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Abstract— RF tomography is extended for imaging 

underground structures and tunnels assuming rough terrain. The 

theory of RF tomography described in [1] remains applicable, 

provided that a numerical Green’s function is computed. An FFT-

based and intrinsically parallel method for obtaining numerical 

Green’s functions is described. This method is corroborated with 

explicit formulas and implemented for RF tomography. Simulated 

data computed using an FDTD code is used to demonstrate 

performance. 

 
Index Terms— Inverse Problems, RF Tomography, Ground 

Penetrating Radar, Green’s Functions, Tunnel Detection. 

I. INTRODUCTION 

ADIO tomography has been proposed for imaging 

underground dielectric/conducting anomalies [1]. A 

system using RF tomography employs a set of low-cost, 

reconfigurable, narrowband electromagnetic transmitters and 

receivers placed on top, above, or shallowly buried in the 

ground at arbitrary positions. This system conceptually 

operates in three stages. The first stage is dedicated to the 

configuration of the system: during this stage, sensors 

accurately identify their position, orientation and time 

reference. During the second stage, a predetermined subset of 

transmitters radiates a known polarimetric waveform. The 

probing wave impinges upon a target (represented in terms of 

dielectric / conducting anomaly), thus producing scattered 

fields. Spatially distributed receivers collect samples of the 

total electric field, excise noise, clutter and the direct path, and 

store the information concerning the scattered field. Then, a 

different set of transmitters is activated, or waveforms 
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with different polarization are used. During the third stage, 

recorded data is relayed to a central station for processing and 

imaging, (see [1] for a pictorial representation). The system 

operates using ultra-narrowband, adaptive waveforms, thus 

ensuring low noise, low dispersion and affordable cost of 

instrumentation. 

To date, RF tomography has been implemented only under 

conditions when the dyadic Green’s function for the sensing 

problem is provided in analytic form, thus limiting its 

application to homogeneous space, two half-spaces, and, 

possibly, layered media with planar interfaces.  

The novelty of this work is the extension of RF tomography 

to include irregular surfaces, by computing the related 

numerical Green’s function using computationally efficient 

algorithms. This is accomplished via a thorough revision of the 

forward model, while the inversion procedure is essentially 

preserved.  

This paper is organized as follows: Section II provides a 

review of the forward model used in RF tomography for 

underground imaging, and Section III briefly discusses the 

discretization and inversion process for completeness. Section 

IV describes a theory to obtain numerical Green’s functions 

using the method of moments. In Section V, the 

implementation of numerical Green’s function for RF 

tomography is detailed. Finally, Section VI provides FDTD 

simulations to test the performances of the proposed method.   

II. FORWARD MODEL 

A. Notations and Conventions 

In this paper, the  exp i t time dependence of the fields 

is assumed. Bolded lower case letters represent vectors, while 

bolded capital case letters represent matrices. Underscored 

capital letters represent dyadics. Circumflexed bold letters 

represent unit vectors. 

B. Mathematical Description of the Terrain 

This extended version of RF Tomography applies to the 

three-dimensional geometry shown in Fig. 1. The interface 

between air and ground is not planar but it is assumed known. 

It is beneficial to express the electrical properties of the 

irregular terrain as the superposition of two contributions. The 

first contribution is associated with an ideal planar half-space 
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with an interface at 0z  , whose equivalent relative 

dielectric permittivity is described by a scalar function 
3:H  , the Half-Space equivalent dielectric 

permittivity function, defined as: 
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where 2 f  is the angular frequency, D is the relative 

dielectric permittivity of the ground, D is the conductivity of 

the ground, and ˆ ˆ ˆx y z  r x y z is a position vector used to 

describe the terrain. 

The second contribution is a volumetric function 
3:Q   with finite support, denoted as the background 

contrast function, which represents the deviation in dielectric 

permittivity and conductivity at point r  between the actual 

values and the values expected from the ideal half-space 

geometry  H r . The background contrast function is 

mathematically described as 

 

  

 
 

 
 

0

0

   0

1     0

D

r D

r

i z

Q

i z

 
 









  


 
   



r
r

r
r

r

, (2) 

 

where  r r ,   r  are the actual relative dielectric 

permittivity and the actual conductivity of the terrain within 

the support of Q . The support of Q is assumed bounded, 

implying that for large x and y, the surface becomes flat. Note 

that    H Qr r  returns the actual electrical properties of 

the irregular terrain. 

