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Abstract—This paper considers the asymptotic behavior of the
outage probability of a two-source block-fading single-antenna
Gaussian interference channel in the high-SNR regime by means
of the diversity-multiplexing tradeoff. A general setting where the
user rates and the average channel gains are not restricted to
be symmetric is investigated. This asymmetric scenario allows to
analyze networks with “mixed” interference, i.e., when different
sources are at different distance from their intended destination,
that are not possible under the commonly used symmetric
assumption. Inner and outer bounds for the diversity are derived.
The outer bound is based on the recent “to within one bit”
capacity result of Etkin et al. for the unfaded Gaussian channel
and is a re-derivation of a known bound for which an error is
pointed out. The inner bound is based on the Han and Kobayashi
achievable region both without rate splitting and with a rate
spitting inspired by the “to within one bit” capacity result. An
analytical comparison of the diversity upper and lower bounds
for a general channel seems difficult; by numerical evaluations,
the two bounds are shown to coincide for a fairly large set of
channel parameters.

Index Terms—Interference channel; Diversity Multiplexing
Tradeoff;

I. INTRODUCTION

W IRELESS networks deal with two fundamental lim-
itations that make the communication problem chal-

lenging and interesting. On the one hand, simultaneous com-
munications from uncoordinated users create undesired inter-
ference. In today’s cellular and ad-hoc networks orthogonal-
ization techniques, such as F/T/C/SDMA (frequency, time,
code, space division multiple access), are employed to avoid
interference. However, although leading to simple network ar-
chitectures, interference avoidance techniques are suboptimal
in terms of achievable rates. On the other hand, the relative
strength of the intended signal and the interference signals
changes over time due to fading. This makes fixed channel
access strategies suboptimal, especially when the interferers
are very weak or very strong. Thus, understanding how to deal
simultaneously with interference and with fading holds the
key to the deployment of future broadband wireless networks.
The simplest model for analyzing these problems jointly is
the two-source Block-Fading Gaussian InterFerence Channel
(BF-GIFC).
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under award number CCF 0643954. The contents of this article are solely
the responsibility of the authors and do not necessarily represent the official
views of the NSF. This work was presented in part in [1], [2].

A. Past Work

The Han-Kobayashi (HK) [3] scheme with superposition
coding, rate splitting, joint decoding, and time sharing, gives
the largest known achievable rate region for a general IFC.
For Gaussian channels, with and without fading, achievable
regions are usually obtained by considering the HK scheme
with jointly Gaussian inputs and without time sharing.
Unfaded GIFC: Several outer bounds are known in the

literature for the GIFC without fading [4], [5], [6], [7], [8],
[9]. In particular, Etkin et al. [6] recently showed that a simple
rate splitting strategy in the HK scheme is “to within one bit”
of a novel outer bound region for any channel parameter. The
key idea of [6] is that the messages that are treated as noise at
some receiver are assigned a transmit power such that they are
received below the noise floor of the non-intended destination.
In doing so, roughly speaking, the effective noise floor at a
receiver is at most doubled, thus reducing the SNR (Signal to
Noise Ratio) by a factor of at most two, which gives a rate
penalty of at most one bit/sec/Hz.
Fading GIFC: GIFCs with fading were recently considered

in [10], [11], [12], [13], [14], [15], [1], [16], [17], [2], [18].
For fast-fading channels, the ergodic (Shannon) capacity is

the measure of the ultimate system performance. In [10], it was
shown that the ergodic sum-rate capacity of a K-source fading
GIFC scales linearly with the number of sources. In [11] the
capacity of parallel (multi-carrier) GIFCs with three sources
was considered and it was shown with an example that separate
encoding for each subchannel (carrier) is suboptimal. In [12],
the sum-rate capacity of a two-source strong ergodic fading
GIFCs was shown to be equal to that of the corresponding
compound MAC. In [13], power allocation policies based on
capacity inner and outer bounds for ergodic fading GIFCs
with perfect transmitter CSI (Channel State Information) were
derived.
For slow-fading channels, the proper measure of perfor-

mance is the outage capacity. In particular, the DMT (Diversity
Multiplex Tradeoff) proposed by Zheng and Tse [19] quanti-
fies the tradeoff between rate and outage probability in the
high-SNR regime. In [14] the DMT of symmetric two-source
BF-GIFCs was studied based on the “to within one bit” outer
bound of [6]. The authors of [14] claimed that the derived
DMT is actually achievable because the one bit penalty for
using a simple HK strategy vanishes at high SNR. However,
the achievability of the “to within one bit” outer bound of [6]
requires a very specific rate splitting in the HK scheme that
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depends on the instantaneous fading values. Hence, as pointed
out in [15], [1], [16], [17], [2] the DMT derived in [14] is
achievable only if the transmitters know the instantaneous
fading values perfectly. In the case of no CSIT1 the DMT
of [14] is an upper-bound on the actual DMT.
The DMT of BF-GIFCs without CSIT was investigated

in [15], [1], [16], [17], [2], [18]. All these parallel and
independent works report similar results, albeit with different
proof methods, and provide different insights into the problem.
In [15], it was proved that joint decoding of all messages at
all destinations achieves the DMT outer-bound of [14] in very
strong interference. In [1] a diversity lower bound based on
the HK region without rate splitting was shown to be optimal
in symmetric networks with sufficiently strong interference.
In [16], it was shown that multilevel superposition coding
achieves the DMT of any two-source BF-GIFC; however, the
diversity is explicitly evaluated only for symmetric channels
and for two-level superposition (which corresponds to the HK
scheme). In [17], it was shown the optimum DMT for channels
where the average SNR’s and the average INR’s (Interference
to Noise Ratio) are the same at all receivers can be achieved
if the transmitters are provided with a one-bit quantization for
each channel gain. In [2] we derived a diversity lower bound
based on the HK region with a rate splitting inspired by [6] and
showed it to be optimal for a fairly large class of asymmetric
networks. In [18], it was showed that the DMT of BF-GIFCs
reduces to that of a Multiple Access Channel (MAC) if the
transmitters are not aware of the channel gains and that rate
splitting can be ignored for asymptotic analysis if all SNRs
and INRs are the same.
The works [14], [15], [17], [18] focused on two-source

symmetric networks, that is to say, networks for which there
is a complete symmetry among the users in terms of average
SNR, average INR, transmit rate and diversity. In this work,
we consider fully asymmetric GIFCs.2 It should be pointed
out that our results are not just a simple generalization of
the symmetric network results. Our setting covers all possible
classes of channels and includes channels not possible under
the symmetric assumptions, such as the case of “mixed” inter-
ference. Mixed interference occurs in practice when sources
are at different distance from their intended destination and it
is the most practical scenario for wireless networks.

B. Contributions
In this work we assume a GIFC with independent Rayleigh

fading. Extensions so as to include correlated Rayleigh fading
can be carried out similarly to [20] (and references therein).3
Moreover, the analysis for the Rayleigh fading channel can
be easily extended to channels where the fading power gains
have a distribution with an exponential tail [21, eq.(47)].
1CSIT stands for CSI at the Transmitter and CSIR for CSI at the Receiver.
2Asymmetric scenarios were also considered in [16], even though analytical

closed form results were only provided for symmetric networks.
3In [20] it was shown that correlation does not affect the exponent of

the outage probability but only causes a “power offset” that depends on the
determinant of the fading covariance matrix. The same techniques can be
used in the context of this work to show that fading correlation does not
affect the DMT. Thus, without loss of generality, the DMT can be studied by
considering independent Rayleigh fading only.

