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On the Benefits of Partial Channel State Information
for Repetition Protocols in Block Fading Channels

Daniela Tuninetti

Abstract—This paper studies the throughput performance of
HARQ (hybrid automatic repeat request) protocols over block
fading Gaussian channels. It proposes new protocols that use the
available feedback bit(s) not only to request a retransmission, but
also to inform the transmitter about the instantaneous channel
quality. An explicit protocol construction is given for any number
of retransmissions and any number of feedback bits. The novel
protocol is shown to simultaneously realize the gains of HARQ
and of power control with partial CSI (channel state information).
Remarkable throughput improvements are shown, especially at
low and moderate SNR (signal to noise ratio), with respect to
protocols that use the feedback bits for retransmission request
only. In particular, for the case of a single retransmission and a
single feedback bit, it is shown that the repetition is not needed
at low SNR where the throughput improvement is due to power
control only. On the other hand, at high SNR, the repetition is
useful and the performance gain comes form a combination of
power control and ability of make up for deep fades.

Index Terms—Block fading channel; Hybrid ARQ; Partial
channel state information; Power Control; Throughput;

I. INTRODUCTION

IN today networks, error correction is achieved by a
combination of FEC (forward error correction) and ARQ

(automatic repetition request). In classical ARQ protocols, a
receiver requests a retransmission (sends a negative acknowl-
edgment, or NACK) when an error is detected, and a positive
acknowledgment (ACK) otherwise. In this work we explore
the performance gain achievable by using the retransmission
request bit(s) to signal to the transmitter the decoder status
and the actual channel state, albeit coarsely. Our goal is to
simultaneously enable the performance gain due to HARQ
(hybrid automatic repeat request), i.e., a combination of ARQ
and FEC error control methods [3], and to power control at
the transmitter [4].

A. A Motivating Example
Consider a fixed rate transmission scheme over a block fad-

ing Gaussian channel with unit noise power spectral density.
Let the transmit power in slot t, t ∈ N, be Qt, the fading power
gain be γt, and the transmission rate be R. The receiver fails
to decode when the instantaneous channel capacity is below
the transmission rate [5], in which case it feeds back a NACK
to the transmitter. A NACK is thus equivalent to

log(1 + γtQt) < R ⇐⇒ γt <
eR − 1

Qt
,
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that is, a NACK is a 1-bit quantization of the channel
state information (CSI) γt sent to the transmitter when the
transmitter no longer needs it (as already remarked in [6],
[7]). This simple observation raises the question investigated
in this work: whether it is optimal, in some sense, to feedback a
ACK/NACK at the end of a slot, or whether the same feedback
resources should rather be used at the beginning of the slot to
inform the transmitter about the instantaneous channel quality,
albeit coarsely.
To further gain insights into the problem, consider the

outage capacity [5] as the performance measure. For a fixed
positive parameter s, let the transmission rate be parametrized
as R = log(1 + P s), where P denotes the average SNR

P = E[Qt]. As explained before, a 1-bit feedback used for
ACK/NACK at end of slot t indicates to the transmitter that
γt < s if a NACK is received, or that γt ≥ s if a ACK is
received. The probability of successful decoding is then the
probability of receiving a ACK; thus the outage capacity, or
long term average successfully decoded rate, is

ηACK = Pr[γt ≥ s] log(1 + P s).

On the other hand, consider the case where the 1-bit of
feedback is used at the beginning of the slot to indicate to
the transmitter which of the events, {γt < s} or {γt ≥ s}, has
occurred. In this case the transmitter can use this information
as follows. It turns transmission off (i.e., Qt = 0) if the
channel is bad (i.e., γt < s) and it sends with power
Qt = eR−1

s if the channel is good (i.e, γt ≥ s); the chosen
transmit power Qt = eR−1

s is such that no outage occurs. The
average transmit power of this simple power control policy
based on 1-bit CSI is P = eR−1

s Pr[γt ≥ s] and the outage
capacity is

ηCSI = Pr[γt ≥ s] log

(
1 + P

s

Pr[γt ≥ s]

)
.

It is immediate to see that, for the same set of parameters P
and s, and with 1-bit of feedback in both scenarios, the outage
capacity with CSI ηCSI is larger than the outage capacity with
ACK/NACK ηACK. This observation reinforces the idea that
using the 1-bit feedback to signal ACK/NACK is not optimal
in general. The question whether this conclusion changes if
retransmissions are allowed is investigated in this paper.

B. Past Work
To the best of the author’s knowledge, past work available

in the literature considering quantized and/or noisy CSI only
focused on outage capacity, or on outage probability, or on
expected capacity, but not on HARQ protocols.
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For example, in [8] the authors consider power control
policies for minimizing the outage probability with partial
CSI; the derived power policy shows benefits with respect
to the case of complete absence of CSI even if the channel
knowledge is noisy and/or partial; the benefits are more
pronounced at low SNR. In [9], the authors considered the
outage capacity with the so called “broadcast approach”, that
is, a multiple-layer coding scheme with infinite many layers,
where the receiver decodes as many layers as possible given
the actual channel fading; it is found that even 1-bit of CSI
helps to improve performance.
In [10], the authors studied the ergodic capacity of channels

with states where the state is only partially known at the
transmitter; for the Gaussian channel with quantized CSI, they
showed that the capacity achieving power allocation is of the
waterfilling type. In [6], the authors studied the expected ca-
pacity with quantized CSI and multiple-layer coding schemes;
they showed that multiple-layer transmission offers limited
benefits when power control at the transmitter is possible.
In [7], the authors considered the DMT (diversity multiplex-

ing tradeoff) of multi-antenna channels with HARQ; in this
setting the feedback is only used to signal ACK/NACK and
not to perform power control, even though the transmitter is
allowed to vary the transmit power across retransmissions; it is
found that HARQ improves the DMT by a factor proportional
to the maximum number of repetitions.