Note that both ,D D  represent estimated values of the 

belowground electrical properties. For simplicity, both D and 

D are assumed frequency independent: this holds true for 

common soils when the bandwidth available is restricted 

between the ranges of 0.5 MHz – 10 MHz, which is suitable 

for tunnel detection. However, the following theory can be 

easily extended to the case in which both D and D are 

frequency dependent. 

C. Investigation Domain 

The targets (i.e., tunnels or voids) are assumed to reside 

within the investigation domain D, fully belonging to the lower 

medium. To ease the mathematical derivation, the region D 

shall not include any point in which the background contrast 

function  Q r differs from zero. A point in region D shall be 

represented with a separate position vector 

ˆ ˆ ˆx y z  r x y z .  

For a target-free scenario, the background electrical 

properties in D are fully described by the quantities ,D D  ; 

However, the presence of any subsurface structure creates a 

deviation in dielectric permittivity and conductivity w.r.t. the 

background. The actual relative dielectric permittivity 

distribution  rO r  and conductivity distribution  O r  

inside the investigation domain D are the unknowns of the 

inverse problem. To reduce the number of unknowns, the 

inverse problem is recast in terms of an object contrast 

function 
3:V  , which is more physically related to 

the presence/absence of a target, defined as 
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Physically, when   0V r  a dielectric or conducting 

anomaly is present at location r . 

D. Scattering Integral Equation 

Sources and receivers are modeled as electrically small 

(Hertzian) dipoles of length l .  It is assumed that at the 

generic n-th field measurement:  

 The transmitting dipole is located at position 
a

nr , fed with 

current of magnitude nI  and is directed along ˆ
na . 

 The scattered field is collected at the receiving dipole 

located at position 
b
nr , and directed along ˆ

nb . 

 The angular frequency of operation is n .  

A distinct measurement n of the complex-valued electric field 

is obtained by varying any value among ˆ ˆ, , , ,b a

n n n n nr b r a . 

Following the derivations reported in [1], the contrast function 

 V r  can be linearly related to the n-th measurement via the 

relation: 
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The previous formula summarizes the Forward Model of RF 

tomography in its simplest form. In (4), T denotes the 

operation of transposition, 
2 2

0 0 0n nk    , and z represents a 
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vector accounting for everything that is unknown in this 

formulation, such as the contribution due to high-order Born 

series, clutter, thermal and external noise. In this paper, only 

the first-order Born approximation is used, thus limiting the 

validity of the reconstruction for low to moderate-contrast 

targets. However, the use of Born approximation was found to 

be acceptable for the task of imaging belowground targets, i.e., 

when only a qualitative description of the dielectric 

distribution in space is sought [2,3]. Nevertheless, the model 

can be extended to higher-order Born series, as described in 

[4]: this possibility is currently under investigation. In (4) the 

Green’s dyadic G  is the dyadic function that solves the partial 

differential equation 

 

        2, ' , ' 'k    G r r r G r r I r r , (5) 

 

in which r is the observation point, 'r is the source point, and 

the wavenumber  k r  can be evaluated using 

 

         0 0 0/rk i      r r r . (6) 

 

 Analytical expressions of  , 'G r r  are found only for simple 

distributions of  k r , such as homogeneous space or layered 

media with planar interfaces [5-11]. To employ RF 

tomography for the imaging of any irregular surface, 

 , 'G r r  needs to be computed numerically, possibly in a 

fast and efficient manner. Starting from section IV, algorithms 

and formulas that address this problem will be discussed and 

implemented in RF tomography. 

 

 
Figure 1: Sample geometry where a portion of irregular 

surface is shown above the plane z=0. An anomaly, 

represented by two cylindrical structures, is located 

underground in region D. One transmitter and one receiver are 

also indicated together with the directions of their axes. 