We assume that the channel is block fading with perfect
CSIR and no CSIT. In this case, if the instantaneous fading
realization is such that the transmission rates cannot be reliably
decoded, the system is said to experience an outage [22]. In an
outage setting without CSIT, it is not clear whether a fixed rate
splitting strategy can actually achieve the DMT upper bound
of [14]–whose achievability “to within one bit” requires a rate
splitting that is a function of the instantaneous channel gains.
Since the capacity region of the interference channel is not

known in general, we bound the diversity by considering inner
and outer bounds on the capacity region. Our contributions can
be summarized as follows:
1) We derive a diversity upper bound by extending the
result of [14] to asymmetric networks, i.e., where the
user rates and the average SNRs and INRs are not
restricted to be the same. We also point out an error in
one of the expressions presented in [14], i.e., the outer
bound in [14] can be tightened.

2) We derive a diversity lower bound based on the HK
achievable region. We consider both the case without
rate splitting and the case with rate-spitting. Our rate
splitting is inspired by the recent “to within one bit”
capacity result of [6].

3) An analytical comparison of our diversity upper and
lower bounds seems difficult because of the many pa-
rameters involved and because of the complexity of
the diversity expressions. By numerical evaluations, we
show that for a very wide range of channel parameters,
our inner and outer bound meet. In particular, we show
that the proposed rate splitting improves the achievable
DMT for channels with weak and mixed interference
over the no-rate splitting case. The Z-IFC (where one
of the receivers does not experience interference) is
analyzed in detail.

The rest of the paper is organized as follows: Section II
presents the system model and the problem formulation;
Section III and IV present the DMT upper and lower bound,
respectively; Section V presents numerical results for sym-
metric and asymmetric channels, as well as for the Z-IFC;
Section VI concludes the paper.

II. CHANNEL MODEL
A two-source single-antenna Rayleigh fading GIFC in stan-

dard form has outputs:

Yu = Hu1X1 + Hu2X2 + Zu ∈ C, u ∈ {1, 2}, (1)

where, without loss of generality, the white Gaussian noise Zu

has zero mean and unit variance, and the input Xu is subject
to the average power constraint E[|Xu|2] ≤ 1, u ∈ {1, 2}.
Fig.1 shows the channel in (1). We assume that the channel is
block-fading and that each codeword spans one fading block
only, i.e., no coding across multiple blocks is allowed. The
receivers are assumed to perfectly know the fading realization
affecting their received signal for the current block, while the
transmitters only know the joint fading statistics. Moreover,
blocks are assumed to be long enough so that decoding is
possible if the rates are inside the capacity region of the
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Fig. 1. The two-user Gaussian Interference Channel model.

corresponding unfaded channel with gains given by the fading
realization on the block [22], which we shall refer to as
the instantaneous capacity region. An outage occurs if the
transmit rates are outside the instantaneous capacity region.
The evaluation of the outage probability in analytical form is a
difficult problem in a general. However, the outage probability
can be tightly approximated in the high-SNR regime by using
the DMT framework proposed in [19].

A. High-SNR parameterization
Before giving the precise definition of DMT we specify

what we mean by high-SNR in an asymmetric network. In
our analysis, we use the following parameterization. Let x be
a real-valued constant larger than one. The average power at
which the signal from source u is received at destination c is:

E[|HcuXu|2] = E[|Hcu|2]E[|Xu|2] = E[|Hcu|2] � xβcu , (2)

with βcu ∈ R+, (c, u) ∈ {1, 2}×{1, 2}. With (2), owing to the
normalization of the noise power and the unit transmit power,
the parameters {βcu}(c,u)∈{1,2}×{1,2} relate to the average
SNRs and INRs as follows: at receiver c, c ∈ {1, 2}, the
desired signal from source c is received with an average power
of E[|HccXc|2] = xβcc � SNRc, while the interfering signal
from source u = 3 − c is received with an average power of
E[|HcuXu|2] = xβcu � INRc.
A symmetric scenario corresponds to SNR1 = SNR2 =

SNR and INR1 = INR2 = INR; in this case, one can set
without loss of generality β11 = β22 = 1 and β21 = β12 =
α ≥ 0 [14]. In the symmetric case thus, x coincides with
SNR and INR = SNRα; the high-SNR regime is obtained by
letting x = SNR → +∞.
Here we consider a general asymmetric scenario with β11 �=

β22 and β21 �= β21; again the high-SNR regime is obtained
by letting x → +∞.
We also parameterize the fading gains as:

Hcu =
√

xβcu−γcu ejθcu. (3)

Since the fading gains are assumed to be independent, also the
pair of random variables (γcu, θcu), (c, u) ∈ {1, 2} × {1, 2},

are independent. Moreover, for a Rayleigh fading model, the
normalized fading power |Hcu|2/E[|Hcu|2] = x−γcu and the
phase ∠Hcu = θcu are independent, with θcu uniformly
distributed on [0, 2π] and x−γcu a negative exponential random
variable with unit mean.
In high-SNR, the rates scale logarithmically with SNR [19],

thus we parameterize them as:

Ru � log(1 + xru), ru ∈ R
+, u ∈ {1, 2}. (4)

Although we impose that the “channel gains” β’s in (2) and the
“rates” r’s in (4) should be non-negative, the results derived in
the following can be extended to any β’s and r’s by replacing
each β with [β]+ and each r with [r]+, where we defined
[t]+ = max{t, 0} for any t ∈ R.

B. Diversity

With the high-SNR parameterization in (2), (3), and (4),
the diversity, or the exponent of the outage probability at
high-SNR, is as follows. Since the transmitters do not have
CSIT, the transmission rates r1 and r2 are chosen only based
on the statistical properties of the channel, and not on the
instantaneous fading realization. This implies that, for a fixed
r1 and r2, there is a non-vanishing probability that a receiver
is not able to decode its intended message. The probability
of outage Pout(r1, r2) is the probability of decoding failure,
which occurs when the rates are outside the instantaneous
capacity region [22]. The diversity is thus given by:

d(r1, r2) = lim
x→+∞

− log(Pout(r1, r2))

log(x)
. (5)

Because the capacity region of the GIFC is not known in
general, we will bound it with known inner and outer bounds,
thus yielding upper and lower bounds on the diversity. The
capacity of the unfaded GIFC is outer bounded by the “to
within one bit” region of [6], indicated as RETW and defined
in (14). The best known achievable region for the GIFC is due
to Han and Kobayashi [3], referred to as RHK and defined
in (9). With this, we bound the outage probability as:

P[(γ11, γ12, γ21, γ22) �∈ RETW]

≤ Pout(r1, r2) ≤
P[(γ11, γ12, γ21, γ22) �∈ RHK],

and thus the diversity is bounded by:

dHK(r1, r2) ≤ d(r1, r2) ≤ dETW(r1, r2), (6)

where dETW(r1, r2) and dHK(r1, r2) are defined similarly
to d(r1, r2) in (5) but with P[(γ11, γ12, γ21, γ22) �∈ RETW]
and P[(γ11, γ12, γ21, γ22) �∈ RHK], respectively, instead of
Pout(r1, r2).
The rest of the paper is devoted to the evaluation of

dETW(r1, r2) (Theorem 1 in Section III) and dHK(r1, r2)
(Theorem 2 and Theorem 3 in Section IV). In Section V
we investigate by numerical evaluations for which subset of
(β11, β12β21, β22) one has dETW(r1, r2) = dHK(r1, r2) =
d(r1, r2).
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III. DIVERSITY UPPER BOUND
In this section we extend the diversity upper bound of [14] to

asymmetric networks and point out an error in [14, expression
for dd in Th.1].

theorem 1. The diversity of a BF-GIFC is upper bounded by:

dETW(r1, r2) = min
�∈{(16a),...,(16g)}

{d�},
where

d(16a) = [β11 − r1]
+, (7a)

d(16b) = [β22 − r2]
+, (7b)

d(16c) = fs(β21), (7c)
d(16d) = fs(β12), (7d)
d(16e) = fs(β21 + β21), (7e)
d(16f) = eq.(18), (7f)
d(16g) = eq.(18) with the role of the users swapped, (7g)

where

fs(x) � max
{

[β11 − rs]
+ + [β22 − rs]

+ + [x− rs]
+,

β11 + β22 − x− rs

}
|rs=r1+r2

. (8)

Proof: The proof can be found in Appendix A.
Remark 1: For symmetric networks, i.e., β11 = β22 = 1,

β12 = β21 = α and r1 = r2 = r (i.e., rs = 2r and
rf = rg = 3r), every term in (7) reduces to the corresponding
expression in [14, Th.1], except for d(16f) in (7f). Indeed, it is
straightforward to see that

d(16a),sym = d(16b),sym = [1− r]+

is like da in [14, Th.1], and that

d(16c),sym = d(16d),sym

= 2 max
{
[A]+ + [B]+, A + |B|}∣∣

A=1−2r,B=α
2
−r

,

is like db in [14, Th.1] given by

db = 2[1− r −min{r, α/2}]+ + [α− 2r]+.

