4ð Þ

2l �c; uð Þ
" #

� Se2l c; vð ÞSe2l c; ’0ð Þ; ð24Þ

where the prime means the derivative with respect to u. The
electric field is obtained from

E1;2 ¼ jZ

�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p � @H 1;2ð Þz
@v

ûþ @H 1;2ð Þz
@u

v̂

� �
: ð25Þ

[18] The boundary conditions are

H1zju¼0 ¼ H2zju¼0; E1vju¼0 ¼ �E2vju¼0; ð26Þ
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which yield the expansion coefficients

cl ¼ �Re 4ð Þ
2l

′ �c; 0ð ÞRe 1ð Þ
2l c; 0ð Þ

D2
; ð27Þ

dl ¼ Re 4ð Þ
2l

′ c; 0ð ÞRe 1ð Þ
2l c; 0ð Þ

D2
; ð28Þ

where

D2 ¼ Re 4ð Þ
2l c; 0ð ÞRe 4ð Þ

2l
′ �c; 0ð Þ þ Re 4ð Þ

2l
′ c; 0ð Þ

� Re 4ð Þ
2l

′ �c; u1ð Þ
Re 1ð Þ

2l
′ �c; u1ð Þ

Re 1ð Þ
2l �c; 0ð Þ � Re 4ð Þ

2l �c; 0ð Þ
" #

: ð29Þ

[19] The bistatic RCS s(h)(�) of the partially covered
trench is

� hð Þ �ð Þ
	

¼ 128�
X∞
l¼1

cl

N eð Þ
2l

Se2l c; vð ÞSe2l c; ’0ð Þ
�����

�����
2

: ð30Þ

4. Line Source Incidence

4.1. E Polarization

[20] Consider an electric line source parallel to the z axis
and located at (x0, y0) ≡ (u0, v0) whose primary electric field is

Ei ¼ ẑEi
z ¼ ẑH 2ð Þ

0 kRð Þ; ð31Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ y� y0ð Þ2

q
ð32Þ

is the distance between the line source and the observa-
tion point (x, y) ≡ (u, v). The incident fieldmay be expanded in
a series of elliptic‐cylinder functions [Bowman et al., 1987]

Ei
1z ¼ H 2ð Þ

0 kRð Þ

¼ 4
X∞
m¼0

1

N eð Þ
m

Re 1ð Þ
m c; u<ð ÞRe 4ð Þ

m c; u>ð ÞSem c; vð Þ�
"

Sem c; v0ð Þ

þ 1

N oð Þ
m

Ro 1ð Þ
m c; u<ð ÞRo 4ð Þ

m c; u>ð Þ � Som c; vð ÞSom c; v0ð Þ
#
;

ð33Þ

where u< (u>) is the smaller (larger) between u and u0.
[21] In the quarter space (x ≥ 0, y ≥ 0) outside the trench,

the total electric field E1z may be written as the sum of the
diffracted field and the geometrical‐optics field. The geo-
metrical‐optics field E1z

go is the total field that would be
present in the absence of the trench and is the sum of the
fields due to four line sources, i.e., the primary line source
and its three images

Ego
1z ¼ H 2ð Þ

0 kRð Þ � H 2ð Þ
0 kR1ð Þ � H 2ð Þ

0 kR2ð Þ þ H 2ð Þ
0 kR3ð Þ; ð34Þ

where

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ yþ y0ð Þ2

q
; ð35Þ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ x0ð Þ2þ y� y0ð Þ2

q
; ð36Þ

R3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ x0ð Þ2þ yþ y0ð Þ2

q
: ð37Þ

[22] Referring to Figure 3, the image line S1 is located
at (x0, −y0) ≡ (u0, 2p − v0), the image line S2 at (−x0, y0) ≡
(u0, p − v0), and the image line S3 at (−x0, −y0) ≡ (u0, p + v0).
[23] By expanding the Hankel functions in series of

elliptic‐cylinder functions and utilizing properties of the
angular Mathieu functions, it can be found that