 

III. DISCRETIZATION AND INVERSION 

The continuous linear integral equation in (4) can be 

discretized using the method of moments. Therefore, a discrete 

set of 1, , En N measurements is collected to form a 

measurement vector e . The effect of z  is approximately 

included in e as a model error (accounting for the higher-order 

terms in Born series) and noise. The investigation domain D  

is then discretized in VN voxels, each one located at 
dr  , so 

that the contrast function  V r  is recast into a column vector 

v . The second term in (4) (i.e., the linear integral operation 

on V ) can be discretized in a matrix L ( a Dirac 

  function centered at 
dr is used as the test function) of 

dimension 
E VN N , while the direct path contribution (the 

term at the right hand of eq.(4)) can be represented by a vector 

p . Therefore, the forward model can be approximated in 

discrete form by   e L v p . In principle, the estimation of 

v can be performed as: 
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where   is a regularization parameter. This simple estimation 

problem represents one possible formulation of the inverse 

model. For example, when 2   eq. (7) reduces to the 

Tikhonov regularization method [12-13], or when 1  , 

estv is found using sparse regularization methods such as 

LASSO [14], or FISTA [15-16]. More advanced inversion 

algorithms might be implemented, such as [17-19], although a 

reconstruction scheme based on (7) will be used here. 

The direct path vector p  is assumed to be perfectly known 

and completely mitigated. In reality, this is hardly true, and 

other strategies should be pursued, such as those reported in 

[20-21].  

IV. NUMERICAL GREEN’S FUNCTION 

The application of RF tomography to imaging below 

irregular terrain according to (4) requires the numerical 

computation of the Green’s function of the problem, which is 

discussed in this section. Since the topic is applicable beyond 

RF tomography, a method for finding the value of the 

numerical Green’s function observed at point r , due to a 

source located at 'r , at a given angular frequency  , is 

addressed at first. 

Previous attempts have been made in order to determine the 

Green’s function for rough surfaces, notably by Cui [21] and 

Akduman [22-23]; however, to the best of the authors’ 

knowledge, no previous paper addresses the computation of 

numerical 3D Green’s functions for irregular surfaces that can 

be computed using fast and parallel algorithms. 

By applying the volume equivalence theorem [24] to  Q r , 

which is distributed both on top and/or below the half-space 

surface, the following wave equation can be obtained: 
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 (8) 

      S I E r E r E r . (9) 

 

In this context,  E r represents the total electric field induced 

by the scattering of the anomaly described by the background 

contrast function  Q r ,  SE r  is the scattered field, and 

 IE r is the incident field, 
2 2

0 , 0HSk k z  and 

2 2 , 0HS Dk k z  , where 
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After some manipulations, the solution to equation (8) can be 

expressed in terms of the scattering contribution  SE r : 
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where HSG is the half-space dyadic Green’s function 

(analytically known), and R is the support of Q .  

With some simple steps described in the Appendix, eq. (11)

can be generalized in a dyadic form: 
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Eq. (12) can be interpreted as the Green’s function 

representation of the classical scattering integral equation 

defined in (11). This result can be considered a generalization 

of the work done by Akduman [22-23] for the 3D case. 

Clearly, substituting (25), (28) into (9) the Green’s function 

for the irregular surface is obtained: 

 

      , ' , ' , 'HS S G r r G r r G r r . (13) 

 

Part of eq. (12) can be computed analytically. Therefore, the 

left hand side of (12) can be separated into two dyadic 

functions: the part that can be computed analytically 
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and the part requiring numerical computation: 

 

        2

0, ' , , 'U HS S

R

k Q d G r r r G r r G r r r  (15) 

Retrieving  , 'SG r r from (15) is difficult, and an 

approximation is needed. Similarly, the computation of (14) 

involves at least a 4D Fourier transformation [5], which 

dramatically impacts the performance. 

