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A translation to Fortran 90 of Gertrude Blanch’s algorithm to compute the expansion coefficients
of the series that represent Mathieu functions is presented. Its advantages are portability, higher
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1. INTRODUCTION

Some problems of mathematical physics find their natural formulation in the elliptic
cylinder coordinate system and, therefore, require use of Mathieu functions [Math-
ieu 1868]. These functions have been studied by many authors, including Stratton
[1941], Meixner and Schäfke [1954], and McLachlan [1964]. The computation of
Mathieu functions is not a trivial problem and software packages that provide sup-
port to compute them have been developed by, among others, Clemm [1969; 1970],
Hodge [1972], Frisch [1972], Baker [1992], Shirts [1993a], [1993b], IMSL [1994],
Zhang and Jin [1996], Alhargan [2001], and Mathematica [2003].

This article presents the translation to Fortran 90 of the algorithm developed by
Gertrude Blanch [1966] to compute the expansion coefficients of the series that de-
fine Mathieu functions. In addition, this article presents a subroutine that performs
validations of the translation and a sample driver program for its use.

There are multiple motivations for this work. Blanch’s algorithm is associated
with a very detailed numerical analysis that justifies its convergence; therefore, in
this regard, it should be preferred over other algorithms because of the documenta-
tion available for it. In addition, these subroutines are written in Fortran 90, which
is used by many scientists, and the subroutines are written to allow for the change

Author’s address: Department of Electrical and Computer Engineering (MC 154), University of
Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7053, Fax: +1 (312) 996 6465,
email: erricolo@ece.uic.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
© 2001 ACM 1529-3785/2001/0700-0001 $5.00

ACM Transactions on Mathematical Software, Vol. 2, No. 3, 09 2001, Pages 1–13.



2 · Danilo Erricolo

of precision in order to improve portability among different platforms. These sub-
routines compute Mathieu functions according to three different normalizations: 1)
the one introduced by Stratton, Morse and Chu [Stratton 1941], which is used in
many other works such as in Bowman et al. [1987]; 2) the Goldstein-Ince normal-
ization [Goldstein 1927], [Ince 1932], used for example in [Abramovitz and Stegun
1970]; and 3) the neutral normalization.

2. MATHIEU FUNCTIONS

Many different notations have been introduced to identify Mathieu functions. The
notation adopted in this work is the one of Blanch and Rhodes [1955] (which is
also available in [National Bureau of Standards 1951] and [Staff of the computation
Laboratory 1967]) and Stratton [1941], which is justified by its usefulness in many
applications. Mathieu functions come from the solution of Mathieu’s differential
equation

d2y

dx2
+ (b− s cos2 x)y = 0. (1)

Here only positive real values of s will be considered. When s = 0 the solutions of
Mathieu’s equation are simple and of the form y(x) = y(0) exp (±i

√
bx). When s >

0, Mathieu’s equation contains a periodic coefficient. In many physical applications
only periodic solutions are of interest and for a given s there exist two countable
sets of values of b for which equation (1) admits periodic solutions. These values
of b are called characteristic values and, depending upon the set, the period of
the solution is either π or 2π. There are four kinds of periodic solutions of (1)
associated with the characteristic values b:

Se2r(s, x) =
∞∑

k=0

De(2r)
2k cos 2kx (of period π) (2)

Se2r+1(s, x) =
∞∑

k=0

De(2r+1)
2k+1 cos(2k + 1)x (of period 2π) (3)

So2r(s, x) =
∞∑

k=1

Do(2r)
2k sin 2kx (of period π) (4)

So2r+1(s, x) =
∞∑

k=0

Do(2r+1)
2k+1 sin(2k + 1)x (of period 2π) (5)

Because of their periodicity and their meaning in physical applications, these
functions are also called Mathieu angular functions and they are computed by
the function MathieuAngular. The Mathieu angular functions are indicated by
Stratton with the symbols Sen(s, cosx) and Son(s, cosx). Unfortunately, this is a
misleading notation because it would suggest, for example, that Son(s, cos x) would
be an even function of x, which is clearly wrong given the definitions (4-5). However,
the notation of Blanch adopted in this work avoids any misinterpretation.