Similarly, one can show that d(16e),sym coincides with dc

in [14], i.e., d(16e),sym is like d(16c),sym but with α replaced
by 2α. However, d(16f),sym = d(16g),sym is not equivalent to dd

in [14, Th.1]. In fact, it turns out that dd in [14] is not correct.
Consider the following numerical example: let r = 0.4 and
α = 0.5. The optimization problem for dd in [14] is:

dd = min{γ11 + γ12 + γ21 + γ22}
subject to
[[1− γ11]

+ − [α− γ12]
+]+ + max{[1− γ11]

+, [α− γ21]
+}

+ max{[α− γ12]
+, [1− γ22]

+ − [α− γ21]
+} ≤ 3r.

It can be easily verified that γ11 = 0.4, γ12 = γ21 = γ22 = 0 is
a feasible solution that gives dd ≤ (γ11+γ12+γ21, γ22) = 0.4.
However for r = 0.4 and α = 0.5, one has

dd = max
{
[1− 3r

2
]+ + [1− 3r]+ + [2α− 3r]+,

min
{
[3(1− r) −min{3r, 2α}]+,

max{1, 2− 3r −min{3r, 2α}}} = 0.8,

which cannot be correct because dd ≤ 0.4. Although dd in [14]
is not correct, the diversity upper bound in [14, Th.1] still holds
since the diversity is upper bounded by d(16f),sym which in turn
is upper bounded by dd.

IV. DIVERSITY LOWER BOUND

As an inner bound to the capacity region of a GIFC, we
consider the HK region:

RHK =
⋃

P=PQPW1,X1|QPW2,X2|Q

RHK

(
P
)
, (9)

where [23, Lemma 4]:

RHK

(
P
)

=
{
(R1, R2) ∈ R

2
+ :

R1 ≤ D1 (10a)
R2 ≤ D2 (10b)

R1 + R2 ≤ A1 + G2 (10c)
R1 + R2 ≤ G1 + A2 (10d)
R1 + R2 ≤ E1 + E2 (10e)

2R1 + R2 ≤ A1 + G1 + E2 (10f)
R1 + 2R2 ≤ E1 + A2 + G2 (10g)

R1 ≤ A1 + E2 (10h)
R2 ≤ E1 + A2

}
, (10i)

for:

A1 = I(X1; Y1|W1, W2, Q), A2 = I(X2; Y2|W1, W2, Q),

D1 = I(X1; Y1|W2, Q), D2 = I(X2; Y2|W1, Q),

E1 = I(X1, W2; Y1|W1, Q), E2 = I(X2, W1; Y2|W2, Q),

G1 = I(X1, W2; Y1|Q), G2 = I(X2, W1; Y2|Q).

The region RHK is difficult to evaluate because it requires
an optimization with respect to the joint distribution P =
PQPW1,X1|QPW2,X2|Q, where Q is a time-sharing random
variable and (W1, W2) has the meaning of common infor-
mation decoded at both receivers.4 In order to have a region
that can be easily evaluated, it is customary to assume jointly
Gaussian inputs and no time sharing. We follow this approach
and set Wu and Tu to be independent random variables, with
Wu a zero-mean Gaussian with variance Pu,c and Tu a zero-
mean Gaussian with variance Pu,p; we let Xu = Wu + Tu

such that the total power constraint is met with equality, i.e.,
Pu,p + Pu,c = 1, for u ∈ {1, 2}. We further parameterize the
ratio of the average private power to the total average power
for a given user u ∈ {1, 2} as

αu =
Pu,p

Pu,p + Pu,c
=

1

1 + xbu
∈ [0, 1], bu ∈ R. (11)

4The last two inequalities in RHK

`
P
´
can be removed without enlarging

the achievable region RHK, i.e., this is possible only if one takes the union
of RHK

`
P
´
over all possible input distributions P [23, Remark 3]. However,

for a fixed distribution P they cannot be removed.
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With (11), the average received power of user u’s private and
common messages, u ∈ {1, 2}, at receiver c, c ∈ {1, 2}, are

E[|Hcu|2]Pu,p = αu E[|Hcu|2] =
xβcu

1 + x+bu

E[|Hcu|2]Pu,c = (1− αu) E[|Hcu|2] =
xβcu

1 + x−bu
.

We consider the following cases:
1) (Subsection IV-B) the case without rate splitting, which
corresponds to setting either Wu = ∅ (i.e., private
message only, that is, interference is treated as noise)
or Wu = Xu (i.e., common message only, that is, inter-
ference is decoded jointly with the intended message);

2) (Subsection IV-C) inspired by [6], we consider the power
split b1 = β21 and b2 = β12, so that the average interfer-
ing private power at the non-intended receiver is below
the noise floor, that is, E[|Hcu|2]Pu,p = xbu

1+xbu
≤ 1, for

c �= u ∈ {1, 2}.

A. Simple time sharing

For future comparison, a TDMA strategy that let user 1
transmit alone for a fixed fraction τ ∈ [0, 1] of the time, and
let user 2 transmit for the remaining time achieves diversity
(see Appendix B):

dtdma = max
τ∈[0,1]

min{[β11 − r1/τ ]+, [β22 − r2/(1− τ)]+}.

It follows easily that dtdma > 0 only for r1/β11 + r2/β22 < 1
in which case the optimal τ ∈ [0, 1] solves β11 − r1/τ =
β22−r2/(1−τ). In the symmetric case dtdma,sym = [1−2r]+.

B. HK region without rate splitting

theorem 2. By considering the HK region with Gaussian
inputs, without time sharing, and without rate splitting, we
can lower bound the diversity of a BF-GIFC by:

dHK−wors = min
{

max{dNI1, dMAC1}, max{dNI2, dMAC2}
}
,

where

dNIu = [βuu − ru − βu,3−u]+,

dMACu = min{[βuu − ru]+,

[βu,3−u − (r1 + r2)]
+ + [βuu − (r1 + r2)]

+},

for u ∈ {1, 2} (i.e., “wors” stands for “without rate splitting”,
“NI” for “noisy interference” and “MAC” for “multiple
access channel”).

Proof: The proof can be found in Appendix C.

Remark 2: The diversity dHK−wors has the following in-
tuitive interpretation: each user u ∈ {1, 2} chooses the best
strategy between treating the interference as noise (dNIu) and
joint decoding (dMACu); the overall diversity without rate
splitting dHK−wors is dominated by the the worst user.