In both cases, the computation is facilitated by discretizing the 

region R in P small cubes (voxels), representing an orthogonal 

basis expansion for Q . Each cube p is centered at position 

pr , whose volume pR is defined as: 
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where   is the half size of the elementary cube. The 

dimension of the voxel is chosen so that  , 'HS pG r r and 

 , 'S pG r r can be assumed constant within the boundaries of 

the voxel itself.  

Accordingly, (14) and (15) can be discretized as follows: 
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where the index q has the same meaning of p, but is 

distinguished to emphasize that the summations are computed 

separately. In (17)-(18) the dyadic expression 

 , 'S r r represents the integral of the half-space Green’s 

function with respect to the source point 'r , performed over a 

cubic region having volume pR , centered along the source 

point and computed at the observation point r . The exact 

evaluation of this integral is described in Appendix C. 

The integral equation  (12) can be discretized as: 
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In this equation,  , 'SG r r  would be determined only if the 

value of  , 'S pG r r is known for any value of p .To find 
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 , 'S pG r r p , eq. (19) is tested exactly at the locations 

pr , leading to the following set of P equations:  
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Due to the dyadic nature of (20), 9P equations with 

9P unknowns can be defined, leading to the creation of the 

matrix equation: 

 

 Ax g  (21) 

 

The actual entries of A , x and g are described in Appendix 

B. By solving x for all dyadic components, one can finally 

compute the Green’s dyadic due to the background contrast 

function as: 
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The final numerical Green’s dyadic can be computed by 

substituting (22) in (13). 

V. APPLICATION TO RF TOMOGRAPHY 

Following the forward model described in (4), three kinds of 

numerical Green’s functions need to be computed for each 

measurement n : 

  , a

nG r r :  the observation point r  spans the x-y plane 

(constant z ) where the subsurface anomaly is expected, 

while 
a

nr is kept fixed. 

  ,b

nG r r : the source point r spans the x-y plane (constant 

z ) where the subsurface anomaly is expected, while 
b

nr  is 

kept fixed. 

  ,
b a

n n
G r r :  the Green’s function is simply computed point-

to-point. 

For the first, second and third kind of Green’s function, a 

matrix equation is constructed substituting ' , ,a a

n nr r r r  into 

(20), respectively. Note that the resulting matrix A  is equal 

for all Green’s functions, so it needs to be computed and 

inverted only once (at constant frequency), while the vector g  

in (21)  can be computed by substituting ' , ,a a

n nr r r r  into  

(18), respectively. Although A  can be very large, it is square 

and full rank: hence, the inversion can be accelerated using 

fast Gaussian reduction [25] or similar algorithms in which 

only one row of A  needs to be processed per iteration. After 

obtaining x from (21), the corresponding  , 'S pG r r are 

evaluated p . Then, the numerical Green’s function is easily 

computed as: 
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where , ,b b

n nr r r r  and ' , ,a a

n nr r r r , respectively. When 

this algorithm is translated into software, one quickly realizes 

that most steps are easily parallelized, and may be computed in 

a few iterations. In Appendix C, the computation of the 

Green’s function in a single horizontal “snapshot” using FFT 

routines is discussed and described.  

 

VI. SIMULATIONS 

A large-scale numerical simulation has been performed to 

prove the validity of this novel method. A half-space geometry 

is considered and, to simulate irregular terrain, a 

parallelepiped of size 32 m 32 m 8 m  with the same 

properties of the ground is placed on top of the flat surface at 

the center of the scene (see Fig.2). Five transmitters and 

receivers are distributed uniformly along a circle of radius 15 

m, at 0.5 m above the box, to avoid numerical instabilities. 

The target is an inverse-L shaped tunnel of equal sides and 

radius 1 m, located at depth of 10 m, as shown in Fig. 3. The 

frequency range is 3-6 MHz, at constant intervals of 1MHz. 

The electrical properties of the soil are chosen to be similar to 

dry rocks [35-36]; accordingly, the background dielectric 

permittivity is 10D   and the background dielectric 

conductivity is 
45 10D
   S/m. To avoid the so-called 

“inverse problem crime”, the corresponding electric field at 

the receiver side has been computed numerically using the 

Finite Difference Time Domain (FDTD) code GPRMAX [37]. 

