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Abstract

In this paper, we propose two schemes for asynchronous multi-relay two-way relay (MR-TWR) systems in

which neither the users nor the relays know the channel state information (CSI). In an MR-TWR system, two users

exchange their messages with the help of NR relays. Most of the existing works on MR-TWR systems based on

differential modulation assume perfect symbol-level synchronization between all communicating nodes. However,

this assumption is not valid in many practical systems, which makes the design of differentially modulated schemes

more challenging. Therefore, we design differential modulation schemes that can tolerate timing misalignment under

frequency-selective fading. We investigate the performance of the proposed schemes in terms of either probability of

bit error or pairwise error probability. Through numerical examples, we show that the proposed schemes outperform

existing competing solutions in the literature, especially for high signal-to-noise ratio (SNR) values.

Index Terms

Two-way relay channels, differential modulation, synchronization, orthogonal frequency division multiplexing.

I. INTRODUCTION

Most of the existing schemes for TWR systems assume known CSI (see, e.g., [1, 2] and the references

therein). Due to many reasons, such as the large overhead of channel estimation process or relatively

rapid variations of the channel, perfect CSI is not always available. In such scenarios, using non-coherent

modulation schemes such as differential phase shift keying (DPSK) that require no CSI knowledge is a

practical solution.
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While there have been significant research efforts on using differential modulation (DM) for TWR

systems, most, e.g. [3], assume symbol-level synchronization among all nodes. In practice, many reasons

such as different propagation delays or different dispersive channels, lead to a timing misalignment between

the arriving signals. Therefore, having a perfectly synchronized TWR system is very difficult which, in

return, renders the design of differentially modulated schemes more challenging. In the case of synchronous

TWR systems, many schemes were proposed to address the absence of CSI, e.g. [3–6]. However, little

work has been conducted to tackle asynchronous communication scenarios. One scenario of particular

interest is the use of asynchronous MR-TWR systems in which timing errors not only occur at users but

at relays as well.

In [4], the authors propose a DM scheme along with maximum likelihood (ML) detection and several

suboptimal solutions for a number of relaying strategies when CSI is not available at any node. The authors

further extend their results to the multi-antenna case based on differential unitary space-time modulation.

A simple amplify-and-forward (AF) scheme is proposed in [3] based on DM in which the self-interference

term is estimated and removed prior to detection. The resulting bit error rate (BER) and the optimum

power allocation strategies are also studied. In [7], the authors propose a joint relay selection and AF

scheme using DM. The scheme selects the relay that minimizes the maximum BER of the two sources.

Ref. [5] proposes a DM scheme that uses K parallel relays, for which a denoising function is derived

to detect the sign change of the network coded symbol at each relay which is used later by the users

for detection. The paper obtains a closed form expression for the BER for the single-relay case along

with deriving a sub-optimal power allocation scheme. Furthermore, the authors derive lower and upper

bounds on the BER for the multi-relay case. A low complexity DPSK-based scheme is proposed in [6]

for physical-layer network coding to acquire the network coded symbol at the relay without requiring CSI

knowledge. Compared to the schemes in [4, 5] which require more complexity, this scheme shows better

performance at high SNRs. However, the detector is only derived for a binary alphabet.

A few proposals in the literature considered the design of distributed space time coding (DSTC) coupled

with differential modulation for synchronous TWR systems, e.g., [8–10]. The models in [8, 9] assume
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two-phase transmission and the lack of a direct link between the two users. On the other hand, [10]

assumes a three-phase transmission and that a direct link between the two users exist.

All the solutions discussed above have strict synchronization requirements for proper operation. Only

few works considered asynchronous TWR systems where DM is used to mitigate CSI absence. For

instance, [11] proposes an interference cancellation scheme to reduce the interference from neighboring

symbols caused by imperfect synchronization. Ref. [12] extends the scheme in [11] to dual-relay TWR

systems. While [11, 12] present important results, they are restricted to flat fading channels, and the

delays that can be tolerated are only within the period of a symbol, which make them suitable neither for

time-dispersive channels nor for systems experiencing large relative propagation delays. In this paper, we

consider a more general frequency-selective fading channel and propose two schemes that can tolerate

larger relative propagation delays compared to [11]. Specifically, we first propose the joint blind-differential

(JBD) detection scheme in which we first perform blind channel estimation to be able to remove the self-

interference component, and then perform differential detection. We provide an approximate closed form

expression for the BER for large SNR values. We then propose a scheme that is based on differential DSTC,

referred to as JBD-DSTC, to fully harness the available diversity in the system. The JBD-DSTC scheme

significantly reforms the JBD scheme in order to obtain an STC structure for the partner’s message at each

user. The pairwise error probability of this scheme along with the achievable diversity is also discussed.

The remainder of this paper is organized as follows. Section II describes the system model. Section III

details the transmission mechanism and receiver design for the proposed JBD scheme along with providing

a closed form expression for the probability of error. Section IV presents the JBD-DSTC scheme and the

relevant performance analysis in terms of the PEP. Section V presents numerical results obtained to

evaluate the performance of the proposed solutions. Finally, conclusions are drawn in Section VI.

Notation: Unless stated otherwise, bold-capital letters refer to frequency-domain vectors, bold-lower

case letters refer to time-domain vectors, capital letters refer to matrices or elements of frequency-domain

vectors (depending on the context), and lower-case letters refer to scalars or elements of time-domain

vectors. If used as a superscript, the symbols T , ∗ and H refer to transpose, element-wise complex
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Fig. 1: The MR-TWR system model (for NR = 2).

conjugate and Hermitian transpose (conjugate transpose), respectively. The notation 0N and 0N×N refer

to length-N all-zero column vector and all-zero matrix, respectively. F is the normalized discrete Fourier

transform (DFT) matrix of size-N . The Inverse DFT (IDFT) matrix of size-N is denoted by FH . The

subscript ir refers to the channel from node i to node r.

II. SYSTEM MODEL

We consider a two-phase communication scheme using AF relaying (as shown in Fig. 1 for the case

of two relays). The users exchange data by first simultaneously transmitting their messages to the relays

during the multiple-access (MAC) phase. During the broadcast (BC) phase, each relay broadcasts an

amplified version of its received signal which is a noisy summation of the users’ messages.

Each user transmits M blocks that comprise one frame. Prior to transmission, each block is modulated

using orthogonal frequency division multiplexing (OFDM) with N subcarriers. Each one of the resulting

blocks is appended with a cyclic-prefix (CP). We model asynchrony by assuming different propagation

delays. For proper CP design, user Ui, i ∈ {A,B}, requires the knowledge of the worst-case scenario

propagation delays over the links connecting it to the relays, i.e., dir (in multiples of the sampling time),

r ∈ {1, 2, . . . , NR}. Similarly, the rth relay, r ∈ {1, 2, . . . , NR}, requires dri, i ∈ {A,B}.