C. Contributions
In this work we consider the joint design of HARQ pro-

tocols and power control for block fading Gaussian channels.
We use the long-term average decoded rate [3], or simply
throughput for brevity in the following, as a measure of perfor-
mance. The throughput captures the fundamental performance
limits when strict delay constraints are imposed and includes
the outage capacity and the ergodic capacity as special cases.
When considering HARQ protocols, it is customary to

assume that the transmitter has no knowledge of the instan-
taneous fading and it thus transmits with equal power in
every slot [3]. However, especially with INR (incremental
redundancy), the probability of having to transmit m channel
packets per data packet is decreasing with m [7]. Thus, it
is conceivable that using more power in earlier transmissions
of the same data packet reduces the probability of decoding
failure and hence increases the throughput for the same
average transmit power. Moreover, if the fading is known at
the transmitter, more power can be used in the most favorable
channel conditions–assuming power control is possible. As
pointed out in [11], in delay constrained scenarios, the assump-
tions about the dynamics of the fading process with respect
to the code length, as well as the duration over which power
constraints are enforced, are critical. Here, in order to enable
power allocation, we consider a power constraint imposed over
a time horizon comprising many slots (i.e., much bigger than
the maximum number of retransmissions allowed), commonly
referred to as long-term average power constraint [12].
As opposed to classical HARQ protocols, where the

ACK/NACK feedback bit is sent at the end of the slot, we

consider here systems where the feedback bit(s) can be sent
back at any point in time during a slot; the feedback can be
used to signal CSI, or ACK/NACK, or any combination of
them. The only restriction we impose is that the feedback bit(s)
cannot be carried over from slot to slot.
Our contributions can be summarized as follows:
1) We propose novel HARQ protocols where the CSI and
the ACK/NACK information are combined within the
same feedback bit(s) in order to realize simultaneously
the gains due to HARQ and the gains of power control
with partial CSI. The main idea behind the proposed
protocols is that the receiver sends back to the transmit-
ter the index of the smallest power level that will allow
successful decoding in the current slot. Our protocols
are time-varying quantizers for a suitably scaled version
of the channel fading, where the scaling factor accounts
for the information already available at the receiver from
the past transmissions.

2) We show that the throughput performance of the pro-
posed class of protocols with perfect CSI can be obtained
from dynamic programing [13].

3) By numerical evaluations of the throughput for Rayleigh
fading channels, we show that repetitions are not needed
at low SNR, and that the improvement over classi-
cal HARQ protocols (that use the feedback bit for
ACK/NACK only) is entirely due to ability to perform
power control.
At high SNR, repetitions are useful, and the performance
improvement over classical HARQ protocols comes
form a combination of power control and the ability to
make up for atypical long deep fades with repetitions.
Our numerical results show that our protocols outper-
form classical HARQ at all SNRs.

4) We also have the following side results: (a) we show
that the optimal power allocation for the outage capacity
with partial CSI consists of a quantizer of the fading
gain where the quantization regions are union of inter-
vals, rather than intervals; to the best of the author’s
knowledge–was not reported before; (b) we present
novel bounding techniques for to compute certain prob-
abilities that are needed for the throughput evaluation;
these techniques are useful for numerical optimizations.
In particular, a technique based on considerations on
the order statistics of an independent sample of negative
exponential random variables is of interest in its own.

D. Paper Organization
The rest of paper is organized as follows. Section II

introduces the system model and Section III evaluates the
throughput; Section IV revises the ergodic capacity with
partial CSI, which serves as an upper bound for any HARQ
protocol; Section V derives the outage capacity with partial
CSI, which serves as a lower bound for any HARQ protocol;
Section VI proposes a new class of HARQ protocols that
combine repetitions and power control for any number of
retransmissions and any number of feedback bits; Section VII
proposes a novel bounding technique for the throughput based



3

W →Xt →⊗ →⊗ → ⊕ → Y t → Ŵ
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Fig. 1. The block-fading Gaussian channel model with partial CSI at the
encoder (dotted blue line) and perfect CSI at the decoder (solid red line).
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on ideas from order statistics; Section VIII compares the
throughput performance of our new protocols with that of
classical HARQ protocols for the Rayleigh fading channel;
Section IX concludes the paper and points out open questions
and future work directions.

II. SYSTEM MODEL AND PERFORMANCE METRIC
We adopt the following notation convention: [x]+ indicates

max{x, 0}, 1{x∈A} the indicator function (that equals one
whenever x ∈ A and zero otherwise), and FX(x) = Pr[X ≤
x], x ∈ R, is the cumulative distribution function of the
random variable X . In the following slot, fading block and
codeword length are used interchangeably.
This work considers the single-user block-fading Gaussian

channel depicted in Fig. 1. The received signal vector in slot
t, t ∈ N, is

Y t =
√

γt QtXt + Zt ∈ C
L,

where: the noise Zt is a length-L proper-complex white
Gaussian random vector with zero mean and unit variance,
the channel fading power gain γt is a scalar with E[γt] = 1,
the channel input signalXt has Gaussian iid (independent and
identically distributed) components with zero mean and unit
variance, and Qt ≥ 0 is the transmit power. Each codeword
Xt spans one fading block over which the fading gain stays
constant. The slot length L is such that it suffices to guarantee
reliable communication if the accumulated mutual information
at the receiver is above the communication rate [5].
The fading gain γt changes in an iid fashion from slot to

slot. The receiver has perfect instantaneous knowledge of γt

at the beginning of the slot. The transmitter however does
not know γt, unless explicitly informed by the receiver. For
this reason, we assume that the transmitter cannot adjust the
communication rate in each slot and thus it sends at a fixed
rate. The (partial) CSI possibly available at the transmitter is
used only for power allocation across slots.1

1We note that in practice, fading can be considered independent from
slot to slot only if the slots are separated in time by at least few channel
coherence times [14]. This is not a problem in multi-user systems where a
user is assigned a transmission slot in every frame (and frames consist of
several slots). In this case γ2 indicates the fading gain of the slot where the
second transmission (first re-transmission) occurs and it needs not be the slot
immediately following the one where the first transmission occurred. When the
iid assumption does not hold, fading correlation across time slots can be easily
incorporated in our model by substituting products of probabilities involving
different fading random variables with the corresponding joint probabilities.