For the FDTD solver, the discretization step is 0.25d  m, 

and the box size containing the whole scene is 

150 m  150 m  120 m  .  

For each Tx-Rx-frequency combination, two simulations were 

performed: one containing the target (i.e., the total field), and 

one without (i.e., the background). The scattered field in 

complex form can be obtained by subtracting these two time-

domain data sets, followed by an FFT (see [1] for details). For 

such a large-scale simulation, 250 hours of CPU time were 

required just to solve the forward problem, i.e., to create the 

measurement vector e . 

To fill L , the algorithm proposed in this paper was applied. 

The irregular surface (i.e., the flat surface with the box on top) 

was discretized in cubes having 2  m, corresponding to 

128P  , which is moderately coarse but manageable in 

terms of memory allocation. Better performances is expected 
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using smaller  , but more sophisticated and memory-saving 

algorithms required to fill and invert A . The region of interest 

D was divided in three horizontal slices located at depth -15m, 

-10m and -5m, each one discretized using a cubic mesh of half 

size of 0.5  m; Both the layered visualization and the 2D 

relevant slice at depth of -10 m are presented. The direct path 

was eliminated a priori since its value was accurately 

estimated using (4). The data is noiseless; however, 

discrepancies between the numerical FDTD solver and the 

proposed MoM-based method can be assumed as unknown 

perturbation of the measured field, thus implicitly testing the 

robustness of our algorithm with respect to disturbances. 

Further information can be found in [1], where a discussion of 

why thermal white Gaussian noise is not a main concern in RF 

tomography is presented. 

The reconstruction was performed using a modified FISTA 

algorithm [15], which solves the following minimization 

problem: 

 

 
 

 

2

12
arg min

subject to:    

est

D



 

   

 

v Lv e p v

v
 (24) 

 

where  


v  indicates the  -th element of v . This 

minimization guarantees a sparse solution having the physical 

meaning that each voxel in D cannot be (in absolute value) 

greater than the background itself. This constraint is 

particularly useful for tunnel detection, where the maximum 

difference in electrical properties between the anomaly and the 

background cannot exceed D in principle. The 

regularization parameter  is heuristically determined and it 

does not have to be the same for different simulations since it 

depends on the entries of matrix L .  

However, other methods could be used, such as the ones 

described in [1-4,34,38,39]. 

The reconstructed image of the belowground surface is shown 

in Figs. 4-5. In Figs. 6-7, a reconstruction was performed for 

the same irregular geometry in Fig.2 but using the analytical 

half-space Green’s function in the reconstruction scheme. By 

comparing Figs. 4-5 with Figs. 6-7 one clearly notices the 

advantage of using a numerical Green’s function versus the 

simplified half-space geometry. 

 

 
Figure 2: Geometry consisting of a flat surface with a 

parallelepiped on top of that is considered in the numerical 

simulation 

 

 
Figure 3: Actual shape of the anomaly V that is used by 

GPRMAX to compute the measurement vector e . The depth 

is z = -10 m. 

 

Figure 4. Magnitude  V r  obtained using the numerical 

Green’s function at three values of depth: z = -5 m z = -10 m 

and z = -15 m.  
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Figure 5: Magnitude  V r using numerical Green’s for a 

slice at a depth of z = -10 m 

 

Figure 6: Magnitude  V r obtained using the half-space 

Green’s function in the reconstruction procedure for three 

values of depth: z = -15 m, z = -10 m, z = -15m. The measured 

data was generated assuming the actual irregular terrain shape 

in Fig. 2. 

 

Figure 7: Detail of the magnitude  V r obtained using the 

half-space Green’s function in the reconstruction procedure, 

when the measured field e was generated considering the 

irregular terrain 

 

VII. CONCLUSION 

RF tomography for underground imaging is generalized to 

address the case in which the terrain shape is irregular but 

known. 

This effort was motivated by the fact that very rarely perfectly 

flat surfaces are encountered in nature, and the overly-

simplified assumption of using half-space geometries yield 

inconsistent reconstruction results. 