The multipath fading channels from the users to the relays are modeled (in the equivalent low-pass

signal domain) by the discrete channel impulse responses (CIRs) hir,l, i ∈ {A,B}, r ∈ {1, 2, . . . , NR},

l ∈ {1, 2, . . . , Lir}, where Lir represents the number of resolvable paths. Similarly, the channels from the

relays to the users are modeled by hri,l. The overall channel response over the Lir lags can be expressed as

hir(τ) =
∑Lir

l=1 hir,lδ (τ − τir,l), where τ is the lag index and τir,l is the delay of the lth path normalized by

the sampling period TS . We assume quasi-static frequency-selective fading in which hir,l remain constant

for all the blocks over the same lag (l) and change independently across the different lags. We assume
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that hir,l is a circularly-symmetric complex Gaussian (CSCG) random variable (RV) with zero mean and

variance of σ2
ir,l. Also, the channel coefficients are independent across different links. Further, we assume

half-duplex operation at all nodes.

For the JBD scheme, we further assume that the channels on the same link are reciprocal, i.e., hir(τ) =

hri(τ) ∀i, r. Also, the uplink and downlink propagation delays over the same link are assumed to be

identical.

III. THE JOINT BLIND-DIFFERENTIAL (JBD) SCHEME

In this scheme, each user uses N parallel differential encoders each operating on a specific subcarrier.

The data vector representing the frequency-domain message of the ith user, i ∈ {A,B}, during the

mth block is denoted by X(m)
i where X(m)

i =
[
X

(m)
i,1 , X

(m)
i,2 , . . . , X

(m)
i,N

]T
and X

(m)
i,k ∈ Ai where Ai is

a unit-energy, zero-mean, phase-shift keying (PSK) constellation set that is closed under multiplication,

e.g., the set {±1,±j}, to maintain the transmit power at a specific level. Using DM, the differentially

encoded symbol over the kth subcarrier of the mth block can be expressed as S
(m)
i,k = X

(m)
i,k S

(m−1)
i,k ,

m ∈ {2, 3, . . . ,M}, and S(1)
i,k = X

(1)
i,k . After performing IDFT, we obtain s(m)

i =
[
s

(m)
i,1 , s

(m)
i,2 , . . . , s

(m)
i,N

]T
=

IDFT(S
(m)
i ). The transmitted signal from the ith user during the mth block, i ∈ {A,B}, is given by:

s
(m)
Tx,i =

√
Piζ1

(
s

(m)
i

)
(1)

where s(m)
Tx,i =

[
s

(m)
Tx,i,1, s

(m)
Tx,i,2, . . . , s

(m)
Tx,i,N+NCP,1

]T
, Pi, i ∈ {A,B}, is the transmission power at the ith

user and ζ1(·) corresponds to the operation of appending a length NCP,1 CP to the vector in its argument

at each user prior to the first phase of transmission. The length of this CP is selected to satisfy NCP,1 ≥

maxi,r{Lir + dir}, i ∈ {A,B}, r ∈ {1, 2}.
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A. Relay Processing

Having appended a CP of the proper length at each user, the received signal corresponding to the mth

block at the rth relay after removing the CP is given by

y
(m)
r =

√
PAHtl,ArΨdArs

(m)
A +
√
PBHtl,BrΨdBrs

(m)
B +n

(m)
r ,

where Htl,ir is the time-lag channel matrix corresponding to the channel over the link ir and n(m)
r

represents length-N noise vector at the rth relay during the mth block whose entries are independent and

identically distributed (i.i.d.) CSCG random variables (RVs) with zero mean and variance of σ2
r . Ψdir ,

i ∈ {A,B}, r ∈ {1, 2, . . . , NR}, is a circulant matrix of size N ×N whose first column is given by the

N ×1 vector ψdir = [0Tdir , 1,0
T
N−dir−1]T . Using the matrix Ψdir mimics the circular shift caused by having

a propagation delay of dir samples. To simplify blind channel estimation at the end user, Rr performs

conjugation and time-reversal operations to obtain s(m)
r = η

(
y

(m)∗
r

)
where η(·) is the time-reversal

operator. For x = [x1, x2, . . . , xN ]T , η(·) is defined element-wise as η(xn) , xN−n+2, n = 1, . . . , N

and xN+1 , x1. The conjugation and reversal in the time-domain will have a conjugation effect in the

frequency-domain after taking DFT at the end user.

After processing the mixture of signals, Rr appends a CP for the second phase of transmission of length

NCP,2 that satisfies NCP,2 ≥ maxr,i{Lri + dri}, r ∈ {1, 2, . . . , NR}, i ∈ {A,B}. The rth relay transmitted

signal is given by:

s
(m)
Tx,r =

√
PrGrζ2

(
s(m)
r

)
, r ∈ {1, 2} (2)

where s(m)
Tx,r =

[
s

(m)
Tx,r,1, s

(m)
Tx,r,2, . . . , s

(m)
Tx,r,N+NCP,2

]T
, Pr and Gr are the transmission power and the scaling

factor at the rth relay, respectively, and ζ2(·) corresponds to the operation of appending a length NCP,2

CP to the vector in its argument.
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B. Detection at the End-User

Due to symmetry, we only describe detection at user B. After removing the CP that was added at the

relays, the received N -sample OFDM blocks can be written as

y
(m)
B =

NR∑
r=1

√
PAPrGrHtl,rBΨdrBη

(
H∗tl,ArΨ

∗
dAr
s

(m)∗
A

)
+

NR∑
r=1

√
PBPrGrHtl,rBΨdrBη

(
H∗tl,BrΨ

∗
dBr
s

(m)∗
B

)
+ v

(m)
B ,

where v(m)
B represents length-N effective noise vector at user B during the mth block which encompasses

the relays amplied noise as well. The entries of v(m)
B are i.i.d. CSCG RVs with zero mean and variance

of σ2
B,eff = σ2

B +
∑NR

r=1GrPr

∣∣∣[Hdf,rB]k,k

∣∣∣2 σ2
r where σ2

B is the variance of the original noise terms at user

B.

Let V (m)
B = Fv

(m)
B , Pir = PiPrGr and assume that dri = dir, r ∈ {1, 2, . . . , NR}, i ∈ {A,B}. After

performing DFT and noting that Fη (x∗) = (Fx)∗, the received signal on the kth subcarrier of the mth

block simplifies to1 Y
(m)
B,k = µkS

(m)
B,k

∗
+ νkS

(m)
A,k

∗
+ V

(m)
B,k where

νk =

NR∑
r=1

√
PAr [Hdf,rB]k,k

[
H∗df,Ar

]
k,k
e−j

2π(k−1)(drB−dAr)
N ,

µk =
∑NR

r=1

√
PBr |[Hdf,Br]k,k|2, V (m)

B,k is the kth element of V (m)
B and Hdf,ir = FHtl,irF

H denotes the

Doppler-frequency channel matrix (also called the subcarrier coupling matrix) over the link ir which is a

diagonal matrix in our case of quasi-static fading.