C. HK region with ETW-inspired rate splitting
theorem 3. By considering the HK region with Gaussian
inputs, without time sharing, and with a rate split inspired by
the “to within one bit” capacity result of [6], we can lower
bound the diversity of a BF-GIFC by:

dHK−etw = min
�∈{(20a),...,(20g)}

{d�},

where

d(20a) = [β11 − r1]
+, (12a)

d(20b) = [β22 − r2]
+, (12b)

d(20c) = max{[β22 − rs]
+ + [β21 − rs]

+,

β11 − rs + [β22 − rs]
+,

β11 − rs + (β22 − β21) + [β21 − rs]
+}} (12c)

d(20d) = max{[β11 − rs]
+ + [β12 − rs]

+,

β22 − rs + [β11 − rs]
+,

β22 − rs + (β11 − β12) + [β12 − rs]
+}} (12d)

d(20e) = min
α∈[0,1]

{
[β22 − β12 − αrs]

+ + [β21 − αrs]
+

+ [β11 − β21 − (1− α)rs]
+ + [β12 − (1 − α)rs]

+
}
,

(12e)

d(20f) min
α∈[0,1]

{
[β22 − β12 − αrf ]+ + [β21 − αrf ]+

+ min
{
[β11 + β12 − β21 − (1 − α)rf ]+,

max{[β11 − (1− α)rf ]+, [β11 − β21 + (1− α)rf

2
}

+ [β12 − (1 − α)rf ]+
}}

, (12f)

d(20g) = min
α∈[0,1]

{
[β11 − β21 − αrg ]+ + [β12 − αrg ]+

+ min
{
[β22 + β12 − β21 − (1 − α)rg]

+,

max{[β22 − (1− α)rg ]+, [β22 − β12 + (1 − α)rg

2
}

+ [β21 − (1 − α)rg]
+
}}

. (12g)

Proof: The proof can be found in Appendix D.

Remark 3: The actual achievable diversity with the HK
scheme in (6) satisfies

dHK ≥ max{dHK−wors, dHK−etw}.
In the online draft of this paper [24], we considered a general
rate split in the HK region. The resulting expression for the
diversity is quite complex and not particularly insightful. For
this reason we omitted it from this paper. In the next section we
show by numerical evaluations that the diversity lower bound
dHK−etw coincides with the diversity upper bound dETW for
a very large set of channel parameters (β11, β12, β21, β22).

V. NUMERICAL RESULTS
In this section we present numerical evaluations of the

diversity upper bound dETW in (15) from Theorem 1, the
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Fig. 2. Symmetric channel in weak interference: β11 = β22 = 1, β12 =
β21 = 1/2.

diversity lower bound without rate splitting dHK−wors in (19)
from Theorem 2, and the diversity lower bound with the rate
split inspired by the “to within one bit” result dHK−etw in (21)
from Theorem 3, for different values of the channel parameters
(β11, β12, β21, β22). For easy of exposition, we consider the
symmetric-rate case r1 = r2 = r and equal direct-link case
β11 = β22 = 1.

A. Symmetric channels
We first consider the fully symmetric channel with β12 =

β21 = β ≥ 0. Fig. 2 shows the diversity vs. the common
multiplexing gain r1 = r2 = r for β = 1/2. We notice
that the upper bound dETW and the lower bound dHK−etw

coincide at low rate, i.e., r ≤ 0.3 and at medium rate,
r ∈ [0.33, 0.4]. In general, we noticed that in weak interfer-
ence, i.e., β < 1, at low rate the most stringent constraint is
the “single user diversity” d(16a) = d(16b), at medium rate is
the “sum-rate diversity” d(16f) = d(16g). while at high rate is
d(16e), In strong interference, i.e., β ≥ 1, at low rate the most
stringent constraint is the “single user diversity” d(16a) = d(16b),
while at medium and high rate is the “sum-rate diversity”
d(16c) = d(16d), while at high rate is d(16e); in strong interference
rate splitting is not needed.
The difference between the diversity upper bound in [14]

and our dETW, with dETW being the tightest, can be seen for
example at β = 2/3.
In [15] it was shown that the HK scheme without rate

splitting is optimal for β ≥ 2. By simulation, we found that
dETW is achievable for symmetric channels by HK scheme
without rate splitting for β ≥ 3/2 = 1.5 (see also Fig. 5).

B. Asymmetric channels
In Figs. 3 (weak interference) and 4 (mixed interference) we

plot the diversity vs. the common multiplexing gain r1 = r2 =
r for asymmetric channels with β11 = β22 = 1 and β12 �= β21.
We notice that the upper bound dETW and the lower bound
dHK−etw coincide at low rate and at high rate; for sufficiently
strong interference upper and lower bound coincide for all
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beta11=1, beta12=0.5, beta21=0.66667, beta22=1

OUT−ETW
TDMA
WORS
HK−ETW

Fig. 3. Asymmetric channel in weak interference: β11 = β22 = 1, β12 =
1/2, β21 = 2/3.
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Fig. 4. Asymmetric channel in mixed interference: β11 = β22 = 1, β12 =
4/3, β21 = 2/3.
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Fig. 5. Shaded/solid-filled area: range of (β12, β21) where inner and outer
bound coincides for β11 = β22 = 1 at all rates.
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Fig. 6. Z-channel in weak interference: β11 = β22 = 1, β12 = 3/4, β21 =
0.

rates. In Fig. 5 the shaded/solid filled area corresponds to the
parameter range for (β12, β21) where inner and outer bound
coincides for β11 = β22 = 1 at all rates. We see that the simple
rate split in the HK region inspired by the “to within one bit”
capacity result is optimal for a fairly large set of parameters.
In very strong interference, i.e., min{β12, β21} ≥ β11+β22,

the interference is so strong that each user can completely
remove the unintended signal before decoding its own signal.
In this case the capacity region, and hence the diversity, is
the Cartesian product of the single user capacities without
interference.

C. The Z-IFC
Consider the channel with β21 = 0. In this case the outer

bound in (16) has only three active constraints: (16a), (16b)
and (16d) (it is easy to see that the remaining constraints are
redundant because β21 = 0 implies X21 = 0 in (16)). The
diversity is thus upper bounded by:

dETW|β21=0 = min
{
[β11 − r1]

+, [β22 − r2]
+, fs(β12)

}
where fs(β12) is defined in (8). Similarly, the inner bound
in (20) has only three active constraints: (20a), (20b) and (20d)
and the diversity is thus lower bounded by:

dHK−etw|β21=0 = min
{
[β11 − r1]

+, [β22 − r2]
+, gs(β12)

}
,

where

gs(β12) = max
{
[β11 − rs]

+ + [β12 − rs]
+,

[β11 − rs]
+ + β22 − rs,

β11 − rs + β22 − β12 + [β12 − rs]
+
}
.

In Fig. 6 we plot the diversity vs. the common multiplexing
gain r1 = r2 = r for a Z-channel with parameters β11 =
β22 = 1, β12 = 3/4, β21 = 0. We notice that in general,
lower and upper bound do not coincide at medium rate. At
low rate they coincide because both bounds are dominated by
the “single user diversity” d(16a) = d(16b), while at high rate
they coincide because both bounds are dominated by the “sum-
rate diversity” d(16d). As proved in Remark 6 in the Appendix,

d(20d) = d(16d) for min{β12, β22} ≤ rs (in the case of Fig. 6
this corresponds to r ≥ 3/8 = 0.3750.)

