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An Information Theoretic Take on Time Reversal
for Non-Stationary Channels

Pawan Setlur and Natasha Devroye

Abstract—It has been shown that time-reversal (TR) tech-
niques focus energy back to the dominant scatters, lead to super-
resolution focusing, and gains in detection. Time reversal has
so far mainly been studied when the channel remains invariant
between the initial and time-reversed signal transmission times.
In this letter, we relax this assumption and study the benefits
of TR over time-varying channels. To do so, we compare a
time-reversed and a non time-reversed system by comparing
the mutual information between the channel impulse response
and channel outputs given the transmitted signals. We present
analytical results for a simple scalar problem which illustrates
the impact of non-stationary channels on TR, and for general
channels, numerically evaluate the difference in mutual informa-
tions, which demonstrate that, if the channels are non-stationary
yet correlated, TR may still provide mutual information gains
over non time-reversed systems.

Index Terms—Time reversal, Radar, Mutual Information,
Stochastic time-varying channel, non-stationary channel

I. INTRODUCTION

IN this letter, we analyze radar-based time reversal (TR)
over time-varying channels using mutual information as

comparison metric. In TR, a signal is initially radiated; the
backscattered signal is then recorded, time-reversed, energy
scaled and re-transmitted. TR may lead to super-resolution
spatio-temporal focusing using multiple antennas, and detec-
tion gains for single and multiple antennas [1]–[6]. Most of
these important contributions in TR were derived assuming
the channel to be invariant from the initial signal transmission
to the time-reversed re-transmission [1]–[6]. The question of
whether time-reversal is beneficial in realistic time-varying
channels remains. We make analytical progress by introducing
and analyzing the mutual information in TR systems as
compared to conventional systems for time-varying channels.

Our TR model is well suited to monostatic radar, where the
receiver and transmitter are co-located but could be extended
to other applications such as communications. In our model,
a single antenna transceiver first probes the channel. It subse-
quently transmits the time-reversed signal it received from the
initial probe. We will compare performance with a “conven-
tional” model where the channel is probed twice with the same
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signal (as opposed to recent waveform scheduling models [7]–
[9]). The channels are assumed to be linear, stochastic, subject
to additive Gaussian noise, and time-varying.

Related work. For invariant channels time-reversal in op-
tics, ultrasound and acoustics, radar and communications, may
be seen in for example [1]–[6] and references therein. Work
on TR in time-varying channels is much more limited. It
was acknowledged in [4, pg. 36-37] via experimental insights
that TR focusing degrades in non-stationary time-varying
environments such as the time-varying ocean surface and its
volume.In communication applications (rather than our radar-
focused application), it was experimentally shown that time
varying channels affect the TR performance in [10], [11], and
interestingly the conclusions drawn are similar to those drawn
here – that TR may still be beneficial in channels which are
correlated but not necessarily identical over time.

Contributions and organization. We first introduce the TR
and conventional channel models in Section II. We then intro-
duce the relevant mutual information quantity for these models
in Section III, before analytically comparing the difference
in mutual information for TR and conventional channels in
Section IV, where we analytically work out an intuitive special
scalar case which illustrates the effect of channel correlation
between the two stages on the mutual information. Finally,
in Section V we provide numerically evaluations. Our central
contributions are 1) analyzing TR using information theoretic
metrics for the first time, and 2) using this framework to
quantitatively analyze the impact of time-varying channels on
TR as compared to conventional systems.

II. CHANNEL MODEL

We now outline the two transmission stages of the TR
channel and the conventional channel models. Other “time-
reversal” protocols consisting of more than two stages may
be devised, but for simplicity, and to understand existing TR
channel models, we limit ourselves to two stages.