Ego
1z ¼ 16

X∞
l¼0

1

N oð Þ
2l

Ro 1ð Þ
2l c; u<ð ÞRo 4ð Þ

2l c; u>ð Þ � So2l c; vð ÞSo2l c; v0ð Þ;

ð38Þ

which involves only odd Mathieu functions of even order.
The diffracted field E1z

d due to the presence of the trench in
(x ≥ 0, y ≥ 0) and the total field inside the trench are given
by, on consideration of the boundary conditions,

Ed
1z ¼16

X∞
l¼1

el

N oð Þ
2l

Ro 4ð Þ
2l c; u0ð ÞRo 4ð Þ

2l c; uð Þ � So2l c; vð ÞSo2l c; v0ð Þ

ð39Þ

E2z ¼ 16
X∞
l¼1

fl

N oð Þ
2l

Ro 4ð Þ
2l �c; u0ð Þ

� Ro 4ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; uð Þ � Ro 4ð Þ

2l �c; uð Þ
" #

� So2l �c; vð ÞSo2l �c; v0ð Þ: ð40Þ

[24] The magnetic field is still related to the electric field
by (10). The unknown modal coefficients el and fl are
determined by imposing the continuity of the total tangential
electric and magnetic fields across the interface x = 1 or
u = 0, yielding

el ¼ �Ro 4ð Þ
2l �c; u0ð ÞRo 4ð Þ

2l �c; 0ð ÞRo 1ð Þ
2l

′ c; 0ð Þ � Ro 4ð Þ
2l c; u0ð Þ
D3

; ð41Þ

fl ¼ �Ro 1ð Þ
2l

′ c; 0ð ÞRo 4ð Þ
2l c; u0ð ÞRo 4ð Þ

2l c; 0ð ÞRo 4ð Þ
2l c; u0ð Þ

D3
; ð42Þ

where

D3 ¼ Ro 4ð Þ
2l c; u0ð ÞRo 4ð Þ

2l �c; u0ð Þ Ro 4ð Þ
2l c; 0ð Þ

h

� Ro 4ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l �c; u1ð Þ

Ro 1ð Þ
2l

′ �c; 0ð Þ � Ro 4ð Þ
2l

′ �c; 0ð Þ
 !

þ Ro 4ð Þ
2l �c; 0ð ÞRo 4ð Þ

2l
′ c; 0ð Þ

i
: ð43Þ
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[25] The behavior of the field scattered by the DNG cavity
may be examined at large distance by considering

Ed
1zju!∞;Im cð Þ<0 �

e�jk�þj�=4ffiffiffiffiffi
k�

p P eð Þ �; u0; v0ð Þ; ð44Þ

where

P eð Þ �; u0; v0ð Þ ¼ 16
X∞
l¼1

�1ð Þl
N oð Þ
2l

elRo
4ð Þ
2l c; u0ð Þ � So2l c; vð ÞSo2l c; v0ð Þ

ð45Þ

is a far‐field coefficient that depends not only on the angle
of observation � but also on the source location (u0, v0).

In the derivation of (45), Ro2l
(4)(c, u) in (39) was evaluated

with an asymptotic expansion for the Mathieu radial function.

4.2. H Polarization

[26] The derivations are similar to those for E polariza-
tion, hence only the results are given. For a magnetic line
source parallel to the z axis and located outside the trench at
(x0, y0) ≡ (u0, v0) ≡ (x0, h0) the primary magnetic field is

H i ¼ ẑH i
z ¼ ẑH 2ð Þ

0 kRð Þ: ð46Þ

Once again, the total magnetic field in medium 1, H1z, may
be written as the sum of diffracted field and the geometrical‐
optics field. The geometrical‐optics field H1z

go
is the total

field that would be present in the absence of the trench and
is the sum of the fields due to four line sources, i.e., the
primary line source and its three images

Hgo
1z ¼H 2ð Þ

0 kRð Þ þ H 2ð Þ
0 kR1ð Þ þ H 2ð Þ

0 kR2ð Þ þ H 2ð Þ
0 kR3ð Þ; ð47Þ

Hgo
1z ¼ 16

X∞
l¼0

l

N eð Þ
2l

Re 1ð Þ
2l c; u<ð ÞRe 4ð Þ

2l c; u>ð Þ � Se2l c; vð ÞSe2l c; v0ð Þ:

ð48Þ
[27] The diffracted field H1z

d due to the presence of the
trench in (x ≥ 0, y ≥ 0) and the total field inside the trench
are given by

Hd
1z ¼ 16

X∞
l¼0

gl

N eð Þ
2l

Re 4ð Þ
2l c; u0ð ÞRe 4ð Þ

2l c; uð Þ � Se2l c; vð ÞSe2l c; v0ð Þ;

ð49Þ

H2z ¼ 16
X∞
l¼0

hl

N eð Þ
2l

Re 4ð Þ
2l �c; u0ð Þ

� Re 4ð Þ
2l

′ �c; u1ð Þ
Re 1ð Þ

2l
′ �c; u1ð Þ

Re 1ð Þ
2l �c; uð Þ � Re 4ð Þ

2l �c; uð Þ
" #

� Se2l �c; vð ÞSe2l �c; v0ð Þ: ð50Þ

Figure 3. Geometric‐optics contribution for line source
excitation.

Figure 4. Polar plot of the normalized bistatic RCS s(e)(�)
given by equation (18) on a linear scale for an E‐polarized
plane wave incident at an angle �0 = p/4. Dash‐dotted line,
c = 2; and solid line, c = 3. The values for c = 1 are so much
smaller that they correspond to the origin in the scale used
for this plot.

Figure 5. Polar plot of the normalized bistatic RCS s(h)(�)
given by equation (30) on a linear scale for an H‐polarized
plane wave incident at an angle �0 = p/4. Thick solid line,
c = 1; dash‐dotted line, c = 2, and thin solid line, c = 3.
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[28] The electric field is related to the magnetic field by (25).
The unknown modal coefficients gl and hl are determined
by applying the boundary condition across u = 0, yielding

gl ¼ Re 1ð Þ
2l c; 0ð ÞRe 4ð Þ

2l c; u0ð ÞRe 4ð Þ
2l �c; u0ð Þ � Re 4ð Þ

2l
′ �c; 0ð Þ
D4

; ð51Þ

hl ¼ Re 4ð Þ
2l

′ c; 0ð ÞRe 4ð Þ
2l c; u0ð ÞRe 1ð Þ

2l c; 0ð ÞRe 4ð Þ
2l c; u0ð Þ

D4
; ð52Þ

where

D4 ¼ Re 4ð Þ
2l c; u0ð ÞRe 4ð Þ

2l �c; u0ð Þ Re 4ð Þ
2l

′ c; 0ð Þ
h

� Re 4ð Þ
2l

′ �c; u1ð Þ
Re 1ð Þ

2l
′ �c; u1ð Þ

Re 1ð Þ
2l �c; 0ð Þ � Re 4ð Þ

2l �c; 0ð Þ
 !

� Re 4ð Þ
2l c; 0ð ÞRe 4ð Þ

2l
′ �c; 0ð Þ

i
: ð53Þ

Figure 6. Polar plot of the far‐field coefficient y(e)(�; u0, v0) given by equation (57) using a linear scale.
The results represent a line source at S1 (thick solid line); S2 (dash‐dotted line); and S3 (thin solid line).
In all three cases c = 2. Units are (V/m)2.

Figure 7. Polar plot of the far‐field coefficient y(h)(�; u0, v0) given by equation (58) using a linear scale.
The results represent a line source at S1 (thin solid line); S2 (dash‐dotted line); and S3 (thick dash line).
In all three cases c = 2. Units are (V/m)2.
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[29] Similarly, the behavior of the field scattered magnetic
field by the DNG cavity may be examined at large distance
by considering

Hd
1zju!∞;Im cð Þ<0 �

e�jk�þj�=4ffiffiffiffiffi
k�

p P hð Þ �; u0; v0ð Þ; ð54Þ

where

P hð Þ �; u0; v0ð Þ ¼ 16
X∞
l¼1

�1ð Þl
N eð Þ
2l

glRe
4ð Þ
2l c; u0ð Þ � Se2l c; vð ÞSe2l c; v0ð Þ

ð55Þ
is a far‐field coefficients that depends not only on the angle
of observation � but also on the source location (u0, v0).