VI. CONCLUSION

In this paper, we analyzed the diversity-multiplexing trade-
off of two-source block-fading Gaussian interference channels
without channel state information at the transmitters. As
opposed to previous works, we considered generic asymmetric
networks. We found that, a simple inner bound based on the
HK scheme with fixed power split achieves the outer bound
based on perfect channel state information at the transmitter
for wide range of channel parameters.
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APPENDIX A
PROOF OF THEOREM 1

The “to within one bit” outer bounds of [6] for the weak,
the mixed and the strong interference regimes can be further
bounded by using the following inequality:

[
log

1 + SNRi

1 + INRj

]+

≤ log

(
1 +

SNRi

1 + INRj

)
, (13)

as originally proposed in [14, region Ro(G) in eq(1)] so as
to have a single outer bound region for all possible parameter
regimes (weak, mixed and strong). By using the high-SNR
parameterization in (2), (3), and (4), for each fading realization
γ = (γ11, γ12, γ21, γ22), the outer bound of [14, Ro(G) in
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eq(1)] can be rewritten as:

RETW =
{
(γ11, γ12, γ21, γ22) ∈ R

4 :

log(1 + xr1) ≤ log(1 + xβ11−γ11) (14a)
log(1 + xr2) ≤ log(1 + xβ22−γ22) (14b)

log(1 + xr1) + log(1 + xr2) ≤ log(1 +
xβ11−γ11

1 + xβ21−γ21
)

+ log(1 + xβ22−γ22 + xβ21−γ21) (14c)

log(1 + xr1) + log(1 + xr2) ≤ log(1 +
xβ22−γ22

1 + xβ12−γ12
)

+ log(1 + xβ11−γ11 + xβ12−γ12) (14d)
log(1 + xr1) + log(1 + xr2) ≤

log(1 + xβ12−γ12 +
xβ11−γ11

1 + xβ21−γ21
)

+ log(1 + xβ21−γ21 +
xβ22−γ22

1 + xβ12−γ12
) (14e)

2 log(1 + xr1) + log(1 + xr2) ≤ log(1 +
xβ11−γ11

1 + xβ21−γ21
)

+ log(1 + xβ11−γ11 + xβ12−γ12)

+ log(1 + xβ21−γ21 +
xβ22−γ22

1 + xβ12−γ12
) (14f)

log(1 + xr1) + 2 log(1 + xr2) ≤ log(1 +
xβ22−γ22

1 + xβ12−γ12
)

+ log(1 + xβ22−γ22 + xβ21−γ21)

+ log(1 + xβ12−γ12 +
xβ11−γ11

1 + xβ21−γ21
)
}

. (14g)

With the region in (14), we next evaluate dETW(r1, r2)
in (6). By using the Laplace’s integration method as in [19]
we obtain:

dETW(r1, r2) = min
γ∈(eRETW)c

{γ11 + γ12 + γ21 + γ22} (15)

where R̃ETW is the large-x approximation of RETW in (14)
given by

R̃ETW =
{
(γ11, γ12, γ21, γ22) ∈ R

4
+ : Xij � [βij − γij ]

+,

r1 ≤ X11 (16a)
r2 ≤ X22 (16b)
rs � r1 + r2 ≤ [X11 −X21]

+ + max{X21, X22} (16c)
rs � r1 + r2 ≤ [X22 −X12]

+ + max{X12, X11} (16d)
rs � r1 + r2 ≤ max{X12, X11 −X21}

+ max{X21, X22 −X12} (16e)
rf � 2r1 + r2 ≤ [X11 −X21]

+ + max{X11, X12}
+ max{X21, X22 −X12} (16f)

rg � r1 + 2r2 ≤ [X22 −X12]
+ + max{X22, X21}

+ max{X12, X11 −X21}
}
. (16g)

The optimization problem in (15) can be solved as follows:
since the complement of R̃ETW in (16) is the union of the
complement of the conditions (16a) through (16g), by applying

the method of [25] we can show that the diversity in (15)
evaluates to:

dETW(r1, r2) = min
�∈{(16a),...,(16g)}

{d�},

d� � β11 + β12 + β21 + β22+

−max{X11 + X12 + X21 + X22},
where the maximization for the problem d� is over {Xcu},
{c, u} ∈ {1, 2} × {1, 2}, subject to “the �-th subequation
of (16) is NOT satisfied”. We now proceed to evaluate each
d�, for � ∈ {(16a), . . . , (16g)}. Notice that here we index
the different diversity terms with the equation number of the
corresponding rate constraint.

A. Solution for d(16a) and d(16b)

The diversity d(16a) (corresponding to the constraint in (16a))
is:

d(16a) =β11 −max{X11}
subj. to 0 ≤ X11 ≤ β11, X11 ≤ r1,

=β11 −min{β11, r1} = max{0, β11 − r1}
=[β11 − r1]

+,

as in (7a).
The optimal value is attained by γ

(opt.(16a))
11 = [β11 − r1]

+.

Similarly to d(16a) but with the role of the users swaped,
the diversity d(16b) (corresponding to the constraint in (16b))
is given by:

d(16b) = [β22 − r2]
+,

as in (7b) and the optimal value is attained by γ
(opt.(16b))
22 =

[β22 − r2]
+.

B. Solution for d(16c), d(16d), and d(16e)

The diversity d(16c) (corresponding to the constraint in (16c))
involves the following linear program:

J = max{X11 + X21 + X22}
subj. to 0 ≤ X11 ≤ β11, 0 ≤ X21 ≤ β21, 0 ≤ X22 ≤ β22,

and to max{X11, X21}+ max{X22, X21} −X21 ≤ rs,

where rs � r1 + r2. We start by re-writing the last constraint
as follows:

max{X11, X21}+ max{X22, X21} ≤ rs + X21

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
X11 + X22 ≤ rs + X21

X21 + X22 ≤ rs + X21

X11 + X21 ≤ rs + X21

X21 + X21 ≤ rs + X21

⇐⇒
{

X11 + X22 ≤ rs + X21

max{X11, X21, X22} ≤ rs
,

which, together with X11 ≤ β11 and X22 ≤ β22, implies that
X11 + X22 is upper bounded by:

X11 + X22 ≤ min{rs + X21, min{rs, β11}+ min{rs, β22}}.
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With this, the optimization problem now becomes:

J = max
{

min
{
X21 + min{rs, β11}+ min{rs, β22},

rs + 2X21

}}
subj. to 0 ≤ X21 ≤ min{rs, β21}.

Because both functions in the min-espression for J achieve
their maximum value at X21 = min{rs, β21}, we have that
maxmin = min max and thus

J = min
{

min{rs, β11}+ min{rs, β22}+ min{rs, β21},
rs + 2 min{rs, β21}

}
.

Finally, by subtructing the above expression for J from β11 +
β21 + β22, we obtain:

d(16c) = fs(β21),

where:

fs(t) � max
{
[β11 − rs]

+ + [β22 − rs]
+ + [t− rs]

+,

β11 − rs + β22 − rs + |t− rs|
}

= max
{
[β11 − rs]

+ + [β22 − rs]
+ + [t− rs]

+,

β11 + β22 − t− rs

}
= max

{
0, β11 + β22 + t− 3rs,

max{β22 + t, β11 + t, β11 + β22} − 2rs,

max{β11, β22, t, β11 + β22 − t} − rs,
}
,

as in (7c).
The optimal value is attained by:

γ
(opt.(16c))
11 + γ

(opt.(16c))
22

= max
{
[β11 − rs]

+ + [β22 − rs]
+,

(β11 − rs) + (β22 − rs) + [rs − β21]
+
}
,

γ
(opt.(16c))
21 = [β21 − rs]

+.

The diversity d(16d) (corresponding to the constraint
in (16d)) is as d(16c) but with β21 replaced by β12, i.e., with
the role of the users swapped, that is:

d(16d) = fs(β12),

as in (7d).

The diversity d(16e) (corresponding to the constraint in (16e))
is as d(16c) but with β21 + β12 instead of β21, that is:

d(16e) = fs(β12 + β21),

as in (7e).

Remark 4: In Theorem 2, we show that when receiver 2
jointly decodes both messages, one of the terms in the achiev-
able diversity is

dsumrate MAC2 = [β21 − rs]
+ + [β22 − rs]

+.