If x is replaced by ix in (1) one obtains

d2y

dx2
− (b− s cosh2 x)y = 0, (6)
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which is known as Mathieu’s modified equation. The functions Sen(s, ix) and
Son(s, ix) clearly satisfy (6) for the same characteristic values b, but (2)-(5) con-
verge slowly. Therefore the solutions of (6) are written in terms of rapidly con-
verging series of products of Bessel functions associated with the same coefficients
Dem,Dom of the angular functions. These new solutions, proportional to Sen(s, ix)
and Son(s, ix), are referred to as Mathieu modified functions of the first kind. Their
meaning in many physical applications suggests the additional name of Mathieu ra-
dial functions of the first kind. Their expressions are:

Re(1)
2r (s, x) =

(−1)r

De(2r)
0

√
π

2

∞∑

k=0

(−1)kDe(2r)
2k Jk(u)Jk(v), (7)

Re(1)
2r+1(s, x) =

(−1)r

De(2r+1)
1

√
π

2

∞∑

k=0

(−1)kDe(2r+1)
2k+1 [Jk+1(u)Jk(v) + Jk(u)Jk+1(v)] ,

(8)

Ro(1)
2r (s, x) =

(−1)r

Do(2r)
2

√
π

2

∞∑

k=1

(−1)kDo(2r)
2k [Jk+1(u)Jk−1(v)− Jk+1(v)Jk−1(u)] ,

(9)

Ro(1)
2r+1(s, x) =

(−1)r

Do(2r+1)
1

√
π

2

∞∑

k=0

(−1)kDo(2r+1)
2k+1 [Jk+1(u)Jk(v)− Jk(u)Jk+1(v)] ,

(10)

where

u =
√

s

2
ex, v =

√
s

2
e−x. (11)

The radial functions of the first kind have parity either even, Re(1)
n , or odd, Ro(1)

n . A
second set of solutions for the modified Mathieu’s equation is obtained by replacing
the Bessel functions Jm(u) in the previous equations with the Bessel functions
Ym(u). This substitution yields the modified functions of the second kind. In many
physical applications they are referred to as radial functions of the second kind.
They have parity either even, Re(2)

n , or odd, Ro(2)
n :

Re(2)
2r (s, x) =

(−1)r

De(2r)
0

√
π

2

∞∑

k=0

(−1)kDe(2r)
2k Yk(u)Jk(v), (12)

Re(2)
2r+1(s, x) =

(−1)r

De(2r+1)
1

√
π

2

∞∑

k=0

(−1)kDe(2r+1)
2k+1 [Yk+1(u)Jk(v) + Yk(u)Jk+1(v)] ,

(13)

Ro(2)
2r (s, x) =

(−1)r

Do(2r)
2

√
π

2

∞∑

k=1

(−1)kDo(2r)
2k [Yk+1(u)Jk−1(v)− Yk−1(u)Jk+1(v)] ,

(14)

Ro(2)
2r+1(s, x) =

(−1)r

Do(2r+1)
1

√
π

2

∞∑

k=0

(−1)kDo(2r+1)
2k+1 [Yk+1(u)Jk(v)− Yk(u)Jk+1(v)] .

(15)
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Similar to Hankel functions, one defines modified functions of the third and fourth
kinds. They are also referred to as radial functions and they have even parity

Re(3)
n = Re(1)

n + iRe(2)
n , (16)

Re(4)
n = Re(1)

n − iRe(2)
n , (17)

and odd parity

Ro(3)
n = Ro(1)

n + iRo(2)
n , (18)

Ro(4)
n = Ro(1)

n − iRo(2)
n . (19)

All Mathieu radial functions are computed by the function MathieuRadial.

3. THE COMPUTATION OF MATHIEU FUNCTIONS

The computation of both angular and radial Mathieu functions occurs in three steps
1) for a given order n and a parameter s the Mathieu eigenvalue b is generated; 2)
the expansion coefficients Dem or Dom are computed using n, s, and b; and, 3) the
series expansions (2)-(5), (7)-(10), (12)-(19) are evaluated.