During the first stage, let the baseband transmitted signal
during the first scheduling instant or stage be given by the
P baseband samples s := [s(0), s(1), . . . , s(P − 1)]T , and
let the matrix S ∈ CN×M be the Toeplitz convolution
matrix comprised of the samples s along with zeros padded
appropriately – i.e. the i-th column consists of (i− 1) zeros,
the P samples of s, and N −P − i+ 1 zeros again. Note that
N = M − 1 + P . The received signal at y1 is then given by
the N complex samples

y1 = Sα1 + v1, (1)
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where v1 := [v1(0), v1(1), . . . , v1(N − 1)]T , is the additive
noise and α1 = [α11, α12, . . . , α1M ]T ∈ CM is the sampled
channel impulse response.

During the second stage, the TR system transmitter then
transmits the scaled, by κ = ||s||

||ȳ1|| , time-reversed channel
output ȳ1 := [y∗1(N − 1), y∗1(N − 2), . . . , y∗1(0)]T . The
convolution matrix of the time-reversed output y1 is denoted
by Ȳ1 ∈ CN×M . In the meantime the channel has changed
and the new impulse response is given by α2 ∈ CM and
the new noise by v2, which need not necessarily follow the
same statistics as in the first stage. The “conventional” channel
model, which we will use as comparison point in evaluating
the utility of TR, transmits the same waveform s during the
second stage. Thus, the second stage outputs of the TR and
conventional system, are given, respectively, by

yTR
2 := κȲ1α2 + v2 (TR) (2)

ynTR
2 := Sα2 + v2 (No TR). (3)

For analytical tractability, we assume that α :=
[α1

T ,α2
T ]T is jointly Gaussian with mean and covariance,

respectively,

µ := [µ1
T ,µ2

T ]T , C =

[
C1 C12

C12
H C2

]
. (4)

In (4), Ci = Cov{αi,αi}, i = 1, 2 and C12 = Cov{α1,α2},
where Cov{x,y} is the covariance (matrix) between vectors
x and y. The concatenated noise vector, v = [v1

T ,v2
T ]T

is independent of α and is assumed to be zero-mean, jointly
Gaussian with corresponding covariance matrix, given by,

V =

[
V1 V12

V12
H V2

]
. (5)

where Vi = Cov{vi,vi}, i = 1, 2 and V12 = Cov{v1,v2}.

III. MUTUAL INFORMATION AS COMPARISON METRIC

In this work, we quantify the utility of TR channels
by using the mutual information between the appropriate
channel input/output quantities as our comparison metric. In
radar channels, information theoretic metrics such as mutual
information and conditional entropy have been used for a
variety of purposes including waveform design [12], [13],
waveform scheduling [8], [9], and sensor management [14],
[15]. It is often motivated as a “surrogate” metric [7] because
of its generic ability to quantify the information gained by
certain measurements, which is not linked to a specific task
such as detection or estimation (though links between mutual
information and SNR or Fisher information may be made).

Over the two stages of transmission, the radar system
wishes to learn about the channel α from the received sig-
nals y = [y1

T yTR
2

T
]T (TR) or y = [y1

T ynTR
2

T
]T

(conventional), given knowledge of the transmitted waveforms
s. The amount of information we can gain about α from
y := [y1 y2]T given knowledge of the transmitted waveform
s is given by the mutual information (MI) between α and
y, where we note that s is a known parameter, denoted by

I(α; y) := Ep(α,y)
{

ln( p(α,y)
p(α),p(y) )

}
, or equivalently

I(α; y) : = h(α)− h(α|y)

where h(·|·) is defined as the conditional differential en-
tropy, and p(·|·) is the conditional pdf, and E denotes the
expectation operator. We recall the definitions of differential
entropy [16]: h(α) := −Ep(α){ln(p(α))} and h(α|y) =
−Ep(α,y){ln(p(α|y))}. For our TR channel under Gaussian
assumptions, we will be evaluating mutual information terms
for which the following is useful [16]:

Fact 1. If z is a multivariate Gaussian random vector with an
arbitrary mean vector and a covariance matrix, Cz, then the
differential entropy (nats), h(z) = ln det(Cz) + η, where η is
a constant and is related to the dimensions of z.