5. Numerical Results

[30] The evaluation of Mathieu functions was accom-
plished using the Fortran code described by Erricolo [2006].
The numerical results described in this section were
obtained after summing the first 20 terms of the pertinent
series and using the acceleration method described by
Erricolo [2003].

5.1. Plane Wave Incidence

[31] The scattering effect of trench can be investigated
easily by looking at the normalized bistatic RCS as given by
(18) and (30). The value of c is controlled by the frequency
and the focal distance d through

c ¼ kd

2
¼ �d

	
: ð56Þ

[32] What is important is the relative value of parameters
inside and outside the trench, not their absolute value. Since
the medium outside the trench is of infinite extent, it may be
safely assumed to be free space; however, this restriction is
not necessary for the validity of our calculations.
[33] The effect of the variation of c is examined in Figure 4,

where an E‐polarized plane wave is incident at an angle
’0 = p/4. Three cases were examined: c = 1, c = 2, and c = 3.
When c = 1 the RCS is so much smaller than for the other
two cases that it simply appears as a point at the origin of the
polar diagram. The observed behavior of higher RCS values
when c is increased agrees with what is expected from scat-
tering theory.
[34] Figure 5 shows the effect of the variable c values with

an H‐polarized plane wave with same incident angle.

5.2. Line Source Incidence

[35] The scattering effect of trench can be easily investi-
gated by looking at the square magnitude of the far‐field
coefficient (45)

 eð Þ �; u0; v0ð Þ ¼ P eð Þ �; u0; v0ð Þ�� ��2 ð57Þ

for an E polarized line source.
[36] Figure 6 shows the far‐field behavior for three dif-

ferent locations of the electric line source along the ellipse
u = 1, for a corner gap with c = 2 and u1 = 0.5. Our results
indicate that the most noticeable effect of an angular vari-
ation in the location of the line source is to change the
intensity of the far field pattern. Specifically, the intensity is
stronger when the line source is farther from both metallic
surfaces as one would expect. The direction of the maxi-
mum is scattered around the 50° direction and it varies
depending on the specific case.
[37] Similarly, the scattering effect of a magnetic line

source may be investigated by looking at the square mag-
nitude of the far‐field coefficient (55)

 hð Þ �; u0; v0ð Þ ¼ P hð Þ �; u0; v0ð Þ�� ��2 ð58Þ

for an H polarized line source, which is shown in Figure 7.
[38] One observes that a variation in the angular location

of the line source causes a variation in the intensity of the
far field pattern. Contrary to the E polarization case, the
intensity is stronger when the line source is closer to
the metallic surfaces. For each line source location, there are
two far field pattern maxima along the x and y axes, but the
one along the x axis is always stronger, as it was observed
for other cases that were not plotted in Figure 7.
[39] Table 1 provides some values of the normalized bistatic

RCS (18) for different values of c and of the incidence angle
’0; in all cases, v = 50p/180 and u1 = 0.5. These values were
obtained by summing the first 10 terms of the series and then
by comparing them with the sum of the first 20 terms of the
series. They are accurate up to the first six significant digits.

6. Conclusion

[40] An exact solution to the boundary value problem of a
trench of quarter‐elliptical cross section filled with DNG
metamaterial, slotted along its interfocal strip and flushmounted
in the corner of two metallic walls perpendicular to each other
has been obtained by separation of variables in the frequency
domain, for both plane wave and line source excitations.
Numerical results have been shown for the far‐field coefficient.
[41] Our result enriches the catalog of canonical solutions

for two‐dimensional boundary value problems, and may be
useful in validating computer codes that have been devel-
oped for complex geometries and penetrable media.

[42] Acknowledgments. This work was partially supported under the
USA DOD/AFOSR grant FA9550‐05‐1‐0443.
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