A delay-free and error-free feedback channel with capacity
log2(F ) bits per slot is available for communication of low-
rate information between the receiver and the transmitter;
the receiver can feedback a retransmission request to the
transmitter at the end of a slot, or quantized CSI at the
beginning of a slot, or any other information representable
on log2(F ) bits at any point during the slot. We do not allow
feedback bits to be accumulated over successive slots. The
case F = 1 corresponds to absence of CSI at the transmitter,
while F = +∞ corresponds to perfect CSI.
In a block-fading setting, reliable communication is possible

if the accumulated mutual information at the receiver is above
the communication rate [5]. To make up for decoding errors,
which occur when the channel is in deep fade, the transmitter
can retransmit a data packet at most M−1 times, that is, each
data packet can be transmitted on at most M channel slots.
We consider the three HARQ protocols analyzed in [3]:
• ALO (ALOha): like in slotted Aloha, the transmitter
keeps sending the same codeword and the receiver at-
tempts decoding by using only the most recently received
codeword.

• RTD (Repetition Time Diversity): the transmitter keeps
sending the same codeword and the receiver performs
maximal ratio combining of all the received packets, thus
realizing Repetition Time Diversity.

• INR (INcremental Redundancy): at each retransmission
request, the transmitter sends new redundancy bits and
the receiver optimally combines them.

The protocols work as follows. In order to send a data packet
of b bits, the transmitter can use at most LM channel uses. For
ALO and RTD, the transmitter encodes the data packet with
a Gaussian channel code of rate b/L and then concatenates it
with a repetition code of rate 1/M . For INR, the transmitter
encodes the data with a Gaussian channel code of rate b/(LM)
and at each transmission it send a different chuck of L
symbols. Following [3], we let R � b/L. The throughput
is defined as the long-term average number of successfully
decoded bits per channel use:

ηM,F = lim
T→∞

1

T

T∑
t=1

R · 1{successful decoding in slot t}, (1)

where the subscriptM indicates that at most M transmissions
are allowed per data packet, and the subscript F indicates that
at most F feedback values are allowed. The ergodic capacity
and the outage capacity are a spacial case of our framework
for M = +∞ and M = 1, respectively. For future use,
decoding fails withm transmissions (and thus a retransmission
is needed) if:{

m∑
t=1

log(1 + γtQt) < R

}
for INR (2a){

log(1 +

m∑
t=1

γtQt) < R

}
for RTD (2b)

m⋃
t=1

{
log(1 + γtQt) < R

}
for ALO, (2c)
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since INR accumulates mutual information, RTD accumulates
SNR, and ALO only accounts for the most recent transmission.
In order to complete the system description, we need to

specify how the transmit power Qt, t ∈ N, can be varied. We
assume Qt ∈ {Pm,f}, where Pm,f ≥ 0 is the power used
at the m-th transmission attempt, m ∈ {1, . . . , M}, when the
feedback value is f , f ∈ {0, . . . , F − 1}. The total transmit
power must satisfy the long-term average constraint [12]
defined as:

lim
T→∞

T∑
t=1

1

T
Qt ≤ P , almost surely. (3)

For the normalization adopted in this work, P has the meaning
of average SNR at the receiver. The power allocation policies
are causal [11], [15] in that Qt can only depend on the (partial)
knowledge of (γ1, . . . , γt).
Next we show how to evaluate the throughput in (1) subject

to the power constraint in (3).

III. THROUGHPUT EVALUATION
In [3] we introduced a general framework to analyze

the performance of HARQ protocols based on the renewal-
reward theory [16], which we shall use now to evaluate the
throughput. In our system, a renewal event occurs (i.e., the
system starts anew without any memory from the past) when
the transmission of a data packet ends (either because of
successful decoding with less thanM transmissions or because
the maximum number of transmissions has been reached).
From [3], the system performance is completely characterized
by the triplet (T ,R,P), where:
• T ∈ {1, . . . , M} in the inter-renewal time and represents
the number of slots needed to complete the transmit of a
data packet;

• R ∈ {0, R} is the reward, i.e., the number of bits suc-
cessfully decoded per channel use when the transmission
of a data packet ends;

• P is the cost, i.e., the total transmit power for a data
packet (including all retransmissions);

Given (T ,R,P), the throughput in (1) subject to the power
constraint in (3) is given by:

Theorem 1 (from [3], [7]). For any M and F the throughput
ηM,F for a given power P is the solution of:

η
(�)
M,F =

= max
E[R]

E[T ]
= max

R
(
1− Pr[T = M, failure to decode]

)∑M
m=1 Pr[T ≥ m]

s.t.
E[P ]

E[T ]
=

∑M
m=1 E[Pm|T ≥ m] Pr[T ≥ m]∑M

m=1 Pr[T ≥ m]
≤ P,

where the maximization is over the transmit rate R ≥ 0
and over the power allocation {Pm}M

m=1, where Pm ∈
{Pm,0, . . . , Pm,F−1} is the causal power policy for the m-
th transmission attempt restricted to take at most F different
values. The distribution of the inter-renewal time T and the
probability of failure to decode (see (2)) are function of the
protocol � ∈ {ALO, RTD, INR} used.

Proof: The proof can be found in Appendix A.
Remarks:
1) The probability of failure to decode on the last transmis-
sion, indicated as Pr[T = M, failure to decode], is the
probability that the data packet is lost and it is referred
to as outage probability.

2) The event {T ≤ M − 1} (that transmission ends
before the maximum number of transmissions has been
reached) implies successful decoding. However, a suc-
cessful decoding does not necessarily imply a renewal
event (the end of the transmission of the current data
packet).

3) It is immediate to see that the optimal power allocation
meets the power constraint with equality (otherwise, the
left over power could be used on the last transmission,
which would increasing the throughput while still meet-
ing the power constraint).