The main contribution of the present work is the subroutine Blanch Coefficients,
which produces the expansion coefficients according to Blanch’s algorithm [1966].
Her algorithm exploits recurrence relations that are obtained for the coefficients
Dem,Dom when expressions (2)-(5) are introduced into Mathieu’s equation (1). The
four periodic solutions (2)-(5) produce four different recurrence relations among the
coefficients. As an example, one particular recurrence relation is obtained when (2)
is introduced into (1) and cos2 x is replaced by (1 + cos 2x)/2 yielding

De2 − V0De0 = 0 (20)
De4 − V2De2 + 2De0 = 0 (21)

Dem+2 + Dem−2 − VmDem = 0, Vm =
4b− 2s− 4m2

s
, m ≥ 3. (22)

By introducing the definitions

Gm = Dem/Dem−2 (23)
Hm = 1/Gm (24)

the previous recurrence relations define a forward rule to generate the coefficients
Gm. Introducing the notation Gm,1 to refer to the coefficients Gm produced using
the forward rule, the recurrence relations (20)-(22) are written as

G2,1 = V0 (25)
Gm,1 = Vm−2,1 − cm−4Hm−2,1, with c0 = 2 and cm = 1,m ≥ 2. (26)

The coefficients Gm may also be generated using a backward rule that is expressed
using a continuous fraction

Gm,2 =
cm−2

Vm − · · ·
1

Vm+2 − · · · (27)
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Since each Gm may be generated in two independent ways, in particular, the value
G2,2 obtained from (27) must equal V0 from (25) so that

G2,1 = V0 =
2

V2 −G4,2
= G2,2 (28)

The previous relation is a sufficient and necessary condition that must hold when
b is the eigenvalue of Mathieu’s equation.

Blanch’s algorithm consists in generating two sequences Gm,1(b) and Gm,2(b).
The two sequences are joined at m = m1, which is determined so that the numer-
ical precision is maximized. This is possible because Blanch proved that b is an
eigenvalue of Mathieu’s equation if and only if the difference

Gm,1(b)−Gm,2(b) = 0 (29)

for some m for which Gm,1(b) is finite. Hence, the two sequences may be joined not
only at m = 2, as in (28), but also at other convenient values. Blanch’s method
determines the value m1 so that |Gm1,1(b)| and |Gm1,2(b)| are of the same order of
magnitude. Further details on Blanch’s algorithm are found in [Blanch 1966].
Blanch Coefficients normalizes the expansion coefficients according to three

different methods.

1. Stratton, Morse, Chu normalization. The expansion coefficients satisfy
∞∑

k=0

De2k+p = 1,

∞∑

k=0

(2k + p)Do2k+p = 1, p = 0, 1 (30)

2. Goldstein-Ince normalization The expansion coefficients satisfy

Se2r : 2
(
De(2r)

0

)2

+
∞∑

k=1

(
De(2r)

2k

)2

= 1, (31)

Se2r+1 :
∞∑

k=0

(
De(2r+1)

2k+1

)2

= 1 (32)

So2r :
∞∑

k=1

(
Do(2r)

2k

)2

= 1 (33)

So2r+1 :
∞∑

k=0

(
Do(2r+1)

2k+1

)2

= 1 (34)

3. Neutral normalization. Once a set of expansion coefficients has been obtained,
all the coefficients are divided by the largest one so that the numerically largest
coefficient becomes one.

4. SOFTWARE ASSOCIATED WITH THIS TRANSLATION

The software associated with this translation is organized in three modules and one
driver program. The main contribution of this work is the subroutine Blanch Coefficients,
which is contained in the module Blanch.

In addition to the computation of the expansion coefficients, one must generate
the Mathieu eigenvalue and also evaluate the series expansions. The subroutines
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that perform the eigenvalue computation are taken, with modifications, from Zhang
and Jin [1996] and are located in the module Mathieu Zhang Jin. The following
modifications were introduced to translate these subroutines to Fortran 90. All
implicit none statements were removed and all variables have been explicitly
declared. The kind function was introduced to allow for a change of the precision
of all variables. Most of the GOTO statements were removed. The subroutines that
evaluate the series expansions are contained in the module Blanch.

The driver program, driver, contains examples that show how to use the various
subroutines. The module constants contains definitions used by the other two
modules and the driver program.

