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Abstract—A forward model for diffraction tomography is
derived for the case of thin cylindrical objects by introducing
a dyadic contrast function that takes into account depolarization
phenomena, which were not previously addressed. As a result,
polarimetric measurements may be used to distinguish between
dielectric or metallic thin-cylindrical objects. In the case of
metallic objects, it is also possible to reconstruct their direction.

Index Terms—Inverse Scattering, Diffraction Tomography, Mi-
crowave Tomography, RF Tomography, Dyadic contrast function

I. INTRODUCTION

D IFFRACTION Tomography techniques [1]–[4] are
widely used in various applications, including detection

of underground tunnels (RF Tomography) [5]–[7] and medical
imaging (Microwave Tomography) [8].

The forward model of diffraction tomography contains a
scalar contrast function, which depends on the permittivity
distribution [5].

In this article, the dyadic contrast function is introduced
to take into account depolarization effects that may occur
when an incident electric field illuminates structures made
of thin elongated cylinders. These structures are chosen to
both emphasize situations that require the new dyadic contrast
function and to simplify the explanation. Incidentally, it is
possible to derive a parallel between the new dyadic contrast
function and the diffusion tensor imaging used in Magnetic
resonance imaging [9].

First, a forward model with a dyadic contrast function is
derived by assuming that only thin elongated cylinders exist in
a scene. Second, the new forward model using the dyadic con-
trast function is tested on an inverse scattering problem. The
values of the reconstructed dyadic contrast function indicate if
depolarization is present or not. When depolarization is present
the target is considered metallic, otherwise it is considered
made of dielectric material. In addition, the direction of
the object may be determined by means of the eigenvalue
analysis of the dyadic contrast function. Preliminary results
were presented in [10], [11].
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II. DEPOLARIZATION DUE TO ELONGATED CYLINDERS

The electric field scattered by metallic thin cylinder struc-
tures shows depolarization effects with respect to the polariza-
tion of the incident electric field. Depolarization is essentially
absent when the same geometry is made of dieletric material.
To visualize this effect, we consider the currents induced on
a complex structure composed of many thin cylinders made
of metallic or dielectric material, as shown in the Method of
Moments results of Fig. 1. This structure is illuminated by
an incident plane wave that propagates along the negative
x direction and is linearly polarized with the electric field
oriented at 45◦ with respect to the z axis on the yz plane.

(a)

(b)

Fig. 1: Impressed currents on a geometrical structure made
of (a) PEC and (b) dielectric material with εr = 5. The
polarization of the incident plane wave is indicated by the
red arrow.

In the case of a metallic structure, Fig. 1a shows that the
direction of the currents is essentially parallel to the direction
of the long axes of the structures’ elements. In the case of
a dielectric material, Fig. 1b shows that the direction of the
current is parallel to the direction of the incident electric field.

In order to account for the observed depolarization effects
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in complex structures composed of thin cylinders, the forward
model used in diffraction tomography is modified with the
introduction of the following dyadic contrast function

Es(rt, rr) = Qk20

∫
v

âr ·G(rr, r′) ·V(r′) ·G(r′, rt) · âtdr′,

(1)

where rt and rr are the locations of the transmitter and
receiver antennas; ât and âr represent the direction of the
transmitter and receiver antennas, which are assumed to be
small dipoles; Q = jωµ0∆`tIt for small dipoles; and, G is
the dyadic Green’s function for the homogeneous space. The
dyadic contrast function V is

V(r′) =

Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 . (2)

In the case of a dielectric elongated thin cylinder, the dyadic
contrast function essentially behaves as

V(r′) = [ε(r′) − εb] I, (3)

while in the case of a metallic thin elongated cylinder,

V(r′) = −j σ(r′)

ωε0
ût
1û1, (4)

where û1 is a unit vector parallel to the direction of the long
axis of the thin cylinder. Additional insights to understand the
meaning of the dyadic contrast function may be obtained by
individually analyzing the elements of Eq. (1) proceeding from
right to left. The term G(r′, rt)·ât has the meaning of incident
electric field in the domain v:

Ẽi = G · ât =

 Ei
x

Ei
y

Ei
z
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z
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t
y +Gzza

t
z

 .
(5)