The throughput of the different protocols for different values
of M and F satisfies:

Theorem 2 (from [3]). We have:

η
(ALO)
M,F ≤ η

(RTD)
M,F ≤ η

(INR)
M,F . (4)

Moreover, η(�)
M,F is a non-decreasing function of M and of F ,

for each protocol � ∈ {ALO, RTD, INR}.
Proof: The proof of (4) is as in [3] and is omitted here for

sake of space. The fact that η(�)
M,F is a non-decreasing function

of M and F follows by observing that if more transmissions
or more accurate CSI would hurt performance, they could just
be ignored.
From Theorem 2 it follows immediately that:

Corollary 3. For any M and F , and for any protocol � ∈
{ALO, RTD, INR}:

η
(ALO)
M=1,F ≤ η

(�)
M,F ≤ η

(INR)
M=∞,F ,

where η
(ALO)
M=1,F is the outage capacity of the channel and

η
(INR)
M=∞,F is the ergodic capacity of the channel [3].

In the following we first evaluate η
(INR)
M=∞,F and η

(ALO)
M=1,F with

partial CSI and then we propose novel achievable protocols for
η
(�)
M,F , � ∈ {ALO, RTD, INR}.

IV. THROUGHPUT UPPER BOUND η
(INR)
M=∞,F

When M →∞, the INR protocol with a time-invariant and
memoryless power allocation policy Pt = g(γt), t ∈ N, and
with optimized rate R, achieves the ergodic capacity of the
channel [3] given by:

η
(INR)
M=∞,F = E[log(1 + γ g(γ))],

where the function g(·) can take at most F different values.
In the following we let Pf ≥ 0 be the power used when the
feedback value is f , f ∈ {0, . . . , F − 1}, (i.e., we drop the
index referring to the number of repetitions, which is irrelevant
here because we considered time-invariant and memoryless
power allocation policies). The optimal power policy g(·) for
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a finite F was derived in [10] and it is summarized in the
following:

Theorem 4 (from [10]). Let

0 ≤ P0 ≤ P1 ≤ · · · ≤ PF−1 ≤
1

λ
, (5)

where Pf is the power used when γ ∈ R(INR)
f , with

R(INR)
f � {sf ≤ γ < sf+1}, (6)

f ∈ {0, . . . , F − 1}, with s0 = 0, sF = +∞, and

1

sf
�

1

λ

(
λ(Pf+1 − Pf )

eλ(Pf+1−Pf ) − 1
− λPf

)
, (7)

f ∈ {1, . . . , F − 1}, and where λ ≥ 0 is such that

F−1∑
f=0

Pf Pr[R(INR)
f ] = P . (8)

The ergodic capacity with partial CSI is:

η
(INR)
M=∞,F =

= max
{Pf}

F−1∑
f=0

E
[
log(1 + γPf )|γ ∈ R(INR)

f

]
Pr[R(INR)

f ], (9)

where the maximization is subject to (5) and (8).

Remarks:
1) When F = 1 (no CSI) the transmitter can not adapt its
power across transmissions and thus sends at constant
power g(γ) = P . In this case the throughput is:

η
(INR)
M=∞,F=1 = E[log(1 + γ P )]. (10)

Theorem 4 for F = 1 gives the result in (10).
2) With F = ∞ (perfect CSI) the optimal power allocation
is water-filling [4] given by:

g(γ) =

[
1

λ
− 1

γ

]+

, (11)

and the throughput is:

η
(INR)
M=∞,F=∞ = E

[[
log

γ

λ

]+]
, (12)

where the Lagrange multiplier λ ≥ 0 is such that
the power constraint is met with equality. The power
policy in (7) for F → ∞ reduces to (11) since

λ(Pf+1−Pf )

eλ(Pf+1−Pf )−1
→ 1 when Pf+1 − Pf → 0 (notice that

the region R(INR)
0 always includes the interval [0, λ]

since s1 ≥ λ, while the other quantization regions
reduce to a single point).

3) The optimal quantization regions are intervals.
4) For the purpose of numerical evaluations, it is convenient
to have bounds on the throughput that can be fast evalu-
ated and easily optimized. The throughput in Theorem 4
can be bounded as:

Proposition 5. For a given set of quantization intervals
Rf = {sf ≤ γ < sf+1}, f ∈ {0, . . . , F − 1}, the
ergodic capacity η

(INR)
M=∞,F in (9) can be bounded as:

η
(INR)
M=∞,F ≤ max

{sf ,Pf}

F−1∑
f=0

log
(
1 + μf Pf

)
Pr[Rf ], (13a)

η
(INR)
M=∞,F ≥ max

{sf ,Pf}

F−1∑
f=0

log(1 + sfPf ) Pr[Rf ], (13b)

where μf � E[γ|γ ∈ Rf ] ∈ Rf is the centroid of
the f -th quantization interval, and the maximization is
subject to

0 = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sF = +∞ (14)

and such that the powers Pf ≥ 0, f ∈ {0, . . . , F − 1},
satisfy

∑F−1
f=0 Pf Pr[γ ∈ Rf ] ≤ P .

Proof: The bounds in (13) follow immediately from
the definition of the quantization intervals and from
Jensen’s inequality, i.e.,

log(1 + inf{γ ∈ Rf}Pf)

≤ E
[
log(1 + γPf )|γ ∈ Rf

]
≤ log(1 + E[γ|γ ∈ Rf ]Pf ),

with inf{γ ∈ Rf} = sf by definition. For both
bounds in (13) the optimal powers are obtained by water-
filling [4]. The optimization of the bounds in (13) is
thus equivalent to the problem of finding the optimal
quantization intervals, which can be done efficiently by
using Lloyd’s algorithm [17].
As the number of feedback levels F increases, the
quantization intervals reduce to a single point since
μf → sf , that is, the bounds in (13) converge to the
water-filling ergodic capacity in (12).