The results of [3] are adopted to estimate the parameter µk in order to remove the self-interference

term. Defining, Ỹ (m)
B,k = X

(m)
B,k

∗
Y

(m−1)
B,k − Y (m)

B,k , we can write

Ỹ
(m)
B,k = νkS

(m−1)
A,k

∗ (
X

(m)
B,k

∗
−X(m)

A,k

∗)
+ Ṽ

(m)
B,k , m = 2, . . . ,M, (3)

where Ṽ (m)
B,k = X

(m)
B,k

∗
V

(m−1)
B,k − V (m)

B,k . At high SNR, we can approximate Ỹ (m)
B,k

∗
Ỹ

(m)
B,k as

Ỹ
(m)
B,k

∗
Ỹ

(m)
B,k ≈ |νk|

2
∣∣∣S(m−1)

A,k

∣∣∣2 ∣∣∣X(m)
B,k −X

(m)
A,k

∣∣∣2 , m = 2, . . . ,M. (4)

1Refer to Appendix A for details.
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Taking the expected value of (4) over the constellation points of S(m−1)
A,k , X(m)

A,k and X
(m)
B,k , we note that

for the RHS, it is the same for all m and k since the constellation sets Ai, i ∈ {A,B} are the same

for all blocks and subcarriers. We also note that S(m−1)
A,k is independent from both X

(m)
B,k and X

(m)
A,k . For

a sufficiently large M , we can approximate the ensemble average of Ỹ (m)
B,k

∗
Ỹ

(m)
B,k by its time average.

Therefore, we can obtain an estimate of |νk|, denoted by |ν̂k|, as

|ν̂k|2 ≈

M∑
m=2

∣∣∣Ỹ (m)
B,k

∣∣∣2
(M − 1)E

[∣∣∣S(m−1)
A,k

∣∣∣2]E [∣∣∣X(m)
B,k −X

(m)
A,k

∣∣∣2] , (5)

where E
[∣∣∣S(m−1)

A,k

∣∣∣2] = 1 and E
[∣∣∣X(m)

B,k −X
(m)
A,k

∣∣∣2] can be calculated easily since the corresponding set

defined by K = {|b− a|2 | b ∈ AB, a ∈ AA} is finite. For instance, if Ai = {1,−1}, i ∈ {A,B}, then

K = {0, 4} and E
[∣∣∣X(m)

B,k −X
(m)
A,k

∣∣∣2] = 2. Let YB,k =
[
Y

(1)
B,k, Y

(2)
B,k, . . . , Y

(M)
B,k

]T
. If M is sufficiently large,

we can approximate Y H
B,kYB,k as

Y H
B,kYB,k ≈M

(
µ2
k + |νk|2 + σ2

VB

)
. (6)

At high SNR, we can write

µ2
k + |νk|2 ≈

Y H
B,kYB,k

M
. (7)

Therefore, we can estimate µk as

µ̂k ≈

√√√√(Y H
B,kYB,k

M
− |ν̂k|2

)
U

(
Y H
B,kYB,k

M
− |ν̂k|2

)
, (8)

where U (.) is the Heaviside unit step function. Now, we can remove the estimated self-interference term,

namely µ̂kS
(m)
B,k

∗
to obtain

Y
(m)
AB,k , Y

(m)
B,k − µ̂kS

(m)
B,k

∗

≈ νkS
(m)
A,k

∗
+ V

(m)
B,k , m = 1, . . . ,M.

(9)
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We can further express Y (m)
AB,k as

Y
(m)
AB,k ≈ X

(m)
A,k

∗
Y

(m−1)
AB,k +

(
V

(m)
B,k −X

(m)
A,k

∗
V

(m−1)
B,k

)
, m = 2, . . . ,M. (10)

Therefore, we write the following symbol-by-symbol MLD rule to recover X(m)
A,k at user B

X̂
(m)
A,k = arg min

X∈AA

∣∣∣Y (m)
AB,k −X

∗Y
(m−1)
AB,k

∣∣∣2 (11)

= arg max
X∈AA

Re
{
Y

(m)
AB,kY

(m−1)
AB,k

∗
X
}
, m = 2, . . . ,M. (12)

We remark that better performance can be attained if multiple-symbol differential detection, as in [13], is

used. However, the detection complexity will be greater.

C. Performance Analysis

In this section we provide an approximate closed form expression for the probability of error of the

JBD scheme by using results from the frequency-flat, Rayleigh-faded, single-way relay systems in [3, 14].

Assume that instead of using Gr to normalize the power at the rth relay in time domain, we use Gr,k to

normalize the power of the kth subcarrier in frequency domain. Note that Gr,k can be estimated for large

M as Gr,k ≈ M
||Yr,k||2

without any CSI knowledge at the relay where Yr,k =
[
Y

(1)
r,k , Y

(2)
r,k , . . . , Y

(M)
r,k

]
and

Y
(m)
r =

[
Y

(m)
r,1 , Y

(m)
r,2 , . . . , Y

(m)
r,N

]T
= DFT(y

(m)
r ). By modeling the JBD system by an equivalent coherent

receiver with treating νk as a known channel gain and
(
V

(m)
B,k −X

(m)
A,k

∗
V

(m−1)
B,k

)
as the equivalent noise

term, we can approximate the effective SNR over the kth subcarrier at user B as

γB,k ≈
|νk|2

2Var
[
V

(m)
B,k

] (13)

=

PA

NR∑
r=1

Pr |qrB,k|2 |qAr,k|2 + PA

NR∑
i=1

NR∑
j=1,j 6=i

√
PiPjGi,kGj,kqiB,kq

∗
Ai,kq

∗
jB,kqAj,k

2
(
σ2
B +

∑NR
r=1Gr,kPr |qrB,k|2 σ2

r

) , (14)

where qij,k = [Hdf,ij]k,k and Var[·] is the variance operator.

Since γB,k in (13) is a complicated function of 2NR Rayleigh-distributed RVs, finding its statistics (PDF,
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CDF, etc.) is difficult, and hence deriving the probability of error is intractable. However, an important

result in [14] for a special choice of the scaling factor simplifies the analysis as it results in expressing

the effective SNR in terms of the harmonic mean of the instantaneous SNR of the two hops, which in

turn simplifies the calculations. The adopted scaling factor normalizes the power of the kth subcarrier as

Gr,k =

(
PA

∣∣∣[Hdf,Ar]k,k

∣∣∣2 + PB

∣∣∣[Hdf,Br]k,k

∣∣∣2 + σ2
r

)−1

. At this point, we adopt this scaling factor to make

the analysis tractable for the JBD scheme.