5. VALIDATION AND COMPARISONS WITH OTHER EXISTING ALGORITHMS

In this section, we validate the expansion coefficients computed by Blanch Coefficients
by making comparisons with three other methods. The comparisons are based on
the wronskian property

W1 = Re(1)
n (s, x)

d

dx
Re(2)

n (s, x)− Re(2)
n (s, x)

d

dx
Re(1)

n (s, x) = 1 (35)

W2 = Ro(1)
n (s, x)

d

dx
Ro(2)

n (s, x)− Ro(2)
n (s, x)

d

dx
Ro(1)

n (s, x) = 1 (36)

Since the wronskian quantities W1 and W2 must equal one, the accuracy in the
evaluation of the radial functions is assessed by computing the differences W1 − 1
and W2 − 1 for various cases. Three existing algorithms are considered: 1) IMSL
subroutines; 2) Shirts’ method ; and 3) Zhang and Jin’s method. All methods have
in common that they need to generate the Mathieu eigenvalue b, for a given pair of
values of the parameter s and the order m, and produce the expansion coefficients.
Some details of the methods considered for these comparisons are given below.

5.1 IMSL

The IMSL subroutines [Visual Numerics, Inc. 1994] do not compute radial func-
tions, but only angular functions, which are normalized according to Goldstein and
Ince and are based on an algorithm developed by Hodge [1972]. Hodge casts the
eigenvalue problem associated with Mathieu equation in matrix form. The result-
ing matrix is symmetric, tridiagonal, and the eigenvalues are computed using the
bisection method. The expansion coefficients are then obtained by introducing the
eigenvalue into the recurrence relationships for the expansion coefficients.

Since the angular functions (2)-(5) and the radial functions (7)-(10) share the ex-
pansion coefficients, it is possible to generate the radial functions once the sequence
of expansion coefficients is available. As an example, one may call the IMSL subrou-
tines DM2TCE and DM2TSE, which compute even and odd angular functions, respec-
tively. With DM2TCE and DM2TSE one can provide explicitly the workspace using
[Visual Numerics, Inc. 1994] M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVAL0,
EVAL1, COEF, WORK, BSJ) and M2TSE (X, Q, N, CE, NORDER, NEEDEV, EVAL0,
EVAL1, COEF, WORK, BSJ) where, in particular, the array COEF contains the ex-
pansion coefficients. To obtain the expansion coefficients normalized according to
Stratton, it is necessary to execute either DM2TCE or DM2TSE for the order n, with
ACM Transactions on Mathematical Software, Vol. 2, No. 3, 09 2001.
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argument x equal to zero, and the parameter q = s/4. DM2TCE computes

ce2r+p(q, x) =
∞∑

k=0

A
(2r+p)
2k+p (q) cos [(2k + p)x] , p = 0, 1 (37)

where the coefficients A
(2r+p)
2k+p (q) are normalized according to Goldstein-Ince, see

(31)-(32), and the relationship between the coefficients De(2r+p)
2k+p (s) and A

(2r+p)
2k+p (q)

is

De(2r+p)
2k+p (s) =

A
(2r+p)
2k+p (s/4)

ce2r+p(s/4, 0)
p = 0, 1 (38)

DM2TSE computes

se2r+p(q, x) =
∞∑

k=0

B
(2r+p)
2k+p (q) sin [(2k + p)x] , p = 0, 1 (39)

where the coefficients B
(2r+p)
2k+p (q) are normalized according to Goldstein-Ince, see

(33)-(34), and the relationship between the coefficients Do(2r+p)
2k+p (s) and B

(2r+p)
2k+p (q)

is

Do(2r+p)
2k+p (s) =

B
(2r+p)
2k+p (s/4)

∑∞
`=0(2` + p)B(2r+p)

2`+p (s/4)
p = 0, 1 k ≥ 1 (40)

In this author’s experience, the coefficients extracted in this way are correct only
when the order n is odd. So, when n is odd one can obtain the expansion coefficients
from IMSL subroutines using the described method and applying the relationships
(38) and (40).