Remark 1. Time-Reversal: A channel with feedback or not?
In a mono-static radar system which employs TR, the next
waveform transmitted depends on the previously received data.
Intuitively at least, TR appears analogous to an information
theoretic channel where the encoder employs feedback (i.e.
encoders at time i have access to previous channel outputs
y1, · · · yi−1 and may let their subsequent channel inputs be
functions of these outputs, i.e. xi = f(m, y1, · · · yi−1) where
m is the message). In our scenario, the time-reversed trans-
mitted waveform appear to be just that – a specific function
f(·) of previously received outputs and hence may appear
to be a feedback channel. For feedback channels, directed
information (DI) between the inputs and outputs, rather than
mutual information between them, is a more relevant metric
(in terms of channel capacity) [17], [18]. In the context
of the TR channel the relevant DI would be defined as
I(α −→ y||s, ȳ1) := I(α1; y1) + I(α; y2|y1). Interestingly,
for our Gaussian channel model, the DI and MI may be shown
to be equal (see [19]), which at first is somewhat surprising as
often in channels where feedback is employed, DI is strictly
less than MI. This may be explained by the fact that we are
interested in the MI between the channel impulse response α
and the output y, and the channel impulse response does NOT
employ feedback. Hence, because of the problem’s application
in learning about the channel rather than the inputs, what might
appear to be a feedback channel does not result in different
DI and MI.

IV. COMPARING TR AND CONVENTIONAL CHANNELS

We compare the TR and conventional channels for time-
varying channels using the difference between the either
the DI or MI (as they are equal) as a metric. These are
generally analytically intractable and we will use Monte Carlo
simulations in Section V to evaluate the metric. However, to
build intuition, we do present analytical results for a simple
scalar problem which illustrates the impact of non-stationary
channels on TR.

We consider the difference between the mutual information
achieved by the TR and the conventional channel:

Υ : = I(α1, α2; y1,y
TR
2 )− I(α1, α2; y1,y

nTR
2 ) (6)

= I(α; yTR
2 |y1)− I(α; ynTR

2 |y1), (7)
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where (7) follows by the chain rule for mutual information
[16], and the fact that y1 is the same regardless of whether
TR is used or not. If Υ > 0, we may conclude that TR yields
more information about the channel α than the conventional
channel, and vice-versa if Υ < 0. We note that our derivation
thus far has been for Gaussian, non-stationary environments,
i.e. involving colored noise and channels α which are corre-
lated over the two time-instances.

The two terms in (7) may be evaluated as in (8) – (9)
at the top of the next page. Although not explicitly shown,
it is noted that κ is a function of y1 and stays inside the
expectation operation. From (2), note that the pdf of yTR

2

given a y1 is normally distributed with a mean given by
κȲ1E{α2} and covariance matrix κ2Ȳ1C2ȲH

1 +V2, which
yields (8). Unfortunately a closed form solution to (8) is not
immediate, and hence Monte Carlo simulations are employed
here. Similar Monte Carlo analysis was employed in [2], [3]
but for comparing the detection performance of TR systems
with its non TR counterparts. We now consider a simple scalar
channel where we are able to evaluate the metric analytically.

A. Scalar special case

Consider the following scalar channel model:

y1 = sα1 + v1, y
TR
2 = κy∗1α2 + v2, y

nTR
2 = sα2 + v2

Assume for simplicity that the noise covariance matrix,V =
σ2I and that the channel has covariance matrix, C =[ σ2

α σ2
β

σ2
β σ

2
α

]
� 0. For the scalar case κ =

√
|s|2/|y1|2. Then,

Υ = Ey1{ln(κ2|y1|2σ2
α + σ2)} (10)

− ln{(|s|2σ2
α + σ2)− (|s|4σ4

β)/(|s|2σ2
α + σ2)}

= − ln(1− ρ2) (11)

where ρ2 = |s|4σ4
β/(|s|2σ2

α + σ2)2 is the square of the cor-
relation coefficient between ynTR2 and y1 for the conventional
channel. Now from (10) Υ is always positive for ρ2 > 0. In
other words, as long as the channel is correlated, Υ > 0,
which implies that TR is preferable to using the channel
conventionally in terms of mutual information. Similar to ρ, it
is envisioned that the matrix (SC12SH + V12)H(SC1SH +
V1)−1(SC12SH + V12) plays an analogous and dominant
part in Υ for vector channels.