Assume that σ2
i = σ2

r = σ2 ∀ i ∈ {A,B}, r ∈ {1, 2, . . . , NR} and let γ1 = PA
σ2 and γ2 =

∑NR
r=1 Pr
σ2

be the per-hop SNRs for the first and second hops, respectively. Assuming that the CIRs are normalized

such that
∑Lir

l=1 σ
2
ir,l = 1, i ∈ {A,B}, r ∈ {1, 2, . . . , NR}, we have |qir,k| ∼ Rayleigh( 1√

2
) and |qri,k| ∼

Rayleigh( 1√
2
). By dropping the second term of the numerator of (14) and using γ2 as the SNR for the

second hop, the performance of the JBD scheme can be approximated by the performance of the single

relay systems in [3, 14].

Assuming BPSK modulation, the average probability of bit error at user B in the high SNR region

can be approximated in terms of the per-relay SNR (i.e., γ1) and the SNR of the second hop linking the

relays to user B (i.e., γ2) as

Pe,B ≈
1

γ1

+
1

2γ2

. (15)

We finally note that dropping the cross terms in the numerator of (14) has the advantage of mathematical

tractability, and as the numerical examples will show later on, the approximation closely match the actual

system performance, especially for high SNR values.

IV. THE DSTC-BASED JOINT BLIND-DIFFERENTIAL (JBD-DSTC) SCHEME

In multi-antenna single-way relay systems, distributed space-time coding (DSTC) was proposed in [15]

based on linear dispersion space-time codes (STCs) to mimic having an STC structure at the destination

similar to the one obtained in multi-input single-output (MISO) systems that uses STCs. The system in

[15] assumes that there is CSI knowledge only at the destination. When there is no CSI knowledge, the

differential DSTC can be used [16].
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Fig. 2: Encoding process of the JBD-DSTC scheme at the ith user for the T symbols over the kth subcarrier
during the mth group. The green boxes represent the symbols on the N subcarriers for the corresponding
block and the notations P/S and S/P denote parallel to serial and serial to parallel, respectively.

In this section, we describe the proposed JBD-DSTC scheme based on differential DSTC transmission

for a multi-relay TWR system in order to fully harness the inherent diversity advantage of this system.

We consider a frame composed of M blocks in which T blocks are grouped together. There are MG

groups in a frame where MG = M/T , and the symbols over one subcarrier from the blocks of each group

correspond to one space-time (ST) codeword.

Fig. 2 illustrates the encoding process at the ith user for the T symbols over the kth subcarrier during

the mth group. Note that N parallel encoders are required for the entire N subcarriers. As shown in

Fig. 2, the frequency-domain data-bearing vector of the ith user, i ∈ {A,B}, during the tth block of the

mth group is denoted by X(m,t)
i where X(m,t)

i =
[
X

(m,t)
i,1 , X

(m,t)
i,2 , . . . , X

(m,t)
i,N

]T
and X(m,t)

i,k ∈ Ai. Prior to

differential encoding, the vector of data symbols over the same subcarrier, k, and over all blocks of the

same group, m, i.e., X(m)
i,k =

[
X

(m,1)
i,k , X

(m,2)
i,k , . . . , X

(m,T )
i,k

]T
, is encoded as a T × T unitary matrix C(m)

i,k .

The structure of this matrix is designed such that it commutes with the linear dispersion matrices at the

relays [16]. Let C denote the set of all possibilities of such matrices. Note that having a unitary structure

preserves the transmit power at each user.

Using differential DSTC (Diff-DSTC), each user differentially encodes the T symbols on the kth

subcarrier of the T blocks belonging to the mth group as S(m)
i,k = C

(m)
i,k S

(m−1)
i,k , m ∈ {2, 3, . . . ,MG}

where S(m)
i,k =

[
S

(m,1)
i,k , S

(m,2)
i,k , . . . , S

(m,T )
i,k

]T
and S(1)

i,k is an arbitrary T × 1 reference vector with ele-
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ments from Ai. Let S(m,t)
i =

[
S

(m,t)
i,1 , S

(m,t)
i,2 , . . . , S

(m,t)
i,N

]T
. After performing IDFT, we obtain s(m,t)

i =[
s

(m,t)
i,1 , s

(m,t)
i,2 , . . . , s

(m,t)
i,N

]T
= IDFT(S

(m,t)
i ). The transmitted signal from the ith user during the tth block

of the mth group, i ∈ {A,B}, is given by s(m,t)
Tx,i = s

(m,t)
Tx,i =

[
s

(m,t)
Tx,i,1, s

(m,t)
Tx,i,2, . . . , s

(m,t)
Tx,i,N+NCP,1

]T
=

√
Piζ1

(
s

(m,t)
i

)
.

A. Relay Processing

After CP removal during the MAC phase at the rth relay, the received superimposed signal for the tth

OFDM block of the mth group is given by

y
(m,t)
r =

√
PAHtl,ArΨdArs

(m,t)
A +

√
PBHtl,BrΨdBrs

(m,t)
B + n

(m,t)
r ,

where y(m,t)
r =

[
y

(m,t)
r,1 , y

(m,t)
r,2 , . . . , y

(m,t)
r,N

]T
and n(m,t)

r is a CSCG random vector with mean 0N and

covarince matrix σ2
rIN . To obtain the desired STC structure at the end-users, the rth relay processes{

y
(m,t)
r,n

}
t∈{1,2,...,T}

to obtain s(m)
r,n as



s
(m,1)
r,n

s
(m,2)
r,n

...

s
(m,T )
r,n


= Ar



y
(m,1)
r,n

y
(m,2)
r,n

...

y
(m,T )
r,n


+Br



η
(
y

(m,1)∗
r,n

)
η
(
y

(m,2)∗
r,n

)
...

η
(
y

(m,T )∗
r,n

)


,

r = {1, . . . , NR}, n = {1, . . . , N}. The T × T relay dispersion matrices Ar and Br are designed such

that they commute with the data matrices, i.e., with C(m)
i,k , while ensuring that the received signal at each

user possesses the desired space-time block code (STBC) structure.

One simple design is introduced in [16] in which the relays are classified into two groups, G1 and G2.

The rth relay falling into G1 uses a unitary matrix for Ar and sets Br = 0T×T while that falling into

G2 sets Ar = 0T×T and uses a unitary matrix for Br. According to this design, the relays’ commutative
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property can be written as COr = OrC̃r ∀r where

Or =

 Ar, r ∈ G1,

Br, r ∈ G2,

and C̃r =

 C, r ∈ G1,

C∗, r ∈ G2.

Hence, we can write the set of all possible STC data matrices as

C =
{
C
∣∣∣CHC = CCH = IT×T , COr = OrC̃r ∀r

}
.