V. THROUGHPUT LOWER BOUND η
(ALO)
M=1,F

All protocols have the same throughput forM = 1 (because
retransmissions are not possible), which coincides with the
outage capacity of the channel [3] given by:

η
(ALO)
M=1,F = max

R≥0

{
R(1− Pout(R))

}
,

where Pout(R) is the probability of outage given by:

Pout(R) = Pr
[
log(1 + γ g(γ)) < R

]
,

and where the non-negative function g(·) can take at most F
different values. The optimal power allocation policy g(·) for
a finite F is:

Theorem 6. Define the thresholds

0 ≤ s1 ≤ · · · ≤ sF−1 ≤ sF = s0 ≤ sF+1 = +∞, (15)

(notice the convention sF = s0 ∈ (0,∞), rather than s0 = 0
and sF = +∞ as in (14)) and the quantization regions:

R(ALO)
0 = {0 ≤ γ < s1} ∪ {γ ≥ s0}, (16a)

R(ALO)
f = {sf ≤ γ < sf+1}, f ∈ {1, . . . , F − 1}, (16b)
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Let the transmit power to be used when γ ∈ R(ALO)
f be:

Pf =
eR − 1

sf
, f ∈ {0, . . . , F − 1}, (17)

The outage capacity with partial CSI is:

η
(ALO)
M=1,F = max

{sf}

(
1− Pr[γ < s1]

)
·

· log

⎛⎝1 +
P∑F−1

f=0
1
sf

Pr[γ ∈ R(ALO)
f ]

⎞⎠ , (18)

where the maximization is subject to the constraint in (15).

Proof: The proof can be found in Appendix B.
The power Pf in (17) is the minimum power that guarantees

no outage for all fading gains in R(ALO)
f , for f > 0; outage

can only occur when the fading gain belongs to the subset of
R(ALO)

0 given by {γ < s1}.
Remarks:
1) When F = 1 (no CSI) the transmitter can only send at
constant power g(γ) = P and the throughput is:

η
(ALO)
M=1,F=1 = max

s1≥0
log(1 + P s1) Pr[γ ≥ s1]. (19)

Theorem 6 for F = 1 gives the result in (19).
2) With F = ∞ (perfect CSI) the optimal power allocation
is truncated channel inversion [12]:

g(γ) =
eR − 1

γ
1{γ≥s1}. (20)

With (20) an outage only happens when γ < s1, and the
throughput is

η
(ALO)
M=1,F=∞ = max

s1≥0
Pr[γ ≥ s1] log

⎛⎝1 +
P

E

[
1
γ 1{γ≥s1}

]
⎞⎠ .

(21)

When F →∞, the region R(ALO)
0 reduces to {0 ≤ γ <

s1} since s∞ = s0 = ∞; when the fading belongs to
R(ALO)

0 the transmit power is P0 = lims→∞
eR−1

s = 0,
thus Theorem 6 reduces to truncated channel inversion.

3) Several power allocation policies have been proposed for
outage minimization with partial CSI. However, none
of the policies is optimal. For example the solution
proposed in [8] corresponds to the suboptimal solution
s0 = sF = sF+1 = ∞, that is, setting the quantizations
regions to be intervals. From our result in Theorem 6,
the optimal quantization regions are in general unions
of intervals.

4) For the purpose of simplifying our numerical evaluations
we propose to bound the throughput η(ALO)

M=1,F as:
Proposition 7. Let

η̂
(ALO)
M=1,F = max

0≤s1≤...≤sF≤sF+1=∞
Pr[γ ≥ s1]·

· log

⎛⎝1 +
P∑F

f=1
1
sf

Pr[γ ∈ [sf , sf+1)]

⎞⎠ . (22)

The throughput in (18) is bounded by

η̂
(ALO)
M=1,F−1 ≤ η

(ALO)
M=1,F ≤ η̂

(ALO)
M=1,F .

When F � 1, the optimal solution of (22) tends to

sf = s1ξ
f−1, ∀f ≥ 1, (23)

for some ξ ≥ 1.
Proof: That η̂

(ALO)
M=1,F in (22) is an upper bound for

η
(ALO)
M=1,F in (18) follows by neglecting the term

Pr[γ<s1]
sF

at the denominator in (18). That η̂
(ALO)
M=1,F−1 in (22) is

an lower bound for η
(ALO)
M=1,F in (18) follows by setting

sF = ∞ in (18). It is interesting to notice that the same
function η̂

(ALO)
M=1,F is a lower bound for η

(ALO)
M=1,F+1 (notice

the different number of feedback values) and an upper
bound for η

(ALO)
M=1,F .

The proof of (23) can be found in Appendix C.

VI. MAIN RESULT: ACHIEVABLE THROUGHPUT FOR
GENERAL M AND F

Determining η
(�)
M,F , � ∈ {ALO, RTD, INR}, as in Theo-

rem 1 for general finite values of M and F , is very complex
as it involves the solution of a dynamic program (due to
the causal nature of the power control [11], [15]). In this
section we propose novel protocols that combine repetition
and power control for a general M and F . The throughput of
our protocols is a lower bound for the optimal η

(�)
M,F .

Theorem 8. For a protocol � ∈ {ALO, RTD, INR} and
general finite values of M and F , let Bm ∈ {0, . . . , F − 1}
be the feedback sent by the receiver at the beginning of the
slot corresponding to the m-th transmission attempt for the
current data packet, m ∈ {1, . . . , M}. Consider the following
power policy: for m ∈ {1, . . . , M}

Pm =
eR − 1

τm
1{Bm=0} +

F−1∑
f=1

eR − 1

sm,f
1{Bm=f}, (24)

with

0 ≤ τm (25a)
0 = sm,0 ≤ sm,1 · · · ≤ sm,F−1 ≤ sm,F = +∞. (25b)

The thresholds {sm,f}F
f=0 in (25) define a quantizer for a

scaled version of the fading power gain γm, where the scaling
factor accounts for the information already accumulated at the
receiver in the previous m − 1 transmissions. In particular,
the proposed feedback policy is: for � ∈ {ALO, RTD, INR},
m ∈ {1, . . . , M} and f ∈ {0, . . . , F − 1} let

Bm = f if
γm

ξ
(�)
m

∈ [sm,f , sm,f+1) and ξ(�)
m > 0, (26a)

Bm = F − 1 if ξ(�)
m ≤ 0, (26b)
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for with ξ
(�)
1 = 1 and ξ

(�)
m for m > 1 defined as

ξ(ALO)
m =

m−1∏
t=1

1{
1−

γt
τt

>0
}, (27a)

ξ(RTD)
m = 1−

m−1∑
t=1

γt

τt
, (27b)