 Previous work characterized the rigorous scattering from 

irregular surfaces, but its main focus was the description of the 

forward model, neglecting the implementation for inverse 

scattering algorithms. Few authors have attempted to apply this 

knowledge to an imaging problem, and their derivation can be 

applied only to a limited set of cases (for example, simplified 

2D scenario with plane waves, 3D scenario with PEC surface, 

or using a statistical description for the roughness of the terrain 

[40-41]). Differently from previous works, this method is 

entirely focused on subsurface imaging of dielectric and 

conducting targets (i.e., no PEC surface assumption), uses 3D 

vector formulas that are valid also in the near field, includes 

shading and occlusion effects, and partially account for the 

radiation pattern of the sensor. Moreover, the algorithm is 

carefully designed to be computed using standard FFT 

techniques, and it is very suited for parallelization. There are 

still some challenges to be overcome, such as the fast growth 

of the size of A , the time to fill L , the possibility of having 

  0Q r in D, as well as the numerous computations of 

various KG , or the analytical derivation of other integrals of 

Green’s functions, particularly for the magnetic field and for 

magnetic sources in layered media. Furthermore, the inverted 

model errors, particularly w.r.t. the error on the interface shape 

and the background electrical properties, need to be 

thoroughly investigated. These problems are currently under 

investigation.  

APPENDIX 

A. MoM Extension to Green’s Dyadics 

By inspecting (11), each field contribution can be assumed to 

be generated by an arbitrary source located at 'r  having 

dipole moment 0I l  0  and direction â : 

 

    0 0
ˆ, 'S Si I l E r G r r a  (25) 

    0 0
ˆ, 'S Si I l E r G r r a  (26) 

    0 0
ˆ, 'I HSi I l E r G r r a  (27) 
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    0 0
ˆ, 'I HSi I l E r G r r a  (28) 

 

In these formulas, SG is a dyadic contribution due to the 

presence of a non-zero background contrast function. 

Substituting (25)-(27) into (11), and dividing by  0 0i I l , 

respectively, eq. (11) can be expressed in dyadic form: 

 

 

     

    

2

0, ' ,

ˆ, ' , '

S HS

R

S HS

k Q

d

 

    

G r r r G r r

G r r G r r r a 0

 (29) 

 

Eq. (29) can be recast as the following problem:  

 

 
3ˆ ˆ       M a 0 a  (30) 

 

This condition requires that (30) is satisfied if and only if all 

eigenvalues of M  are zero, or in other terms, M 0 . 

Hence, by enforcing (30) on (29), equation (12) is obtained. 

B. Entries in the Matrix Equation 

The entries of the matrix equation: 

 

 Ax g  

 

are described as follows. By appropriately arranging the terms 

in (20), matrix A can be expressed as: 

 

 

11 12 1

9 9

21 22

9 9

1

9 9

P

P PP







   
 

  
 
 

   

I Q Q Q

Q I Q
A

Q I Q

 (31) 

 

where N NI is a N N identity matrix, and Q is  

 

  
3 3 3 3 3 3

2

0 3 3 3 3 3 3

3 3 3 3 3 3

pq pq pq

xx xy xz

pq pq pq pq

q yx yy yz

pq pq pq

zx zy zz

S S S

k Q S S S

S S S

  

  

  

 
 

  
 
 

I I I

Q r I I I

I I I

, (32) 

 

where 
pq

ijS is the ij -th element of the  ,p qS r r dyadic. The 

explicit expression for S is discussed in Appendix C. The 

remaining two vectors can be written as 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

1 1

1 1

, ' , '

, ' , '

, ' , ',    

, ' , '

, ' , '

xx xx

S K

xy xy

S K

zz zz

S q K p

xx xx

S q K p

zz zz

S P K P

G G

G G

G G

G G

G G

 

   
   
   
   
   
    
   
   
   
   
   
   

r r r r

r r r r

r r r rx g

r r r r

r r r r

 (33) 

 

where 
ij

SG and 
ij

KG are the ij -th element of the SG and 

KG dyadics, respectively. 