To simplify the estimation of the self-interference term, we impose another design criterion on the relay

dispersion matrices, that is, all the matrices of the form OH
i Oj , i, j ∈ {1, 2, . . . , NR}, i 6= j, are hollow

matrices, i.e., their diagonal entries are all zeros.

The tth transmitted block of the rth relay during the mth group is given by s(m,t)
Tx,r =

√
PrGrζ2

(
s

(m,t)
r

)
where

s
(m)
Tx,r =

[
s

(m)
Tx,r,1, s

(m)
Tx,r,2, . . . , s

(m)
Tx,r,N+NCP,2

]T
and s(m,t)

r =
[
s

(m,t)
r,1 , s

(m,t)
r,2 , . . . , s

(m,t)
r,N

]T
.

B. Detection at the End-User

By the end of the BC phase, and after removing the CP of length NCP,2 at user B, the resulting

consecutive N -sample OFDM blocks of the tth block, t ∈ {1, 2, . . . , T}, in the mth group, m ∈ {1,MG}, is

denoted by y(m,t)
B . After performing DFT, the frequency-domain signal corresponding to y(m,t)

B is Y (m,t)
B =[

Y
(m,t)
B,1 , Y

(m,t)
B,2 , . . . , Y

(m,t)
B,N

]T
where Y (m,t)

B = DFT(y
(m,t)
B ). Let V (m,t)

B =
[
V

(m,t)
B,1 , V

(m,t)
B,2 , . . . , V

(m,t)
B,N

]T
denote the frequency-domain noise vector observed at user B during the tth block of the mth group

and let Y (m)
B,k =

[
Y

(m,1)
B,k , Y

(m,2)
B,k , . . . , Y

(m,T )
B,k

]T
denote the vector of received signals from all blocks of

the mth group on the kth subcarrier. Similarly, define V (m)
B,k =

[
V

(m,1)
B,k , V

(m,2)
B,k , . . . , V

(m,T )
B,k

]T
and D(m)

i,k =[
O1S̃

(m)
i,k,1, O2S̃

(m)
i,k,2, . . . , ONRS̃

(m)
i,k,NR

]
, i ∈ {A,B} where

S̃
(m)
i,k,r =

[
S̃

(m,1)
i,k,r , S̃

(m,2)
i,k,r , . . . , S̃

(m,T )
i,k,r

]T
=

 S
(m)
i,k , r ∈ G1,

S
(m)
i,k

∗
, r ∈ G2.

S̃
(m)
i,k,r =

[
S̃

(m,1)
i,k,r , S̃

(m,2)
i,k,r , . . . , S̃

(m,T )
i,k,r

]T
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Let qij,k = [Hdf,ij]k,k. We can write Y (m)
B,k as2 Y

(m)
B,k = D

(m)
B,kµB,k + D

(m)
A,kµA,k + V

(m)
B,k where µi,k,

i ∈ {A,B}, are NR × 1 channel-dependent vectors defined as

µi,k =



√
Pi1q1B,kq̃i1,ke

−j 2π(k−1)(d1B+d̃i1)
N

√
Pi2q2B,kq̃i2,ke

−j 2π(k−1)(d2B+d̃i2)
N

...√
PiNRqNRB,kq̃iNR,ke

−j
2π(k−1)(dNRB+d̃iNR)

N


, (16)

where

q̃ij,k =

 qij,k, j ∈ G1,

q∗ij,k, j ∈ G2,

and d̃ij =

 dij, j ∈ G1,

−dij, j ∈ G2.

For a sufficiently large M , we can obtain an estimate of µB,k, denoted by µ̂B,k, as3

µ̂B,k ≈
M∑
m=1

D
(m)
B,k

H
Y

(m)
B,k /(MT ), (17)

Note that unlike the JBD scheme, the JBD-DSTC scheme does not require the channel reciprocity

assumption. Having obtained an estimate for µB,k, user B can remove its estimated self-interference

term, D(m)
B,k µ̂B,k to obtain Y (m)

AB,k ≈ D
(m)
A,kµA,k + V

(m)
B,k . Using the commutative property and the fact that

S
(m)
i,k is differentially encoded, we can simplify Y (m)

AB,k as

Y
(m)
AB,k ≈

[
O1C̃

(m)
A,k,1S̃

(m)
A,k,1, O2C̃

(m)
A,k,2S̃

(m)
A,k,2, . . . , ONRC̃

(m)
A,k,NR

S̃
(m)
A,k,NR

]
ν̂k + V

(m)
B,k

≈
[
C

(m)
A,kO1S̃

(m−1)
A,k,1 , C

(m)
A,kO2S̃

(m−1)
A,k,2 , . . . , C

(m)
A,kONRS̃

(m−1)
A,k,NR

]
ν̂k + V

(m)
B,k

≈ C
(m)
A,kY

(m−1)
AB,k +

(
V

(m)
B,k − C

(m)
A,kV

(m−1)
B,k

)
, m = 2, 3, . . . ,MG

(18)

where

C̃
(m)
A,k,r =

 C
(m)
A,k , r ∈ G1,

C
(m)
A,k

∗
, r ∈ G2,

2An illustrative example for a dual-relay system is given in Appendix B.
3The derivation of this result is outlined in Appendix C.
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Therefore, C(m)
A,k can be recovered at user B using the following detection rule

Ĉ
(m)
A,k = arg min

C∈C

∥∥∥Y (m)
AB,k − CY

(m−1)
AB,k

∥∥∥2

, m = 2, 3, . . . ,MG. (19)

Note that if C has an STBC structure, then the above equation can be easily decoupled, which allows

fast symbol-wise ML detection. Similar to the JBD scheme, employing ideas based on multiple-symbol

differential detection, which in this case involves the joint detection of the MG data matrices, promises

significant performance improvements, which comes at the expense of increased receiver complexity.

C. Performance Analysis

Inspired by the results obtained in [16] for single-way differential DSTC, we can write the pairwise

error probability of mistaking C
(m)
A,k by C ′

(m)
A,k , i.e., P

(
C

(m)
A,k → C ′

(m)
A,k

)
in the two-way relaying scheme

under consideration. Let σ2
i = σ2

r = σ2 ∀ i ∈ {A,B}, r ∈ {1, 2, . . . , NR}. Assuming that the CIRs are

normalized such that
∑Lir

l=1 σ
2
ir,l = 1, i ∈ {A,B}, r ∈ {1, 2, . . . , NR}, the PEP, averaged over channel

realizations, can be approximately upper bounded for large SNR values as

P
(
C

(m)
A,k → C ′

(m)
A,k

)
∼
<

(
16NR log Ω

ΩT

)NR
∆
(
C

(m)
A,k , C

′(m)
A,k

) (20)

where Ω =
√

2
T

(PA+PB+σ2)
∑NR
r=1 Pr

σ2 and ∆(C,C ′) = det ((C − C ′)∗(C − C ′)) gives an indication of the

distance between C and C ′.