The incident field then multiplies the dyadic contrast function,

Fig. 2: Geometry for example. There are a thin PEC at (-5,
-5) cm and a thicker dielectric cylinders at (5, 5) cm which
intersect the xy plane at a 45◦ angle.

and an equivalent impressed surface current term is obtained

J̃ = V · Ẽi =

 Jx
Jy
Jz

 =

 VxxE
i
x + VxyE
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VyxE
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 .
(6)

It is evident that while a scalar contrast function produces
an impressed current J̃ which is always parallel to Ẽi, a

dyadic contrast function can correctly represent depolarization
effects due to its off-diagonal terms. This equivalent current
produces a scattered field through the Green’s function, which
is projected onto the receiving antenna direction.

To simplify the notation, the auxiliary row vector p is
introduced

p = âr ·G =

 px
py
pz

T

=

 arxGxx + aryGyx + arzGzx

arxGxy + aryGyy + arzGzy

arxGxz + aryGyz + arzGzz

T

.

(7)

Overall, for a given combination of locations of the trans-
mitter at rt, receiver at rr, and their respective polarizations
ât and âr, the contribution to the scattered field Es due to a
scatterer at r′ can be written as

dEs = p · J̃ = pxJx + pyJy + pzJz

= px
(
VxxE

i
x + VxyE

i
y + VxzE

i
z

)
+ py

(
VyxE

i
x + VyyE

i
y + VyzE

i
z

)
+ pz

(
VzxE

i
x + VzyE

i
y + VzzE

i
z

)
dr′. (8)

The previous expression is conveniently recast as the scalar
product of a 9 element vector `, containing all the known
terms, and of a vector t, containing the 9 unknown elements
of the dyadic contrast function, i.e. dEs = `tdr′, where

` = [pxE
i
x, pxE

i
y, pxE

i
z, pyE

i
x, pyE

i
y, pyE

i
z, pzE

i
x, pzE

i
y, pzE

i
z],

(9)

t = [Vxx, Vxy, Vxz, Vyx, Vyy, Vyz, Vzx, Vzy, Vzz]T . (10)

The domain of investigation v is discretized into P pixels, so
that there is a total number of 9P unknowns. For each mea-
surement, it is possible to consider up to 9 linearly independent
combinations for the polarization of the transmitter and the
receiver. Assuming a number m of transmitters and a number
n of receivers, the maximum number of measurements is 9mn.
Then, a matrix L is constructed so that each row corresponds
to one possible combination of position and polarization of
the transmitter and the receiver, while each pixel location is
associated to 9 columns of L so that overall the matrix L has
9mn rows and 9P columns. A column vector T is constructed
by appending the vectors t for each pixel, for a total of 9P
elements. In the end, one obtains the equation

Es = LT. (11)

The forward model obtained in eq. (11) must be inverted to
obtain the dyadic contrast function. The matrix L is normally
ill-conditioned, therefore regularized inversion methods of
either direct (e.g. Truncated Singular Value Decomposition)
or iterative (e.g. Conjugate Gradient, Algebraic Reconstruction
Technique) type must be used.

III. SOLUTION OF THE INVERSE PROBLEM

The dyadic contrast function is computed for the sample
geometry shown in Fig. 2. It is assumed that 21 infinitesimal
dipole transmitters and 40 receivers are placed in the z = 0
plane, and are uniformly distributed along two concentric
circles centered at the origin with a radius of 44.5 cm for
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Fig. 3: The 9 reconstructed components of the dyadic contrast function for the sample geometry of Fig. 2.

the transmitters and 23.1 cm for the receivers. Criteria for the
optimal number and locations of transmitters and receivers are
discussed in [12] and references therein. All three orthogonal
polarizations for each individual transmitter and receiver are
considered. Overall, 21 × 40 × 9 = 7560 measurements
are collected. The scattered field is computed by Method of
Moment simulations through the commercial computational
electromagnetic software FEKO. The frequency of operation
is 3.16 GHz (λ ≈ 9.5 cm).