V. SIMULATIONS

Two channels, termed A,B are considered in the simula-
tions which differ in the channel covariances C. The first is
the simplest and is given by C := CA =

[ I ρaI
ρaI I

]
. This

implies that the M taps in αi = [αi1, αi2, . . . , αiM ]T , i = 1, 2
are uncorrelated within each stage but are correlated across
stages, depending on the values assumed by ρa. In channel
ch-B the covariance matrix is C := CB that is Hermitian
Toeplitz, and has a covariance function rB(|m1 − m2|) =
exp(−σ2

b |m1 −m2|), (m1,m2) ∈ {1, 2 . . . , 2M}, correlating
channel coefficients within and between stages, depending on
σ2
b . To purely analyze the effects of the channel, we assume

white noise, i.e. V12 = 0,Vi = I, i = 1, 2. Two waveforms
for the transmitted s are analyzed, the first is a BPSK symbol

waveform comprising random ±1, the other is a radar chirp
waveform. The analysis is carried out in baseband. We will
assume M = 10 for both ch-A,B. The SNR is defined as
|s|2M/σ2. The number of Monte Carlo trials were set at
10,000 to evaluate the expectation operation.

In Fig.1, the value of Υ versus ρa are shown for the
BPSK and chirp waveforms for ch-A at SNR=0, 10, 20dBs.
In Fig. 1(a), for SNR=10dB, and SNR=20dB, we see that
the Υ is positive for high correlation (ρa ∈ ±(1, 0.5]),
indicating superior performance of the TR when compared
to the conventional channel. For medium to low correlations,
and not surprisingly, the opposite is true, i.e Υ becomes
negative indicating that TR is not preferable when compared to
using the channel conventionally. In particular, we see that for
SNR=20dB, and for medium and low correlation, the metric
assumes low values. Similar results are seen for the chirp
waveform in Fig. 1(b). The break even points for Fig. 1(a) and
Fig. 1(b), i.e. Υ = 0 are different for the same SNR, hence
a waveform dependency is also noted. The processing for the
chirp was performed in the baseband bandwidth [2] which
contains 99% of the signal energy. For the implementation,
spectral content outside the band was notched, and an inverse
FFT (IFFT) was employed to return to the time domain. Such
frequency domain processing is not required for the BPSK, as
it is wideband.

In Fig.2, the results are shown for the BPSK waveform and
the chirp for ch-B. The BPSK waveforms were different in Fig.
1(a) and Fig. 2(a). In Fig. 2 the parameter σ2

b now controls
the correlation. As σ2

b increases, the channel coefficients start
becoming uncorrelated. Identical conclusions to Fig. 1 may
be drawn by observing Fig.2. For example and as before,
for reasonable SNR and low correlation scenarios, the metric
assumes low values, implying a harsh penalty for using the
TR rather than using the channel conventionally.

It is stressed that the metric Υ evaluates the TR and
conventional channel on the “average”. In other words, for
low to medium correlation, we have seen instances for both
ch-A,B, where the difference between the DI between the TR
and the conventional channels are actually positive, whereas
on an average it is negative, i.e. Υ < 0.
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2 |y1) = h(yTR

2 |y1)− h(yTR
2 |y1,α1,α2) = Ey1

{
ln det(κ2Ȳ1C2ȲH
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Fig. 1: For ch-A metric Υ vs ρa for SNR={0,10,20}dBs (a) BPSK, N = 10, (b) Chirp waveform, N = 250
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