ξ(INR)
m =

⎛⎝ eR∏m−1
t=1

(
1 + (eR − 1)γt

st

) − 1

⎞⎠ 1

eR − 1
. (27c)

The resulting throughput for protocol � ∈ {ALO, RTD, INR},
as given in Theorem 1, is lower bounded by:

η
(�)
M,F,lb � max

{τm,sm,f}

1− Pout

1 +
∑M−1

m=1 pm,0

·

· log

⎛⎝1 + P
1 +

∑M−1
m=1 pm,0∑M

m=1

∑F−1
f=1

pm,f−pm,f−1

sm,f
+

pm,0

τm

⎞⎠ , (28)

where the maximization is subject to the constraints in (25)
and where the probabilities {pm,f} are defined as:

pm,f = p̃
(�)
m,f m = 1, . . . , M, f = 0, . . . , F − 1,

(29a)

Pout = p̃
(�)
M+1,0 (by defining sM+1,1 = +∞), (29b)

where {p̃(�)
m,f} are defined in (36) for ALO, in (37) for RTD,

and in (38) for INR.

The rest of the section is devoted to give a rational for the
protocols in (26)-(27), to prove the throughput formula in (28)
and to define the probabilities {p̃(�)

m,f} for (29).

A. Protocol description and throughput evaluation
Inspired by the power policy that minimizes the outage

capacity in Theorem 6, we propose that the transmitter uses
the power policy in (24). Our protocol works as follows:
• The receiver feeds back Bm = f > 0, m ∈ {1, . . . , M},
to indicate that the power (eR − 1)/sm,f suffices to
successfully decode the current data packet when the
previous m − 1 transmissions are combined with the
current transmission.

• Upon receiving Bm = f > 0, m ∈ {1, . . . , M}, the
transmitter is certain that the receiver will decode cor-
rectly with the current transmission; hence, after transmis-
sion with power (eR − 1)/sm,f , the transmitter prepares
to sent a new data packet.

• The receiver feeds back Bm = 0, m ∈ {1, . . . , M},
when none of the powers (eR− 1)/sm,f , ∀f > 0, would
guarantee successful decoding.

• In response to Bm = 0, m ∈ {1, . . . , M − 1}, the
transmitter sends with power (eR − 1)/τm and prepares
to retransmit the same data packet in the next slot.

• In response to BM = 0 (for the last transmission
attempt), the transmitter sends with power (eR − 1)/τM

and prepares to sent a new data packet since no more
retransmissions are permitted. In this case an outage can
occur.

In order to evaluate the throughput according to Theorem 1
we must determine the average decoded rate (reward) and
the average transmit power (cost) when the transmission of
the current data packet ends, and the average time needed
to transmit a data packet (inter-renewal time). From the
description of the protocol given above, it is clear that the
transmission of the current data packet does not end after m
received slots, m ∈ {1, . . . , M−1}, if all the feedback values
received were zero, that is,

Pr[T ≥ m] = Pr[B1 = 0, . . . , Bm−1 = 0].

When the transmission of a data packet ends with less thanM
transmissions, successful decoding occurs. The transmission
of the current data packet ends after the M -th transmission
regardless of the status of the decoder (since no more trans-
mission attempts are possible). An outage occurs if decoding
is still unsuccessful with M transmissions, i.e.,

Pout = Pr[B1 = 0, . . . , BM = 0, failure to decode]. (30)

The average number of successfully decoded bits when the
transmission of the current data packet ends, i.e., average
reward, is

E[R] = R
(
1− Pout

)
. (31)

The average transmit power when transmission of the current
data packet ends, i.e., average cost, is

E[P ] =

M∑
m=1

eR − 1

τm
Pr[B1 = 0, . . . , Bm = 0]

+

M∑
m=1

F−1∑
f=1

eR − 1

sm,f
Pr[B1 = 0, . . . , Bm−1 = 0, Bm = f ].

(32)

The average time needed to transmit a data packet, i.e., the
inter-renewal time, is

E[T ] =
M∑

m=1

m Pr[T = m] =
M∑

m=1

Pr[T ≥ m]

= 1 +
M−1∑
m=1

Pr[B1 = 0, . . . , Bm = 0]. (33)

The probabilities in (32) and (33) can be easily expressed as
a function of p̃m,f defined as:

p̃m,f � Pr[B1 = 0, . . . , Bm−1 = 0, Bm ≤ f ], (34)

for f ∈ {0, . . . , F − 1} since:

Pr[B1 = . . . = Bm−1 = 0, Bm = f ]

=

⎧⎨⎩
p̃m,0 f = 0,
p̃m,f − p̃m,f−1 f = 1, . . . , F − 2,
p̃m−1,0 f = F − 1,

(35)

for all m ∈ {1, . . . , M}. The equality for f = F − 1 follows
since Pr[Bm ≤ F − 1] = 1 for all m. As we shall proof in
the next sections, where we give the details of the protocols,
the outage probability in (30) needed for (31) ie equivalent to
Pout = p̃M+1,0 if we assume an hypothetical 1-bit of feedback



8

at the end of the M -th transmission that indicates BM+1 =
1{failure to decode with M transmissions}. (this will correspond to a
degenerate quantizer with 0 = sM+1,0 < sM+1,1 = +∞).
This discussion justifies the definitions in (29).
Finally, with the definition in (35) and by Theorem 1, the

throughput for the proposed protocols is

η =
eq.(31)
eq.(33)

= eq.(28),

where we expressed the rate R in (31) as a function of P from

P =
eq.(32)
eq.(33)

= (eR−1)

∑M
m=1

( epm,0

τm
+
∑F−1

f=1
epm,f−epm,f−1

sm,f

)
1 +

∑M
m=1 p̃m,0

.

The probabilities {p̃(�)
m,f} in (29), as well as the feed-

back policy feedback policy {Bm} in (26) defined through
the quantities {ξ(�)

m } in (27), depend on the protocol � ∈
{ALO, RTD, INR} and will be discussed next.