5.2 Shirts

Shirts’ subroutines are described in [1993a] and [1993b]. His subroutines do not
compute radial functions but provide angular Mathieu functions for real values of
the order. For the purpose of this comparison, only integer values of the order are
of interest. Shirts subroutines assume that the solution to Mathieu’s equation is
written as

y(x) = eiνx
∑

k

c2kei2kx (41)

where ν is the real order. The expansion coefficients are obtained calling the subrou-
tine mtieu1(anu, q, a, ia0b1, ivec, amurd, ic0, n0, mdim, maxdim, diag,
subd, vec, ncof, ier) that returns, in particular, the matrix vec and the indices
ic0 and n0. The expansion coefficients c2k corresponding to the order anu=ν, pa-
rameter q = s/4, and parity even or odd depending on ia0b1=0 or 1, respectively,
are located in column n0 of vec and the coefficient c0 is found along this column
at row ic0. As an alternative to mtieu1, which is more general, mtieu2 is used
when the order v < 10.5. Note that mtieu2 uses a variant of Blanch’s algorithm
[1966] when the order is integer. The relationship between the coefficients c2k and
the coefficients Dem, Dom is:

ACM Transactions on Mathematical Software, Vol. 2, No. 3, 09 2001.
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De(2r+p)
p (s) =

(1 + p)c0

ce2r+p(s/4, 0)
p = 0, 1 (42)

De(2r+p)
2k+p (s) =

2c2k

ce2r+p(s/4, 0)
p = 0, 1 k ≥ 1 (43)

Do(2r+p)
2k+2−p(s) =

2c2(k+1−p)∑∞
`=1 2 ((2`− 1) + p) c2`

p = 0, 1 k ≥ 0 (44)

where the quantity ce2r+p(s/4, 0) is the same defined in (37) and corresponds to the
value fr returned by subroutine mtfctn(x, fr, fi, vec, ncof, ic0, maxdim,
anu,phase, ier), which evaluates the Mathieu functions. Hence, the coefficients
Den and Don are created using the three previous relations.

5.3 Zhang and Jin

Zhang and Jin [1996] developed subroutines to compute the Mathieu functions (37)
and (39) and the modified Mathieu functions that correspond to (7)-(10) provided
that the former are multiplied by the factor

√
π/2. Hence, with a simple change of

normalization it is possible to compare Zhang and Jin’s results with those presented
in this paper. It is worth noting that Zhang and Jin compute the expansion coeffi-
cients using a mixed forward and backward recurrence relation to ensure stability;
however, they do not apply Blanch’s algorithm.

5.4 Discussion of the results

The computation of the wronskians (35), (36) requires the evaluation of the radial
Mathieu functions.

The radial Mathieu functions are computed in the following way. Values of the
order n, the parameter s, and the variable x are assigned. Using these three values,
the Mathieu eigenvalue is calculated. In particular, the methods of Blanch, and
Zhang and Jin use the same Mathieu eigenvalues because the eigenvalue is computed
with the same subroutines. Shirts’ method and the IMSL method generate their
own Mathieu eigenvalue. Then, each radial Mathieu function is evaluated using
the definitions (7)-(15) that involve the computation of expansion coefficients and
Bessel functions. The Bessel functions are always the same for all methods, while
the expansion coefficients are evaluated using Blanch’s algorithm and the other
three methods.

In order to compare the performance of the three methods, various tests were
performed for various values of n, s, and x. This article only reports the results
shown in Tables I-V. In these tables, the columns km represent the number of
expansion coefficients that were computed for the evaluation of the Mathieu radial
functions involved for each order n.

In particular, for Blanch’s method the number km of expansion coefficients is de-
termined according to the following criterion, which is explained in the appendix of
Blanch’s article [1966]. Let us assume that the natural normalization is considered
and that a set of expansion coefficients A2k is required to have a truncation error
less than a preassigned value ν2, i.e.

|A2s+2m| < ν2, (45)
ACM Transactions on Mathematical Software, Vol. 2, No. 3, 09 2001.
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Table I. Verification of the accuracy using the wronskian property (35). Data computed using
s = 30 and x = 5.