 

C. Integral of Half-Space Green’s Functions 

The integral of the half-space Green’s function  , 'S r r over 

a cube, and the half-space Green’s function  , 'HSG r r , are 

generally much more difficult to compute compared to the 

free-space case (throughout this Section, r  is the observation 

point, while 'r is the source location). Here, formulas are 

provided for the integral of the half-space Green’s function 

that are appropriate for fast computation and suit the needs of 

RF tomography in which horizontal slices of the underground 

scene are reconstructed. The integral of the half-space Green’s 

function is intentionally expressed in a 2D spectral-like form, 

so that 2D-FFT algorithms are applicable. The intermediate 

steps are omitted, although relevant citations have been 

properly included. The integral over a cube centered over 'r  

of the half-space dyadic Green’s function can be expressed by 

the following formula: 

 

    
'' '

' ' '

, ' , '' ''

yx z

HS

x y z

d

 

  

   S r r G r r r , (34) 

 

where ''r  is an auxiliary position vector. The analytical 

evaluation of (34) depends upon the location of r and 'r . 

Accordingly, four different cases can be defined [10]: 

 

    , ' , '   ,   ,uv u a e v a e  S r r S r r . (35) 

 

Depending upon the kind of integration, the superscript uv 

indicates that the observation point is included in the u region, 

and that the integration around the source point is entirely 

included in the v region: the two available regions are a=air 

and e=earth.  

For the air-air and earth-earth cases, the solution can be 

expressed as a superposition of a primary field and a reflected 

field, as follows: 

 

 
, , ,aa ee aa ee aa ee

P R S S S . (36) 
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The computation of the primary field contribution is derived 

from [5,7,10,26-34] and is given by the following formula, 

both when the integration is performed including or excluding 

the singularity: 

 

 

 
 

  0,

Integration includes singular point at '

0, ,

0,2

0, 0,
,

Integration excludes singular point at '

0,

2

0,

sin4
cos  

2 1 3

3

D

D aa ee

D P

D D
aa ee

P

ik

D

D

k
k

k k

ik e

k













 
 

  
 

  
 
  

r

r

G

S

I











(37) 

 

1/3
3

2
4




 
  

 
 (38) 

 

where PG is the Green’s function for the homogeneous space, 

which can be derived explicitly by expanding the derivatives 

of the following formula [7] 

 

  
0, 2

'

,

2

0, 2

1
, '

4 '

Dik

aa ee

P

D

e

k 

   
         

r r

G r r I
r r

. (39) 

 

Particular care is necessary when the integration is performed 

close to the singularity, since (37) arises from the 

approximation that the volume integral along a cubic region is 

recast in terms of a volume integral along a spherical region 

having the same volume of the cubic cell. These near-singular 

regions can be either integrated numerically, or approximated 

using smaller cell sizes. 

The reflection part in  S can be expressed in spectral form as  

  

   

,

' ', , x y

aa ee

R

i k x x k y yaa ee aa ee

x yA e dk dk

 
     

 



 

S

G
, (40) 

 

where 
,aa ee

G  is the spectral representation of the Green’s 

function, and A is a multiplicative factor defined as: 

 

   

     

   

,

,

, '

2 2

0, ,

,,

,

, '

2 2

0, ,

1

sin sin sinh
   0

  no integration
8

az ez

az ez

ik z z

D az ez

x y az ezaa ee

x y az ez

ik z z

D az ez

i
e

k k

k k k
A

k k k

e
i

k k





  
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



   
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




 (41) 

 

Note that Eq. (41) can be defined in the whole k -space, 

provided that the following value is used as a limit: 

 

 
   

, ,

, ,

0 0
, ,

sin sinh
lim lim
x y az ez

x y az ez

k k
x y az ez

k k

k k 

 
   . (42) 

 

 After some manipulations (see [26-29] for details), the 

elements of G  can be expressed as follows: 

 

 

2 2 , 2 2 ,

0, ,,

2 2

aa ee aa ee

D y TE x az ez TMaa ee

xx

x y

k k R k k R
G

k k





 (43) 

2 , 2 ,

0, ,, ,

2 2

aa ee aa ee

D TE az ez TMaa ee aa ee

xy yx x y

x y

k R k R
G G k k

k k


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
 (44) 