B. First transmission (all protocols)
In order to better understand the way the feedback value is

decided, consider the transmission on the first slot, which is
the same for all protocols. Let θ � eR − 1 ≥ 0.
• Feedback policy:

– At the beginning of the first slot/transmission, the
receiver measures γ1 and sends

B1 = F − 1 if log

(
1 + θ

γ1

s1,F−1

)
≥ log(1 + θ)

that is, the receiver sends back the highest possible
feedback value if the lowest possible power θ/s1,F−1

(from (24) with m = 1 and f = F − 1) suffices for
successful decoding given the actual fading γ1. In
other words, the receiver sends back

B1 = F − 1 if s1,F−1 ≤ γ1.

– If s1,F−1 > γ1, i.e., the lowest possible power is
not enough to guarantee successful decoding, the
receiver checks whether the second lowest available
power θ/s1,F−2 suffices for correct decoding. The
receiver sends back

B1 = F − 2 if log

(
1 + θ

γ1

s1,F−1

)
< log(1 + θ)

and log

(
1 + θ

γ1

s1,F−2

)
≥ log(1 + θ),

that is,

B1 = F − 2 if s1,F−2 ≤ γ1 < s1,F−1.

– By continuing our reasoning in this manner, the
receiver sends

B1 = f if γ1 ∈ [s1,f , s1,f+1), f = 0, . . . , F − 1,

i.e., the thresholds {s1,f}F
f=0 define a quantizer for

γ1 as in (26a) with ξ0 = 1 (there is no scaling for the
fading value on the first transmission because there
no accumulate information at the receiver).

• Transmission strategy:
– In response to B1 = f > 0 the transmitter sends with
power θ/s1,f that guarantees successful decoding for
the whole range of fading values in [s1,f , s1,f+1);
after transmission, the transmitter prepares to send a
new data packet.

– In response to B1 = 0, the transmitter sends with
power θ/τ1

2 that suffices for successful decoding
only if γ1 ≥ min{τ1, s1,1}; however, the transmitter
can not know whether the actual γ1 is above or below
min{τ1, s1,1}, and hence prepares to retransmit the
same packet again.

From the second transmission onwards, the mode of opera-
tion depends on the protocol used. We will describe the three
protocols separately.

C. Retransmissions for ALO
Recall that a second transmission is triggered by B1 = 0,

which corresponds to having sent with power θ/τ1 on the first
slot.
• First retransmission:

– In the ALO protocol only the most recent received
slot is used for decoding.
Assume that in the first transmission the fading
satisfied γ1 ≥ min{τ1, s1,1}. The receiver knows
that the transmitter will resend the same data packet
in the second slot because it received B1 = 0 in the
first slot. The receiver can “trick” the transmitter into
believing that it will be able to decode in the second
slot by sending B2 = F − 1.
Clearly, this second transmission is a waste of power,
but the receiver has no other way to inform the
transmitter of its successfully decoding owning to
having already exhausted all its feedback bits at the
beginning of the current slot. Among all possible
powers that the receiver could have requested for
the second transmission, θ/s2,F−1 (from (24) with
m = 2 and f = F−1) is the lowest. This is captured
in our protocol definition by the condition in (26b).

– If γ1 < min{τ1, s1,1} (which implies γ1 < τ1), the
receiver uses the same feedback policy it had used as
on the first slot, but with possibly different thresholds
for the quantization.
Fig. 2 shows the feedback values for the ALO
protocol with M = 2 retransmissions and F = 2
feedback values; the region with B1 = B2 = 0 is
divided into two parts, the shaded region corresponds
to an outage while the white region corresponds to
successful decoding.

• Other retransmissions:
By continuing our reasoning as for the first retransmis-
sion, we arrive at the protocol definition in Proposition 8
with the fading scaling defined in (27a).

2The power in this case is θ/τ1; notice the use of τ1 in place of s1,0; this is
because s1,0 = 0 has been already used to indicate the left-most quantization
value. The same holds for any m ≥ 1.
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�

γ1

γ2

m
in
{τ

2
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2
,1
}

s2,1

τ1 s1,1

B1 = 1B1 = 0, B2 = 1

B1 = 0, B2 = 0 OK

B1 = 0, B2 = 0 outage

Fig. 2. Feedback values for the ALO protocol with M = 2 retransmissions
and F = 2 feedback values. The shaded region corresponds to an outage.

• Performance:
For ALO the probabilities p̃m,f , f ∈ {0, . . . , F − 2}, as
defined in (34) are:

p̃
(ALO)
m,f = Pr [γt < st,1, γt−1 < τt−1 ∀t < m,

γm−1 < τm−1, γm < sm,f+1]

= Pr

[
γt

min{τt, st,1}
< 1 ∀t < m, γm < sm,f+1

]
=

(
m−1∏
t=1

Fγ(min{τt, st,1})
)

Fγ(sm,f+1), (36)

with
∏0

t=1(· · · ) = 1. With the definition of p̃
(ALO)
m,f

in (36) we obtain the relationships in (29) for the ALO
protocol.
In general, the probability p̃

(ALO)
m,f is available in closed

form if the cumulative density function of the fading
power Fγ(x), x ≥ 0, is known in closed form.
Notice that the probability of outage (failure to decode
at the last transmission) would be equivalent to sending
BM+1 = 0, for this reason we have the equality in (29b)
by defining sM+1,1 = +∞. This observation holds for
all protocols.

D. Retransmissions for RTD

Recall that a second transmission is triggered by B1 = 0,
which corresponded to having sent with power θ/τ1 on the
first slot.
• First retransmission:

– In the RTD protocol, the receiver accumulates SNR.
On the second transmission, at the beginning of the
slot the receiver measures γ2 and checks whether
the lowest available power θ/s2,F−1 suffices for
decoding, and sends

B2 = F − 1 if

log

(
1 + θ

γ1

τ1
+ θ

γ2

s2,F−1

)
≥ log(1 + θ),

since the resulting SNR after maximal ratio combin-
ing of the two received packets is the sum of the

SNR on each packet. Hence, the feedback value at
the beginning of the second slot is

B2 = F − 1 if
γ1

τ1
+

γ2

s2,F−1
≥ 1.