With the assumption that
∑NR
r=1 Pr
σ2 � 1, the JBD-DSTC scheme can achieve a diversity of NR

(
1− log log Ω

log Ω

)
.

V. NUMERICAL RESULTS

As an example, we consider a frequency-selective Rayleigh fading channel with three taps defined

by {σir,l}l∈{1,2,3} = [1, 0.8, 0.6]√
2

, i ∈ {A,B}, r ∈ {1, 2, . . . , NR}, N = 64 subcarriers and total band-

width of 8 kHz. The selection of the available bandwidth is consistent with, for example, underwa-

ter acoustic communications. The SNR at user i while detecting the signal of user i′ is defined as

SNRi = (G1 +G2)Pi′/σ
2
i,eff , i, i′ ∈ {A,B}, i′ 6= i where σ2

i,eff = G1σ
2
1 +G2σ

2
2 +σ2

i is the effective noise
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Fig. 3: BER performance of the JBD detector and the coherent detector.

variance at user i. Unless stated otherwise, Quadrature PSK (QPSK) is used and σ2
B = σ2

1 = σ2
2 = σ2.

We further assume that NR = 2, PA = 1, G1 = G2 = 1, dA1 = 5, dB1 = 14, dA2 = 3, dB2 = 9, d1B = 14

and d2B = 9. For the JBD-DSTC scheme, two blocks per group (T = 2) is assumed, and we adopt the

dispersion matrices designed in [16].

In Fig. 3, we compare the BER performance of the JBD detector with that of the coherent detector.

Clearly, the coherent scheme outperforms the differential scheme by almost 3 dB which is an expected

result. We also plot the performance of a genie-aided differential detector that assumes the knowledge of

µ1,k and µ2,k ∀k, at user B and the knowledge of ν1,k and ν2,k ∀k, at user A, and hence self-interference

is perfectly removed. As seen in Fig. 3, if 15 blocks are assumed, the performances of the two schemes

match closely, which shows the accuracy of the parameters estimation. Furthermore,it shows that our

proposed scheme still performs close to the genie-aided case even if the number of blocks is reduced

from to 10. Similar results are observed for JBD-DSTC.

In Fig. 4, we compare our proposed schemes to two existing differential-based TWR schemes along

with the conventional single-way relay (SWR) implementation when the channel is quasi-static. For SWR

implementation, four phases of transmission are required and hence we use QPSK rather than BPSK as

in the TWR schemes to unify the transmission rate. For the two schemes in [7, 8], we properly extend
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their proposals to the multicarrier case to perform the comparison. Clearly, the JBD scheme outperforms

the JBD-DSTC scheme for low SNR values (below 17 dB for this example) while the opposite happens

for higher SNR values as JBD-DSTC achieves the full diversity order of 2. In fact, the JBD-DSTC

scheme outperforms all the other considered schemes in the high SNR region (greater than 25 dB here).

Specifically, it outperforms the scheme in [8], the one in [7], the JBD scheme and the SWR system by

about 1.5 dB, 1.7 dB, 8.2 dB and 11.3 dB, respectively, at a BER of about 10−4. Specifically, we attribute

the improvement over the scheme in [8], which is also based on differential DSTC, to the fact that the

detector in [8] uses estimates of the partner’s previous symbol (in addition the currently received signal)

to detect the partner’s current symbol which causes error propagation. In our scheme, on the other hand,

the detection of the current symbol is independent from the previous symbol.

We can note from Fig. 4 that the scheme in [7] which is based on relay selection diversity performs

better than all other proposals for small SNR values the (below 25 dB for this example). However, it

imposes a transmission overhead as it requires sending a sufficient number of pilot symbols to aid in

assigning specific subcarrier(s) to the relay that minimizes the total symbol error rate of the users over

this (those) subcarrier(s), and after that, additional feedback is required to broadcast the indices of the

subcarriers that each relay should handle. Furthermore, unlike our schemes, the relays are required to

perform DFT and IDFT to enable filtering out all subcarriers except the ones assigned to each one of

them.

Fig. 5 compares the analytical and the simulation performance results for the JBD scheme using BPSK

modulation. Herein, the power at the relay is normalized as explained in Section III-C and the transmit

power of the rth relay, Pr, r ∈ {1, 2, . . . , NR} is set to unity. Fig. 5 shows a close match between

simulation results and the analytical Pb (as in (15)) in the high SNR region (greater than 15 dB for this

example) for various number of relays.

In Fig. 6, we compare between the analytical PEP upper bound of the JBD-DSTC detector in (20) to

the estimated PEP obtained from Monte Carlo simulations. We consider two scenarios for the number

of relays, namely 2 and 4 which are implemented using groups of sizes T = 2 and T = 4, respectively.
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Fig. 4: BER performance of the proposed schemes and some existing schemes (M = 200).

Here, we use BPSK modulation and hence we can adopt the square real orthogonal dispersion matrices

proposed in [17]. The following summarizes the structure of the data matrices and the dispersion matrices

for the two scenarios:

System I

C
(m)
i,k =

1√∣∣∣X(m,1)
i,k

∣∣∣2 +
∣∣∣X(m,2)

i,k

∣∣∣2
 X

(m,1)
i,k −X(m,2)

i,k

X
(m,2)
i,k X

(m,1)
i,k

 , (21)

A1 = I2 and A2 =

 0 −1

1 0

 . (22)

System II

C
(m)
i,k =

1√∑4
j=1

∣∣∣X(m,j)
i,k

∣∣∣2



X
(m,1)
i,k −X(m,2)

i,k −X(m,3)
i,k −X(m,4)

i,k

X
(m,2)
i,k X

(m,1)
i,k X

(m,4)
i,k −X(m,3)

i,k

X
(m,3)
i,k −X(m,4)

i,k X
(m,1)
i,k X

(m,2)
i,k

X
(m,4)
i,k X

(m,3)
i,k −X(m,2)

i,k X
(m,1)
i,k


, (23)
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Fig. 5: Comparison between analytical and simulation performance results for the JBD detector (M = 200).

A1 = I4, A2 =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


, A3 =



0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


and A4 =



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


.

(24)

Note that for the two systems, Br = 0T×T , r ∈ {1, 2, . . . , NR}.

Let X(m)
i,k =

[
X

(m,1)
i,k , X

(m,2)
i,k , . . . , X

(m,T )
i,k

]T
denote data samples corresponding to the data matrix C(m)

i,k .