n W1 − 1(Blanch) km W1 − 1(Zhang-Jin) km W1 − 1(Shirts) km W1 − 1(IMSL) km

1 −0.155431E − 14 23 −0.155431E − 14 25 −0.199840E − 14 10 −0.199840E − 14 27
9 −0.155431E − 14 23 −0.177636E − 14 29 −0.188738E − 14 18 −0.188738E − 14 27
17 −0.177636E − 14 26 −0.222045E − 14 33 −0.222045E − 14 15 −0.199840E − 14 29
25 −0.222045E − 14 29 −0.188738E − 14 37 −0.732747E − 14 19 −0.199840E − 14 37
33 −0.233147E − 14 32 −0.255351E − 14 41 −0.105471E − 13 23 −0.277556E − 14 45
41 −0.888178E − 15 36 −0.177636E − 14 45 −0.877076E − 14 27 −0.222045E − 14 53
49 −0.210942E − 14 39 −0.122125E − 14 49 −0.766054E − 14 31 −0.188738E − 14 61
57 −0.788258E − 14 43 −0.766054E − 14 53 −0.832667E − 14 35 −0.766054E − 14 69
65 −0.111022E − 15 46 0.310862E − 14 57 0.976996E − 14 39 −0.399680E − 14 77
73 0.488498E − 14 50 0.401901E − 13 61 0.426326E − 13 43 0.688338E − 14 85
81 0.803801E − 13 54 −0.757172E − 13 65 0.172307E − 12 47 0.127010E − 12 93
89 −0.400679E − 12 58 0.220912E − 11 69 0.197375E − 11 50 −0.293099E − 13 101
97 −0.104339E − 11 62 −0.299882E − 11 73 −0.216422E − 10 54 −0.866818E − 11 109

Table II. Verification of the accuracy using the wronskian property (36). Data computed using
s = 30 and x = 5.

n W2 − 1(Blanch) km W2 − 1(Zhang-Jin) km W2 − 1(Shirts) km W2 − 1(IMSL) km

1 −0.222045E − 14 24 −0.199840E − 14 25 −0.222045E − 14 9 −0.244249E − 14 27
9 −0.177636E − 14 23 −0.222045E − 14 29 −0.188738E − 14 17 −0.188738E − 14 27
17 −0.244249E − 14 26 −0.244249E − 14 33 −0.266454E − 14 15 −0.222045E − 14 29
25 −0.199840E − 14 29 −0.177636E − 14 37 −0.444089E − 14 19 −0.244249E − 14 37
33 −0.155431E − 14 32 −0.188738E − 14 41 −0.943690E − 14 23 −0.222045E − 14 45
41 −0.133227E − 14 36 −0.188738E − 14 45 −0.104361E − 13 27 −0.122125E − 14 53
49 −0.166533E − 14 39 −0.244249E − 14 49 −0.109912E − 13 31 −0.388578E − 14 61
57 −0.999201E − 14 43 −0.510703E − 14 53 −0.202061E − 13 35 −0.144329E − 13 69
65 0.111022E − 14 46 0.133227E − 14 57 −0.464073E − 13 39 −0.410783E − 14 77
73 0.421885E − 14 50 0.111910E − 12 61 −0.113243E − 13 42 0.226485E − 13 85
81 0.187406E − 12 54 0.139000E − 12 65 0.507372E − 12 46 −0.167866E − 12 93
89 −0.690004E − 12 58 0.106404E − 11 69 −0.444456E − 11 50 0.410338E − 12 101
97 0.382383E − 11 62 −0.161027E − 11 73 −0.161449E − 11 54 −0.215761E − 11 109

where 2s is the coefficient such that |Gn,2| < |G2s,2| for all n > 2s. Then, one can
prove that |A2s+2m| < |A2s||G2s,2|m so that if one defines ν2 = |A2s||G2s,2|m, it
gives

m = − log |A2s|/ν2

log G2s,2
(46)

Hence, the maximum number of coefficients is given by either km = s or, when
m > 0, by km = s + m + 1.

In all tables, the data related to the columns labeled Shirts were obtained using
Shirts’ subroutine mtieu2, when the order n < 10.5, and Shirts’ subroutine mtieu1
for all other cases.

Tables I and II examine the case s = 30, x = 5 for values of the order n that
range between 1 and 97. All methods successfully pass the Wronksian tests.