It can be easily seen that dsumrate MAC2 = fs(β21) if

β11 ≤ min{β21, rs},
that is, in strong interference or for high rate. Similarly,
dsumrate MAC1 = fs(β12) if

β22 ≤ min{β12, rs}.

Remark 5: It can be easily seen that the function fs(x),
x ∈ R, is non-decreasing for

x ≥ xlw � rs − ([β11 − rs]
− + [β22 − rs]

−),

(with [x]+ = max{0, x} ≥ 0 and [x]− = max{0,−x} ≥ 0,
x ∈ R) and non-increasing for

x ≤ xup � rs,

i.e., it is actually flat for xlw < x < xup. This implies that:

min{fs(β12), fs(β21), fs(β12 + β21)}
= fs(β12 + β21)

for β12 + β21 ≤ xup,

= min{fs(max{β12, β21}), fs(β12 + β21)}
for β12 + β21 > xup and max{β12, β21} < xlw,

= fs(max{β12, β21})
for β12 + β21 > xup and xlw ≤ max{β12, β21} ≤ xup,

= min{fs(β12), fs(β21)}
for max{β12, β21} > xup, and min{β12, β21} < xlw,

= fs(min{β12, β21})
for max{β12, β21} > xup, and min{β12, β21} ≥ xlw.

This allows analytical comparison of inner and outer bounds
in some parameter regimes.

C. Solution for d(16f) and d(16g)

The diversity d(16f) (corresponding to the constraint in (16f))
involves the following linear program:

J = max{X + Y + Z + W}
subj. to 0 ≤ X ≤ β11, 0 ≤ W ≤ β12,

and to 0 ≤ Y ≤ β21, 0 ≤ Z ≤ β22,

and to max{X, Y }+ max{X, W}+
+ max{Z, Y + W} − (Y + W ) ≤ rf ,

with rf � 2r1 + r2. The last constraint can be rewritten as

2X −W − Y + Z ≤ rf

2X ≤ rf

X − Y + Z ≤ rf

X + W ≤ rf

X −W + Z ≤ rf

X + Y ≤ rf

Z ≤ rf

W + Y ≤ rf .
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This implies that, after substituting the optimal value for X ,
the optimization problem is now equivalent to maximizing
J(v), for v = (Y, W, Z), defined as:

J(v) = min{f1(v), f2(v)},
f0(v) = min{min{rf/2, β11}+ (Y + W ) + Z,

1

2
rf +

3

2
(Y + W ) +

1

2
Z},

f1(v) = min{f0(v), rf + 2Y + W, rf + Y + Z},
f2(v) = min{f0(v), rf + Y + 2W, rf + W + Z},

subject to v = (Y, W, Z) being inside the polymatroid:

W ≤ min{rf , β12}, Y ≤ min{rf , β21}, (17a)
Y + W ≤ min{rf , β12 + β21}, (17b)
Z ≤ min{rf , β22}. (17c)

Since all the functions in the min-expression for J are linear,
their maximum value is attained at a vertex of the polymatroid
in (17). In particular v1 = arg maxv f1(v) is:

v1 :W = min{β12, [rf − β21]
+},

Y = min{β21, rf},
Z = min{β22, rf},

(because all the functions in the min-expression that defines
f1(v) are simultaneously maximized by the vertex of the
polymatroid defined in (17) with the largest Y -coordiante) and
v2 = arg maxv f2(v) is:

v2 :W = min{β12, rf},
Y = min{β21, [rf − β12]

+},
Z = min{β22, rf}.

(because all the functions in the min-expression that defines
f2(v) are simultaneously maximized by the vertex of the
polymatroid defined in (17) with the largest W -coordiante)
Let v0 be defined as

v0 :W = Y = min{β12, β21, rf/2},
Z = min{β22, rf}.

Note that whenever W = Y we have that f1(v) = f2(v).
Since J is a linear program, and because of the symmetry of
the objective function in W and Y , one can easily show that

J = max{J(v0), J(v1), J(v2)}.
Finally, by subtructing the above expression for J from β11 +
β12 + β21 + β22, we obtain

d(16f) = β11 + β12 + β21 + β22 −max{J(v0), J(v1), J(v2)}.
(18)

The optimal value d(16f) is attained by v1 or v2 or v0 (with
X = J − (Y + W + Z)).

The diversity d(16g) (corresponding to the constraint
in (16g)) is as d(16f) but with the role of the users is swapped.

APPENDIX B
ACHIEVABLE DMT WITH TDMA

For a fixed τ ∈ [0, 1], the instantaneous capacity region with
TDMA is:

Rtdma =
{
R1 ≤ τ log

(
1 + |H11|2

)
,

R2 ≤ (1 − τ) log
(
1 + |H22|2

)}
.

The outage probability with independent Rayleigh fading is

Pout,tdma = 1− exp

(
−eR1/τ − 1

xβ11
− eR2/(1−τ) − 1

xβ22

)
≤ min

{
1,

eR1/τ − 1

xβ11
+

eR2/(1−τ) − 1

xβ22

}
.

Since the above upper bound on Pout,tdma is tight in high-
SNR, we have

dtdma = max
τ∈[0,1]

min{[β11 − r1/τ ]+, [β11 − r2/(1− τ)]+}.

APPENDIX C
PROOF OF THEOREM 2

Without rate splitting in the HK region, a user either sends
all private information or all common information. These two
modes of operation correspond to either treating the interfer-
ence as noise at the receiver, or performing joint decoding of
the intended message and of the interference as in a MAC
channel. We first consider these two cases separately and then
we derive the achievable diversity with the HK scheme without
rate splitting.

A. Treating interference as noise
Consider the case where the interference is treated as

noise at destination 1. User 1 can be successfully decoded
at receiver 1 by treating user 2 as noise if the fading gains are
in RNI1, where:

RNI1 =
{

(γ11, γ12, γ21, γ22) ∈ R
4 :

log(1 + xr1) ≤ log

(
1 +

xβ11−γ11

1 + xβ12−γ12

)}
.

By following the same approach used in the derivation of
the diversity upper bound, we have that the exponent of the
probability that user 1 cannot be decoded successfully at
receiver 1 by treating user 2 as noise is given by:

dNI1 = β11 + β12 −max{X11 + X12}
subj. to 0 ≤ X11 ≤ β11, 0 ≤ X12 ≤ β12,

and to [X11 −X12]
+ ≤ r1

= β11 + β12 −max{X11 + X12}
subj. to 0 ≤ X11 ≤ β11, 0 ≤ X12 ≤ β12,

and to X11 ≤ X12 + r1

= β11 + β12 −max{min{β11, X12 + r1}+ X12}
subj. to 0 ≤ X12 ≤ β12,

= β11 + β12 −min{β11 + β12, β12 + r1 + β12}
= [β11 − r1 − β12]

+.
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Similarly, the exponent of the probability that user 2 cannot
be successfully decoded at receiver 2 by treating user 1 as
noise is

dNI2 = [β22 − r2 − β21]
+.

B. Interference decoding
Consider now the case where receiver 2 behaves like a MAC

receiver. User 1 and user 2 can be successfully jointly decoded
at receiver 2 if the fading gains are in RMAC2, where:

RMAC2 =
{

(γ21, γ22) ∈ R
2 :

log(1 + xr2) ≤ log(1 + xβ22−γ22)

log(1 + xr1) + log(1 + xr2) ≤ log(1 + xβ21−γ21 + xβ22−γ22)
}
.