Similarly,X ′(m)
i,k corresponds to C ′(m)

i,k . to maintain fairness between the two scenarios, we considerX(m)
i,k =

[1, 1]T and X ′(m)
i,k = [−1,−1]T for System I, while for System II, X(m)

i,k = [1, 1, 1, 1]T and X ′(m)
i,k =

[−1,−1, 1, 1]T . Note that for the two scenarios, ∆
(
C

(m)
A,k , C

′(m)
A,k

)
= 16. For Fig. 6, we assume PA = 1,

Pr = 1
NR

and Gr = (PA + PB + σ2
r)
−1, r ∈ {1, 2, . . . , NR}. Fig. 6 shows the validity of the upper bound

and it also shows that the diversity is about 2 and 4 for systems I and II, respectively, as the PEP drops

about 2 and 4 orders of magnitude, respectively, for an SNR increase of 10 dB.
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Fig. 6: Comparison between analytical PEP upper bound and simulation results for the JBD-DSTC detector
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VI. CONCLUSIONS

This paper has proposed two schemes for differential asynchronous MR-TWR systems in frequency-

selective fading channels in which neither the knowledge of the CSI nor the propagation delays is required.

An advantage of these schemes is that the relays are only required to perform simple operations on the

received (overlapped) signals, e.g., complex conjugation and time-reversal. Also, after estimating the

channel-dependent parameters, only a simple symbol-wise detection rule is required. Through numerical

simulations, it is observed that the proposed schemes are superior to the existing ones in the literature.

The paper has also provided analytical error probability results for the proposed schemes that matched

the results of Monte Carlo simulations.
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APPENDIX A

SIMPLIFICATION OF Y
(m)
B,k FOR THE JBD SCHEME

After DFT, the mth block of the effective signal in frequency-domain can be written as

Y
(m)
B

(a)
=

∑
i∈{A,B}

NR∑
r=1

√
PirFHtl,rBF

HFΨdrBF
HFη

(
H∗tl,irΨ

∗
dir
s

(m)∗
i

)
+ Fv

(m)
B

(b)
=

∑
i∈{A,B}

NR∑
r=1

√
PirFHtl,rBF

HFΨdrBF
H
(
FHtl,irΨdirs

(m)
i

)∗
+ V

(m)
B

=
∑

i∈{A,B}

NR∑
r=1

√
PirFHtl,rBF

HFΨdrBF
H
(
FHtl,irF

HFΨdirF
HFs

(m)
i

)∗
+ V

(m)
B

=
∑

i∈{A,B}

NR∑
r=1

√
PirH

(m)
df,rBΨF,drB

(
H

(m)
df,irΨF,dirS

(m)
i

)∗
+ V

(m)
B

(25)

where V (m)
B = Fv

(m)
B , ΨF,d = FΨdF

H and (a) follows from the fact that the DFT matrix is a unitary

matrix, i.e. FHF = FFH = IN where IN is the size-N identity matrix. The equality (b) follows from

the fact that conjugation along with reversal in time-domain results in conjugation in frequency-domain,

i.e. Fη (x∗) = (Fx)∗.

In case of block fading or of course quasi-static, which is our assumption here, Htl,ir have a circulant

structure causing Hdf,ir to be diagonal which means no inter-carrier interference (ICI) is present. When

the channel is time-varying within the same OFDM block, neither Htl,ir will be circulant nor will Hdf,ir

be diagonal, which means that the subcarrier orthogonality is lost, giving rise to ICI.

It is clear to see that due to the different time delays experienced by the components of the signal in

(3), different circular shifts resulted. Since having a delay of n samples in the time domain causes the

kth subcarrier to have a phase shift of e−j2πn(k−1)/N , k ∈ {1, 2, . . . , N}, we can write the received signal

on the kth subcarrier as

Y
(m)
B,k =

∑
i∈{A,B}

NR∑
r=1

√
Pir

[
H

(m)
df,rB

]
k,k

[
H

(m)
df,ir

]∗
k,k
e−j

2π(k−1)(drB−dir)
N S

(m)
i,k

∗
+ V

(m)
B,k ,

Since we assumed the channels to be reciprocal, then for all i ∈ {A,B}, r ∈ {1, 2}, Hdf,ir = Hdf,ri. We

also assume that dri = dir, r ∈ {1, 2}, i ∈ {A,B}. Therefore, the received signal on the kth subcarrier



22

during the mth block can be written as Y (m)
B,k = µkS

(m)
B,k

∗
+ νkS

(m)
A,k

∗
+ V

(m)
B,k .

APPENDIX B

ILLUSTRATIVE EXAMPLE FOR THE JBD-DSTC SCHEME: DUAL-RELAY CASE

To clearly illustrate the resulting DSTC structure, we consider the case of having two relays (NR = 2)

and using two blocks per group (T = 2). For this case, we adopt the dispersion matrices design in [16]

that results in Alamouti’s code structure. Specifically, the relays’ matrices are chosen as

A1 =

 1 0

0 1

, B1 = 0T×T , A2 = 0T×T and B2 =

 0 −1

1 0

 . (26)

Interestingly, for the case of NR = 2 and T = 2, it was found in [16] that a space-time codeword, C,

satisfies the commutative property if and only if it follows the 2× 2 Alamouti structure. Hence, C(m)
i,k is

constructed as

C
(m)
i,k =

1√∣∣∣X(m,1)
i,k

∣∣∣2 +
∣∣∣X(m,2)

i,k

∣∣∣2
 X

(m,1)
i,k −X(m,2)

i,k

∗

X
(m,2)
i,k X

(m,1)
i,k

∗

 . (27)

After removing the CP of length NCP,2 at user B, the resulting two consecutive N -sample OFDM

blocks of the mth group, m ∈ {1,MG}, can be written as

y
(m,1)
B =

√
PA1Htl,1BΨd1BHtl,A1ΨdA1

s
(m,1)
A −

√
PA2Htl,2BΨd2Bη

(
H∗tl,A2Ψ∗dA2

s
(m,2)∗
A

)
+
√
PB1Htl,1BΨd1BHtl,B1ΨdB1

s
(m,1)
B −

√
PB2Htl,2BΨd2Bη

(
H∗tl,B2Ψ∗dB2

s
(m,2)∗
B

)
+ v

(m,1)
B ,

(28)

y
(m,2)
B =

√
PA1Htl,1BΨd1BHtl,A1ΨdA1

s
(m,2)
A +

√
PA2Htl,2BΨd2Bη

(
H∗tl,A2Ψ∗dA2

s
(m,1)∗
A

)
+
√
PB1Htl,1BΨd1BHtl,B1ΨdB1

s
(m,2)
B +

√
PB2Htl,2BΨd2Bη

(
H∗tl,B2Ψ∗dB2

s
(m,1)∗
B

)
+ v

(m,2)
B ,

(29)

where v(m,t)
B represents length-N effective noise vector at user B during the tth block of the mth group

whose entries are AWGN random variables with zero mean and variance of σ2
B.