Tables III and IV examine the case s = 8 and x = 3. These combination of values
of s and x is more challenging because all methods provide equivalent results in the
sense that when the order n ≤ 43 they all pass the wronskian tests. However, for
larger values of n, the wronskian tests are not passed and it is interesting to observe
that increasing the number of expansion coefficients does not seem to provide any
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Table III. Verification of the accuracy using the wronskian property (35). Data computed using
s = 8 and x = 3.

n W1 − 1(Blanch) km W1 − 1(Zhang-Jin) km W1 − 1(Shirts) km W1 − 1(IMSL) km

1 −0.310862E − 14 18 −0.333067E − 14 21 −0.355271E − 14 8 −0.377476E − 14 27
9 −0.277556E − 14 19 −0.333067E − 14 25 −0.288658E − 14 16 −0.310862E − 14 27
17 −0.488498E − 14 22 0.355271E − 14 29 −0.878186E − 13 13 −0.455191E − 14 29
25 0.167866E − 12 26 −0.266454E − 14 33 0.196132E − 11 17 −0.455525E − 12 37
33 0.135973E − 08 29 0.356233E − 09 37 0.218332E − 09 21 −0.123166E − 08 45
41 0.170580E − 04 33 −0.125333E − 03 41 0.429813E − 03 25 0.543152E − 03 53
43 −0.111009E− 01 34 0.862081E− 02 42 0.183499E− 01 26 0.379809E− 02 55
45 0.126223E + 00 35 0.924758E + 00 43 −0.830670E + 00 27 0.415111E + 00 57
47 −0.371876E + 02 36 0.678331E + 01 44 0.104278E + 03 28 −0.256366E + 02 59
49 −0.121586E + 04 37 −0.902926E + 03 45 −0.710050E + 04 29 0.148814E + 04 61
57 0.166533E + 12 40 0.315763E + 12 49 −0.243745E + 12 33 0.389361E + 11 69
65 0.935600E + 20 44 0.174713E + 21 53 −0.717971E + 20 36 0.853870E + 20 77
73 −0.311705E + 29 48 0.104033E + 30 57 −0.962324E + 28 40 0.968566E + 29 85
81 −0.849862E + 38 52 −0.362686E + 37 61 −0.117225E + 39 44 0.887920E + 38 93
89 0.579300E + 47 56 0.930446E + 47 65 −0.404699E + 48 48 −0.155601E + 48 101
97 0.555711E + 55 60 −0.588792E + 57 69 0.163762E + 58 52 0.107233E + 58 109

Table IV. Verification of the accuracy using the wronskian property (36). Data computed using
s = 8 and x = 3.

n W2 − 1(Blanch) km W2 − 1(Zhang-Jin) km W2 − 1(Shirts) km W2 − 1(IMSL) km

1 −0.310862E − 14 18 −0.333067E − 14 21 −0.366374E − 14 7 −0.366374E − 14 27
9 −0.333067E − 14 19 −0.333067E − 14 25 −0.321965E − 14 15 −0.355271E − 14 27
17 −0.466294E − 14 22 0.355271E − 14 29 −0.768274E − 13 13 −0.666134E − 15 29
25 −0.492828E − 12 26 0.369482E − 12 33 0.322409E − 11 17 −0.832667E − 14 37
33 −0.318299E − 10 29 0.183282E − 09 37 0.402022E − 09 21 −0.124873E − 08 45
41 0.770921E − 04 33 −0.217444E − 03 41 −0.900555E − 03 25 0.163031E − 03 53
43 −0.644405E− 02 34 0.197056E− 01 42 0.132903E− 01 26 0.119965E − 01 55
45 −0.584493E + 00 35 0.288946E + 00 43 −0.150908E + 01 27 0.669110E− 01 57
47 −0.472322E + 02 36 0.182705E + 02 44 0.797088E + 02 27 0.215676E + 02 59
49 0.504007E + 03 37 0.668637E + 03 45 −0.500060E + 03 28 −0.658586E + 03 61
57 0.131858E + 12 40 0.225046E + 12 49 0.289661E + 12 32 0.206643E + 12 69
65 0.815463E + 20 44 0.303869E + 20 53 −0.986744E + 20 36 0.122297E + 21 77
73 −0.817995E + 29 48 0.566317E + 29 57 −0.450960E + 29 40 0.121246E + 29 85
81 −0.119869E + 39 52 −0.106416E + 39 61 −0.134335E + 39 44 −0.617735E + 38 93
89 0.187295E + 47 56 0.251657E + 48 65 −0.332797E + 48 48 −0.130842E + 48 101
97 −0.132210E + 58 60 −0.181295E + 58 69 0.158417E + 58 52 0.130904E + 58 109

improvement.
For example, when n = 49, Shirts’ method uses 29 expansion coefficients, while

the IMSL method uses 61 expansion coefficients and, even though the IMSL method
employs more the double of the expansion coefficients, the results of the two meth-
ods are of the same order of magnitude. It is likely that the failure for larger values
of the order n depends on the form of the series and in not having enough significant
digits to carry out all the necessary operations.