Notice that RMAC2 differ from the capacity region of a MAC
channel in that the rate constraint

log(1 + xr1) ≤ log(1 + xβ21−γ21)

is not present. This is so because receiver 2 is not interested
in the message sent by user 1; thus, an error in decoding the
message from user 1 does not constitute an error for receiver 2.
The exponent of the probability that both users cannot be
jointly decoded at receiver 2 is given by:

dMAC2 = min{[β22 − r2]
+, [β22 − rs]

+ + [β21 − rs]
+},

with rs � r1 + r2 and where the last argument of the min-
expression in dMAC2 can be derived as follows:

dsumrate MAC2 =β22 + β21 −max{X21 + X22}
subj. to 0 ≤ X22 ≤ β22, 0 ≤ X21 ≤ β21,

and to max{X22,X21} ≤ rs,

= β22 + β21 −min{β21, rs} −min{β22, rs}
= [β22 − rs]

+ + [β21 − rs]
+.

Similarly, the exponent of the probability that user 1 and
user 2 cannot be successfully jointly decoded at receiver 1 is

dMAC1 = min{[β11 − r1]
+, [β11 − rs]

+ + [β12 − rs]
+}.

C. Diversity without rate splitting
Without rate splitting, we have:

dHK−wors = max{d00, d01, d10, d11}, (19)

where “wors” stands for “without rate splitting” and where:
• d11 is the diversity when both sources send only private
information (which is sum-rate optimal for the unfaded
GIFC with very weak interference [7]) given by:

d11 = min{dNI1, dNI2}.
• d10 (and similarly for d01 but with the role of the
users swapped) is the diversity when user 1 sends only
private information and the user 2 sends only common
information (which is sum-rate optimal for the unfaded
GIFC with mixed interference [26]) given by:

d10 = min{dNI1, dMAC2}.

• d00 is the diversity when both sources send common
information (which is optimal the unfaded GIFC with
strong interference [27], [28], [29]) given by:

d00 = min{dMAC1, dMAC2}.
Since

max{min{a, b1}, min{a, b2}} = min{a, max{b1, b2}},
we further rewrite dHK−wors in (19) as

dHK−wors

= max
{

min{dNI1, dNI2}, min{dNI1, dMAC2},
min{dMAC1, dNI2}, min{dMAC1, dMAC2}

}
= max

{
min{dNI1, max{dNI2, dMAC2}},
min{dMAC1, max{dNI2, dMAC2}}

}
= min

{
max{dNI1, dMAC1}, max{dNI2, dMAC2}

}
,

QED.

APPENDIX D
PROOF OF THEOREM 3

The HK region with Gaussian inputs, without time sharing
and with a fixed rate split (b1, b2) is as in (10) with

A1 = log

(
1 +

xβ11−γ11

1+x+b1

1 + xβ12−γ12

1+x+b2

)
,

D1 = log

(
1 +

xβ11−γ11

1 + xβ12−γ12

1+x+b2

)
,

E1 = log

(
1 +

xβ11−γ11

1+x+b1
+ xβ12−γ12

1+x−b2

1 + xβ12−γ12

1+x+b2

)
,

G1 = log

(
1 +

xβ11−γ11 + xβ12−γ12

1+x−b2

1 + xβ12−γ12

1+x+b2

)
,

and the quantities A2, D2, E2 and G2 defined similarly but
with the role of the users swapped.
Without loss of generality, we can take b1 ≥ 0 and b2 ≥ 0;

with this, the large-x approximation of the achievable region
is:

R̃HK(b1, b2) =
{
(γ11, γ12, γ21, γ22) ∈ R

4
+ :

r1 ≤ d1, (20a)
r2 ≤ d2, (20b)
rs � r1 + r2 ≤ a1 + g2, (20c)
rs � r1 + r2 ≤ g1 + a2, (20d)
rs � r1 + r2 ≤ e1 + e2, (20e)
rf � 2r1 + r2 ≤ a1 + g1 + e2 (20f)
rg � r1 + 2r2 ≤ a2 + g2 + e1 (20g)
r1 ≤ a1 + e2, (20h)

r2 ≤ a2 + e1,
}
, (20i)
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with

a1 = [T11 − T12]
+,

d1 = [X11 − T12]
+,

e1 = [max{T11, X12} − T12]
+,

g1 = [max{X11, X12} − T12]
+,

Xij � [βij − γij ]
+, Tij � [Xij − bj]

+,

and the quantities a2, d2, e2 and g2 defined similarly but with
the role of the users swapped.
We consider here the rate split b1 ≥ β21 and b2 ≥ β12

inspired by [6]; with this choice T21 = T12 = 0; we denote the
resulting region as RHK−etw. The evaluation of the diversity
lower bound dHK−etw can be carried out similarly to the
evaluation of the diversity upper bound dETW in the previous
section, that is:

dHK−etw(r1, r2) = min
γ∈(eRHK−etw)c

{γ11 + γ12 + γ21 + γ22},
(21)

where R̃HK−etw is the large-x approximation of the region
RHK−etw given by (20) with

a1 = [X11 − b1]
+,

d1 = [X11]
+ = [max{X11 − b1, X11}]+,

e1 = [max{X11 − b1, X12}]+,

g1 = [max{X11, X12}]+,

and the quantities a2, d2, e2 and g2 defined similarly but with
the role of the users swapped. Notice that:

a1 ≤ min{d1, e1} ≤ max{d1, e1} ≤ g1.

We finally have:

dHK−etw = max
b1≥β21,b2≥β12

min
�∈{(20a),...,(20i)}

{d�},

d� � β11 + β12 + β21 + β22

−max{X11 + X12 + X21 + X22},

where the maximization of d� is over {Xcu}, (c, u) ∈ {1, 2}×
{1, 2}, subject to “�-the subequation of (20) is NOT satisfied”.
The optimization problems for d�, � ∈ {(20a), . . . , (20i)} are
as follows.

A. Solution for d(20a) and d(20b)

The diversity d(20a) and d(20b) (corresponding to the con-
straint in (20a) and (20b), respectively) are:

d(20a) = [β11 − r1]
+,

and
d(20b) = [β22 − r2]

+,

as for the upper bound.

B. Solution for d(20c) and d(20d)

The diversity d(20c) (corresponding to the constraint in (20c))
involves the following linear program:

J =max{X22 + X21 + X11}
subj. to 0 ≤ X22 ≤ β22,

and to 0 ≤ X21 ≤ β21, 0 ≤ X11 ≤ β11,

and to max{X22, X21}+ [X11 − b1]
+ ≤ rs,

with rs � r1 + r2. The last constraint can be rewritten as:

X11 + X22 ≤ rs + b1

X11 + X21 ≤ rs + b1

max{X22, X21} ≤ rs.

This implies that the objective function (after maximization
over X11) can be expressed as:

J = max min{β11 + X21 + X22,

rs + b1 + X22, rs + b1 + X21},
where the maximization is over:

X22 ≤ min{rs, β22}, X21 ≤ min{rs, β21}.
Since all the functions in the min-expression for J are si-
multaneously maximized by X22 = min{rs, β22} and X21 =
min{rs, β21}, we have that max min = min max and thus

d(20c) = β22 + β21 + β11+

−min
{
β11 + min{rs, β22}+ min{rs, β21},

rs + b1 + min{rs, β22},
rs + b1 + min{rs, β21}

}
.

= max{[β22 − rs]
+ + [β21 − rs]

+,

β11 − rs + [β22 − rs]
+ + (β21 − b1),

β11 − rs + (β22 − b1) + [β21 − rs]
+}}.

The optimal values are:

γ
(opt.(20c))
11 = max{0, β11 − b1 − [rs − β22]

+,

β11 − b1 − [rs − β21]
+},

γ
(opt.(20c))
22 = [β22 − rs]

+,

γ
(opt.(20c))
21 = [β21 − rs]

+.

The diversity d(20d) (corresponding to the constraint
in (20d)) is as d(20c) but with the role of the users reversed.