After performing DFT, the frequency-domain signal corresponding to the first block of the mth group
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can be written as

Y
(m,1)
B =

√
PA1FHtl,1BF

HFΨd1BF
HFHtl,A1F

HFΨdA1
s

(m,1)
A

−
√
PA2FHtl,2BF

HFΨd2BF
HFη

(
H∗tl,A2Ψ∗dA2

s
(m,2)∗
A

)
+
√
PB1FHtl,1BF

HFΨd1BF
HFHtl,B1F

HFΨdB1
FHFs

(m,1)
B

−
√
PB2FHtl,2BF

HFΨd2BF
HFη

(
H∗tl,B2Ψ∗dB2

s
(m,2)∗
B

)
+ V

(m,1)
B

=
√
PA1Hdf,1BΨF,d1BHdf,A1ΨF,dA1

S
(m,1)
A

−
√
PA2Hdf,2BΨF,d2B

(
Hdf,A2ΨF,dA2

S
(m,2)
A

)∗
+
√
PB1Hdf,1BΨF,d1BHdf,B1ΨF,dB1

S
(m,1)
B

−
√
PB2Hdf,2BΨF,d2B

(
Hdf,B2ΨF,dB2

S
(m,2)
B

)∗
+ V

(m,1)
B (30)

where V (m,t)
B = Fv

(m,t)
B . Similarly, we can write Y (m,2)

B for the second block as

Y
(m,2)
B =

√
PA1Hdf,1BΨF,d1BHdf,A1ΨF,dA1

S
(m,2)
A

+
√
PA2Hdf,2BΨF,d2B

(
Hdf,A2ΨF,dA2

S
(m,1)
A

)∗
+
√
PB1Hdf,1BΨF,d1BHdf,B1ΨF,dB1

S
(m,2)
B

+
√
PB2Hdf,2BΨF,d2B

(
Hdf,B2ΨF,dB2

S
(m,1)
B

)∗
+ V

(m,2)
B

(31)

With Y (m)
B,k =

[
Y

(m,1)
B,k , Y

(m,2)
B,k

]T
and V (m)

B,k =
[
V

(m,1)
B,k , V

(m,2)
B,k

]T
, we can write Y (m)

B,k as

Y
(m)
B,k = D

(m)
B,kµB,k +D

(m)
A,kµA,k + V

(m)
B,k , (32)

where

D
(m)
i,k =

 S
(m,1)
i,k −S(m,2)

i,k

∗

S
(m,2)
i,k S

(m,1)
i,k

∗

 , i ∈ {A,B}, (33)

µ
(m)
B,k =


√
PB1

[
H

(m)
df,1B

]
k,k

[
H

(m)
df,B1

]
k,k
e−j

2π(k−1)(d1B+dB1)
N

√
PB2

[
H

(m)
df,2B

]
k,k

[
H

(m)
df,B2

]∗
k,k
e−j

2π(k−1)(d2B−dB2)
N

 , (34)
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and

µ
(m)
A,k =


√
PA1

[
H

(m)
df,1B

]
k,k

[
H

(m)
df,A1

]
k,k
e−j

2π(k−1)(d1B+dA1)
N

√
PA2

[
H

(m)
df,2B

]
k,k

[
H

(m)
df,A2

]∗
k,k
e−j

2π(k−1)(d2B−dA2)
N

 . (35)

APPENDIX C

ESTIMATION OF THE SELF-INTERFERENCE TERM IN THE JBD-DSTC SCHEME

As a first step we investigate the expected value of D(m)
B,k

H
Y

(m)
B,k over the constellation points of S(m)

A,k

and S(m)
B,k . We can write this as E

[
D

(m)
B,k

H
Y

(m)
B,k

]
= E

[
D

(m)
B,k

H
D

(m)
B,k

]
µB,k + E

[
D

(m)
B,k

H
D

(m)
A,k

]
µA,k + V

(m)
B,k .

To simplify exposition, and since we aim to take the expectation over the constellation points rather

than time or frequency, we will drop the subcarrier index (k) and the block index (m) such that D(m)
i,k ,

S̃
(m)
i,k,r and S̃(m,t)

i,k,r will be expressed by Di, S̃i,r and S̃(t)
i,r , respectively. We can write DB

HDB as

DB
HDB =



S̃HB,1O
H
1 O1S̃B,1 S̃HB,1O

H
1 O2S̃B,2 . . . S̃HB,1O

H
1 ONRS̃B,NR

S̃HB,2O
H
2 O1S̃B,1 S̃HB,2O

H
2 O2S̃B,2 . . . S̃HB,2O

H
2 ONRS̃B,NR

...
... . . . ...

S̃HB,NRO
H
NR
O1S̃B,1 . . . . . . S̃HB,NRO

H
NR
ONRS̃B,NR


, (36)

=



T S̃HB,1O
H
1 O2S̃B,2 . . . S̃HB,1O

H
1 ONRS̃B,NR

S̃HB,2O
H
2 O1S̃B,1 T . . . S̃HB,2O

H
2 ONRS̃B,NR

...
... . . . ...

S̃HB,NRO
H
NR
O1S̃B,1 . . . . . . T


, (37)

where we used the fact OH
r Or = IT . Let J i,j = OH

i Oj and let its element in the (l, p) position be denoted

by J i,jl,p . Recall that J i,j , i 6= j, is a hollow matrix, i.e., J i,jl,l = 0 ∀l ∈ {1, 2, . . . , T}.

Note that S̃HB,iJ
i,jS̃B,j =

∑T
r=1 S̃

(r)
B,i

∗∑T
c=1 J

i,j
r,c S̃

(c)
B,j =

∑T
r=1

∑T
c=1 J

i,j
r,c S̃

(r)
B,i

∗
S̃

(c)
B,j . Hence, we can write

E
[
S̃HB,iJ

i,jS̃B,j

]
=
∑T

r=1

∑T
c=1 J

i,j
r,c E

[
S̃

(r)
B,i

∗
S̃

(c)
B,j

]
. Due to the differential encoding, both S̃

(r)
B,i and S̃

(c)
B,j

are correlated since they both consist of differently-weighted linear combination of the same T random

variables, which on the other hand, are also correlated with each other due to the same reason. However,

by examining their correlation coefficients, we have found that they are small enough to be neglected.
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Therefore, we approximate their correlation by zero, and hence E
[
S̃HB,iJ

i,jS̃B,j

]
≈ 0, i 6= j, and

E
[
DB

HDB

]
≈ TINR . Following the same rationale, we conclude that E

[
DB

HDA

]
≈ 0NR×NR .

Finally, assuming large M , we use the law of large numbers to approximate the expected value of

D
(m)
B,k

H
Y

(m)
B,k by its time average, which can be calculated at user B, as

∑M
m=1 D

(m)
B,k

H
Y

(m)
B,k /M , and hence

we obtain µ̂B,k ≈
∑M

m=1 D
(m)
B,k

H
Y

(m)
B,k /(MT ) for large SNRs.
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