To verify the previous statement, the test for s = 8 and x = 3 is repeated us-
ing this translation of Blanch’s method when the computations are executed using
quadruple precision variables. The corresponding results are reported in Table V,
where only Blanch’s method results are reported because the subroutines for the
other cases cannot be executed at this level of precision. The wronskian test is
passed satisfactorily up to n = 63 for the even radial functions and n = 61 for
ACM Transactions on Mathematical Software, Vol. 2, No. 3, 09 2001.
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Table V. Results obtained for the wronskian property (35) and (36) using quadruple precision
numbers for the case s = 8 and x = 3.

n W1 − 1(Blanch) km W2 − 1(Blanch) km

· · · · · · · · ·
33 0.38188119E − 008 83 0.38188119E − 008 83
41 0.38188119E − 008 103 0.38188119E − 008 103
49 0.38188105E − 008 123 0.38188114E − 008 123
51 0.38187709E − 008 128 0.38187517E − 008 128
57 −0.17247124E − 006 143 −0.54942269E − 007 143
59 −0.38699220E − 005 148 −0.87023435E − 005 148
61 0.16601005E − 002 153 0.56675987E− 003 153
63 0.14941168E− 001 158 −0.27859398E + 000 158
65 0.87101088E + 001 163 0.61224252E + 002 163
67 −0.35399794E + 004 168 −0.41447462E + 004 168
69 0.82162356E + 006 173 0.10020799E + 007 173
71 0.12000783E + 009 178 −0.52041024E + 008 178
73 −0.47577352E + 011 183 0.39455250E + 010 183
81 −0.16691999E + 021 203 −0.24579136E + 020 203
89 −0.23712579E + 030 223 0.54556887E + 029 223
97 0.30174552E + 039 243 0.16582758E + 040 243

the odd radial functions. For larger values of n even the quadruple precision com-
putation finds this case challenging. Nevertheless, for this example, the quadruple
precision variables allows for the computation of an additional twenty orders, which
may be important for some applications. The results shown in table V were com-
puted introducing a modification to Blanch’s algorithm. Specifically, the number of
expansion coefficients that are actually computed is forced to be at least 2.5 times
the order.

Finally, applications where quadruple precision computations were applied, are
reported in [Erricolo 2003], [Erricolo and Uslenghi 2004], [Erricolo et al. 2005a],
[Erricolo et al. 2005b], [Erricolo and Uslenghi 2005], [Erricolo et al. 2005].

5.5 Comments on other software to compute Mathieu functions

To the best of this author’s knowledge, Blanch’s algorithm was first implemented
in Fortran by Clemm [1969], [1970]. Clemm’s code is not easily available and uses
many obsolete functions, so that the present translation should be more beneficial.
Clemm’s code was also converted to the C programming language by Baker [1992].
Alhargan [2001] developed C language subroutines to compute Mathieu functions
of integer order and claimed that Blanch’s algorithm should be used when his fails,
so that Blanch’s algorithm should be considered more accurate.

6. CONCLUSIONS

The subroutine Blanch Coefficients presented in this paper implements in For-
tran 90 the algorithm developed by Gertrude Blanch [1966] to compute the expan-
sion coefficients of the series (2-5),(7-10) and (12-19) that define Mathieu functions.
The advantage of Blanch’s algorithm is that it is associated with a very detailed
numerical analysis.

In order to verify the accuracy of the Mathieu functions computed using the ex-
pansion coefficients evaluated by the subroutine Blanch Coefficients, some tests
that involved comparisons with three other independent methods were made. All
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tests showed that this translation provides results that are at least as good as those
provided by the other methods. In addition, when the subroutine Blanch Coefficients
is run at higher precision, its performance exceeds the other methods.
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