Remark 6: The function d(20c) is non-incraesing in b1, hence
it attains its maximum over {b1 ≥ β21} at b1 = β21. For b1 =
β21, the upper bound d(16c) and lower bound d(20c) coincide in
the following cases: (a) when β21 ≤ rs, since γ

(opt.(20c))
21 =

γ
(opt.(16c))
21 = 0, which implies

d(20c)|β21≤rs
= max{[β22 − rs]

+, β11 − rs + [β22 − rs]
+,

β11 − rs + β22 − β21}
= max{[β11 − rs]

+ + [β22 − rs]
+,

β11 + β22 − 2rs + |β21 − rs|}
= d(16c)|β21≤rs

;
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(b) when β21 > rs and

[β11 − rs]
+ + [β22 − rs]

+ + β21 − rs

= max{β11 − rs, β21 − rs}+ [β22 − rs]
+,

that is, when

[β11 − rs]
+ = [β11 − β21]

+ ⇐⇒ β11 ≤ min{β21, rs} = rs.

By combining these two conditions together, we have that
d(16c) = d(20c) when b1 = β21 if min{β21, β11} ≤ rs. This
can be seen for example in Fig. 4, line segment with slope
−2, where lower and upper bound coincide for rs = 2r ≥
min{2/3, 1} ⇐⇒ r ≥ 1/3.

Similarly, d(20d) = d(16d) for b2 = β12 if min{β12, β22} ≤
rs.

C. Solution for d(20e)

The diversity d(20e) (corresponding to the constraint in (20e))
involves the following linear program:

J =max{X22 + X21 + X11 + X12}
subj. to 0 ≤ X22 ≤ β22, 0 ≤ X21 ≤ β21,

and to 0 ≤ X11 ≤ β11, 0 ≤ X12 ≤ β12,

and to max{X11 − b1, X12}+
+ max{X22 − b2, X21} ≤ rs.

If we rewrite the optimization domain as:

X22 ≤ β22, X21 ≤ β21, max{X22 − b2, X21} ≤ αrs,

X11 ≤ β11, X12 ≤ β12, max{X11 − b1, X12} ≤ (1− α)rs,

α ∈ [0, 1],

we immediately obtain:

J = max
α∈[0,1]

{
min{β22, b2 + αrs}+ min{β21, αrs}+

+ min{β11, b1 + (1− α)rs}+ min{β12, (1− α)rs}
}
,

that is:

d(20e) = min
α∈[0,1]

{
[β22 − b2 − αrs]

+ + [β21 − αrs]
+

+ [β11 − b1 − (1 − α)rs]
+ + [β12 − (1− α)rs]

+
}
.

Again, d(20e) is a non-increasing function in (b1, b2), hence
it attains its maximum over {b1 ≥ β21, b2 ≥ β12} at b1 = β21

and b2 = β12. For b1 = β21 and b2 = β12, one can easily show
that the optimal α is among the elements of the following set:

α(opt.(20e))rs ∈ {0, rs, β22 − β12, β21,

− β11 + β21 + rs,−β12 + rs}.

Remark 7: Because we do not have a closed expression for
d(20e), it is difficult to compare d(20e) with d(16e).

D. Solution for d(20f) and d(20g)

The diversity d(20f) (corresponding to the constraint in (20f))
involves the following linear program:

J =max{X22 + X21 + X11 + X12}
subj. to 0 ≤ X22 ≤ β22, 0 ≤ X21 ≤ β21,

and to 0 ≤ X11 ≤ β11, 0 ≤ X12 ≤ β12,

and to max{X11, X12}+ max{X11 − b1, 0}+
+ max{X22 − b2, X21} ≤ rf � 2r1 + r2.

If we rewrite the last constraints as:

max{X22 − b2, X21} ≤ αrf ,

max{X11, X12}+ [X11 − b1]
+ ≤ (1 − α)rf ,

α ∈ [0, 1],

we obtain that the optimization domain is:

X22 ≤ min{β22, b2 + αrf},
X21 ≤ min{β21, αrf},
X11 ≤ min{β11, (1− α)rf ,

b1 + (1− α)rf

2
},

X12 ≤ min{β12, (1− α)rf},
X11 + X12 ≤ b1 + (1 − α)rf ,

α ∈ [0, 1],

and we immediately obtain:

J = max
α∈[0,1]

{
min{β22, b2 + αrf}+ min{β21, αrf}+

+ min
{
b1 + (1− α)rf ,

min{β11, (1− α)rf ,
b1 + (1 − α)rf

2
}+

+ min{β12, (1− α)rf}
}}

,

that is,

d(20f) = min
α∈[0,1]

{
[β22 − b2 − αrf ]+ + [β21 − αrf ]++

+ max
{
β11 + β12 − β21 − (1− α)rf ,

[β11 −min{(1− α)rf ,
b1 + (1− α)rf

2
}]++

+ [β12 − (1− α)rf ]+
}}

.

Again, d(20f) is a non-increasing function in (b1, b2), hence
it attains its maximum at b1 = β21 over {b1 ≥ β21, b2 ≥ β12}
at b1 = β21 and b2 = β12. For b1 = β21 and b2 = β12, one
can easily show that the optimal α is among the elements of
the following set:

α(opt.(20f))rf ∈ {0, rf , β22 − β12, β21, rf + β21 − β12 − β11,

rf − β11, rf + β21 − 2β11, rf − β12}.

The diversity d(20g) (corresponding to the constraint
in (20g)) is as d(20f) but with the role of the users reversed.

Remark 8: Because we do not have a closed expression for
d(20f), it is difficult to compare d(20f) with d(16f).
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E. Solution for d(20h) and d(20i)

The diversity corresponding to (20h) involves the linear
program:

J = max{X22 + X21 + X11}
subj. to 0 ≤ X22 ≤ β22, 0 ≤ X21 ≤ β21,

and to 0 ≤ X11 ≤ β11,

and to [X11 − b1]
+ + [max{X22 − b2, X21}]+ ≤ r1.

If we rewrite the last constraints as:

X11 + X22 ≤ r1 + b1 + b2

X11 + X21 ≤ r1 + b1

X11 ≤ r1 + b1

X22 ≤ r1 + b2

X21 ≤ r1,

the optimization domain is equivalent to:

X11 ≤ min{β11, r1 + b1 −X21, r1 + b1 + b2 −X22}
X22 ≤ min{β22, r1 + b2}
X21 ≤ min{β21, r1},

Hence, the optimization problem is:

J = max{min{X22 + X21 + β11,

X22 + r1 + b1, X21 + r1 + b1 + b2}}
subj. to 0 ≤ X22 ≤ min{β22, r1 + b2},
and to 0 ≤ X21 ≤ min{β21, r1}.

Because all functions in the min-espression for J achieve
their maximum value at X

(opt.(20h))
21 = min{β21, r1} and

X
(opt.(20h))
22 = min{β22, r1 + b2} we have that max min =

min max. Finally, by subtructing the optimal expression for
J from β11 + β21 + β22 we obtain the desired result. Again,
d(20h) is a non-increasing function in (b1, b2), hence it attains
its maximum at b1 = β21 and b1 = β12; for these values we
get:

d(20h) = β22 + β12 + β11 − J = max
{

[β22 − r1 − β12]
+ + [β21 − r1]

+,

[β22 − r1 − β12]
+ + (β21 − r1) + (β11 − β21),

(β22 − r1 − β12) + [β21 − r1]
+ + (β11 − β21)

}
.

The diversity d(20i) (corresponding to the constraint in (20i))
is as d(20h) but with the role of the users reversed.

Remark 9: Notice that one of the terms in max-expression
that defines d(20h) is [β11−r1]

+, which equals d(20a). The same,
but with the role of the users swapped, applies to d(20i). This
implies that the diversity terms d(20h) and d(20i) are never the
minimum in the expression that defines dHK−etw in Theorem 3
and can thus be dropped.
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