In this example, a thin metallic cylinder and a thicker
dielectric cylinder, with εr = 1.5, exist in the volume under
investigation and are shown in orange and green respectively.
The metallic cylinder, which has a radius of 1 mm and is 2 cm
long, is centered at (-5, -5) cm in the z = 0 plane, its axis is
located in the xz plane and makes a −45 degree angle with the
z axis. The dielectric cylinder, which has a radius of 5 mm and
is 4 cm long, is centered at (5, 5) cm in the z=0 plane, its axis
is located in the xz plane and makes a 45 degree angle with the
z axis. The dielectric cylinder is intentionally chosen bigger
than the metallic cylinder so that the corresponding scattered
field is stronger and is not masked by the field scattered by
the metallic cylinder.

The area under investigation is colored in blue and is square
with a side of 20 cm in length and is centered at the origin. The
area is partitioned into pixels of size λ/10. This corresponds
to a total of 21 × 21 × 9 = 3969 unknowns.

The conjugate gradient method is used in the inversion of
eq. (11) to retrieve the vector T. Then, the elements of the
vector T are rearranged so as to create 9 reconstructed images
versions, each one corresponding to a different component of
dyadic contrast V. The results were computed using a laptop
computer with Intel R© CoreTM i7-3610QM @2.30 GHz CPU.
The computational time was 52.3 seconds for creating the
model L, and 4.1 seconds for the inversion.

A. 9 components of dyadic contrast

The result of the inversion for the example under consider-
ation can be visualized as a 3-by-3 collection of images and
are shown in Fig. 3. For the thin metallic cylinder, which is
located at (-5 ,-5) cm, the components of the dyadic contrast
function that are different from zero are the diagonal terms xx,
and zz and the off-diagonal terms xz and zx. The presence of
the off-diagonal terms indicates strong depolarization, which
is a signature of a elongated cylindrical metallic object. On
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the other hand, for the dielectric cylinder, which is located at
(5, 5) cm the components of the dyadic contrast function that
are different from zero are only the diagonal terms xx and
zz. The lack of strong off-diagonal terms is a signature of an
elongated cylindrical dielectric object.

Fig. 3 also shows that the zz component is stronger than
the other ones. This is due to the pattern of the antennas. In
fact, since the small dipoles are placed in the xy plane, only
when both transmitter and receiver are oriented along the ẑ
direction there are no radiation pattern nulls pointing towards
the object. All other polarizations are affected by the presence
of nulls and therefore produce a weaker response.

B. Eigenvalues-eigenvectors analysis

In the case of metallic elongated cylinders, the eigenvector
analysis of the dyadic contrast funtion leads to the deter-
mination of the direction of the long axis of the cylinder.
In fact, due to the depolarization, the largest eigenvalue is
associated with the eigenvector parallel to the long axis of the
cylinder. So, assuming that there is depolarization, let u1 be
the eigenvector associated with the largest eigenvalue λ1 of
the contrast function. Then, consider the vector

d = λ1u1 (12)

which is displayed in the region of interest as a quiver plot and
is shown in Fig. 4. Two types of information are obtained: (i)
the location of the target through the magnitude of d and (ii)
the direction of the cylinder through the direction of d. The
quiver plot should be interpreted in this way: (i) an object is
located where the magnitude of the arrows is large and (ii)
the direction of an object is indicated by the orientation of the
arrows in the 3D space. The same result obtained in Fig. 3
can be processed with the eigen-decomposition.

Fig. 4: Quiver plot obtained with eigendecomposition. The
gray image is the absolute value of the sum of all components
of the image. Two views are provided.

The reconstructed vectors d result into arrows oriented at
an angle θ = 32◦ in the same direction as the thin elongated
metallic cylinder t at (-5, -5) cm. On the other hand, the
arrows point toward the ẑ direction for the dielectric cylinder.
The resulting vectors tend to point toward the ẑ direction due
to the strong Vzz component, and this specific measurement
configuration.

IV. CONCLUSION

The anisotropic forward model using dyadic contrast func-
tion is derived to represent depolarization for thin metallic
cylinders. The dyadic contrast allows to observe if depolar-
ization exists and the off-diagonal components of the dyadic
contrast function can be used to determine whether objects are
metallic or dielectric. The direction of a thin metallic cylinder
is given by the direction of the eigenvector associated with the
largest eigenvalue of the dyadic contrast function. As future
work, the new model can be extended to reconstruct surfaces
of more general objects made of metal by considering the
first two largest eigenvalues of V. The expected difficulty is
that the current distribution on the object is no longer a linear
function of the the incident field.
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