 , , ,

,,aa ee aa ee aa ee

xz zx x az ez TMG G k k R      (45) 

2 2 , 2 2 ,

0, ,,

2 2

aa ee aa ee

D x TE y az ez TMaa ee

yy

x y

k k R k k R
G

k k





 (46) 

 , , ,

,,aa ee aa ee aa ee

yz zy y az ez TMG G k k R      (47) 

  , 2 2 ,aa ee aa ee

zz x y TMG k k R   (48) 

 

In these expressions, the Fresnel coefficients in spectral 

domain have been used: 

 

 
, ,, az ez ez azaa ee

TE

az ez

k k
R

k k





 (49) 

  , ,aa ee D az ez
TM

ez D az

k k
R

k k






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
 (50) 

 
2 2 2

, 0,az ez D x yk k k k    (51) 

 

The air-earth and earth-air components are defined as: 

 

 

 

    

,

' ', ,

, '

x y

ae ea

i k x x k y yae ea ae ea

x yA e dk dk

 
   

 



 

S r r

G
, (52) 

 

where 
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G

 (53) 
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and 

 

   
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i e

k k k
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A
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e
i
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 

 

 





  
  



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

 (54) 

There are several ways to implement an algorithm that 

computes the forward model for RF tomography. A fast yet 

optimized method is presented next. We shall point out that 

the formulas and procedures presented here are not suited for 

the computation of a single Green’s function (the interested 

reader can consult [7,10,28]), but they are specifically 

designed for the matrix filling of L in (7) assuming D  is 

composed of a set of horizontal slices. 

Due to the symmetry of the half-space geometry, one can show 

that 

 

    , ' 0,0, , ' , ' , 'z x x y y z  S r r S  (55) 

 

and similarly 

 

    , ' ', ', ,0,0, 'x x y y z z  S r r S . (56) 

 

With a proper manipulation, one can easily recast (40) as 
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x x y y
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 (57) 

 

and (52) as 
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which can be solved using 2D-FFT routines. Similarly, the 

functions  
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S

G
 (60) 

 

can be effectively solved using 2D-IFFT routines.  

Accordingly, the region D  is divided in a set of horizontal 

slices, each one having extension ,x yD D , respectively 

(possibly squared), and step size 2 . For each slice, the 

corresponding discretized Fourier domain will have extension 

, /x yK   . 

Then, the dyadic functions are evaluated for each slice using 

(59) or (60)  and the symmetric relations (55), (56). With 

proper care, these routines can be used to compute effectively, 

in parallel, and without appreciable redundancy, equations 

(18), (20) and (23).  

 

D. Computational Analysis 

A qualitative computational analysis of the forward model 

(filling of L ) is: 
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

 
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 

 (61) 

 

where fN is the number of frequencies, zN is the number of 

horizontal layers used to define the irregular terrain, zN is the 

number of horizontal layers used to define the domain of 

investigation D, 
RxZN is the number of horizontal layers where 

receivers are located, 
TxZN is the number of horizontal layers 

where transmitters are located, FFTN is the number of bins 

used to define the Fourier space, and 1 2,K K are two 

proportionality constants. Note that the algorithm utilizes 

1K independent 2D-FFT instances, and 2K independent 

matrix inversions: with the use of parallel processing, the 

overall CPU time can be dramatically reduced. 

The inversion of L depends upon the algorithm, but its 

computational complexity is generally much less than 

 
3

E VN N , particularly for sparse regularization algorithms 

such as FISTA. Note that the computational complexity can be 

maintained low, since in general 1
Tx Rxz zN N  . In 
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particular, from (61) it is clear the importance of 

keeping
zN low, i.e., horizontal layers are much faster to be 

computed rather than vertical cuts. 

Using a standard PC, filling L required about 10 minutes 

using numerical Green’s function, and about 1  minute using 

flat surface. The FISTA algorithm required less than 1 minute 

to provide the reconstructed images. However, neither GPU 

acceleration, nor fast matrix inversion was used. 
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