If γ1

τ1
≥ 1, then B2 = F − 1. However, if γ1

τ1
≥ 1

a retransmission was not necessary in the first place
and the power θ/s2,F−1 is wasted, as for the ALO
protocol. When γ1 ≥ τ1 the receiver feeds back
B2 = F − 1 so that transmission of the current data
packet ends with the next slot (with the minimum
possible amount of wasted power).
If γ1 ≥ τ1 and B2 = F − 1 then the condition on
the fading value we can rewrite as:

B2 = F − 2 if
γ2

1− γ1

τ1

≥ s2,F−1.

– If instead γ1

τ1
+ γ2

s2,F−1
< 1 (which implies that

γ1

τ1
< 1) the receiver checks whether the second low-

est available power θ/s2,F−2 suffices for decoding,
and sends

B2 = F − 2

if log

(
1 + θ

γ1

τ1
+ θ

γ2

s2,F−1

)
< log(1 + θ)

and log

(
1 + θ

γ1

τ1
+ θ

γ2

s2,F−2

)
≥ log(1 + θ).

Hence, the feedback value at the beginning of the
second slot is

B2 = F − 2 if s2,F−2 ≤
γ2

1− γ1

τ1

< s2,F−1.

– By proceeding with this reasoning, we see that the
thresholds {s2,f}F

f=0 define a quantizer for
γ2

1−
γ1
τ1

when γ1

τ1
< 1. The value γ2

1−
γ1
τ1

to be quantized is
larger than the actual fading γ2 as it accounts for the
SNR already “harvested” at the receiver during the
first transmission.
As an example, Fig. 3 shows the feedback values
for the RTD protocol with M = 2 retransmissions
and F = 2 feedback values; the region with B1 =
B2 = 0 is divided into two parts, the shaded region
corresponds to an outage while the white region
corresponds to successful decoding.

• Other retransmissions:
In general, if the m-th transmission is required, then the
receiver has already accumulated an equivalent SNR of

SNR
′
m−1 =

m−1∑
t=1

γt

τt
,

from the previous m−1 transmissions, all in response to
a zero-value feedback value. If SNR

′
m−1 ≥ 1 decoding

was successful, else a retransmission is needed and the
receiver uses the thresholds {sm,f}F

f=0 to define a quan-
tizer for γm

1−SNR′m−1
as proposed in Proposition 8 (fading

scaling defined in (27b)).



10

� �

�

�

γ1

γ2

m
in
{τ

2
,s

2
,1
}

s2,1

τ1 s1,1

B1 = 1B1 = 0, B2 = 1

B1 = 0, B2 = 0 OK

B1 = 0, B2 = 0 outage

Fig. 3. Feedback values for the RTD protocol with M = 2 retransmissions
and F = 2 feedback values. The shaded region corresponds to an outage.

• Performance:
For RTD the probabilities p̃m,f , f ∈ {0, . . . , F − 2},
defined in (34), are:

p̃
(RTD)
m,f = Pr

[
γt

1−∑t−1
�=1

γ�

τ�

< st,1,

1−
t−1∑
�=1

γ�

τ�
> 0 ∀t < m, γm < sm,f+1

]

= Pr

[
t−1∑
�=0

γ�

τ�
+

γt

min{τt, st,1}
< 1 ∀t < m,

γm

1−∑m−1
�=0

γ�

τ�

< sm,f+1

]
(37)

with γ0/τ0 = 0. With the definition of p̃
(INR)
m,f in (37) we

obtain the relationships in (29) for the RTD protocol.
In general, there is not a closed form expression available
for p̃

(RTD)
m,f , unless it is possible to evaluate the density

of random variables of the type
∑t

�=1
γ�

τ�
in closed form.

E. Retransmissions for INR
Recall that a second transmission is triggered by B1 = 0,

which corresponds to having sent with power θ/τ1 on the first
slot.
• First retransmission:

– For the INR protocol, the receiver accumulates mu-
tual information.
At the beginning of the second slot, the receiver
measures γ2 and sends

B2 = F − 1 if

log

(
1 + θ

γ1

τ1

)
+ log

(
1 + θ

γ2

s2,F−1

)
≥ log(1 + θ),

since the resulting accumulated mutual information
at the receiver after optimal combining of the two
transmissions is the sum of mutual information of
each slot.
Again, if γ1

τ1
≥ 1 then B2 = F − 1 and a retrans-

mission was not necessary in the first place and the
power θ/s2,F−1 is wasted, as for the ALO and RTD
protocols.

� �

�

�

γ1

γ2

m
in
{τ

2
,s

2
,1
}

s2,1

τ1 s1,1

B1 = 1B1 = 0, B2 = 1

B1 = 0, B2 = 0 OK

B1 = 0, B2 = 0 outage

Fig. 4. Feedback values for the INR protocol with M = 2 retransmissions
and F = 2 feedback values. The shaded region corresponds to an outage.

If γ1 ≥ τ1 and B2 = F − 1 then the condition on
the fading value we can rewrite as:

B2 = F − 1 if γ2

1 + θ γ1

τ1

1− γ1

τ1

≥ s2,F−1.

– If log
(
1 + θ γ1

τ1

)
+ log

(
1 + θ γ2

s2,F−1

)
< log(1 + θ)

(which implies that γ1

τ1
< 1) the receiver checks

whether the second lowest available power θ/s2,F−2

suffices for decoding, and sends

B2 = F − 2

if log

(
1 + θ

γ1

τ1

)
+ log

(
1 + θ

γ2

s2,F−1

)
< log(1 + θ)

and log

(
1 + θ

γ1

τ1

)
+ log

(
1 + θ

γ2

s2,F−2

)
≥ log(1 + θ).

Hence, the feedback value at the beginning of the
second slot is

B2 = F − 2 if s2,F−2 ≤ γ2

1 + θ γ1

τ1

1− γ1

τ1

< s2,F−1

– By proceeding with this reasoning, we see that the
thresholds {s2,f}F

f=0 define a quantizer for γ2
1+θ

γ1
τ1

1−
γ1
τ1

when γ1 < τ1; this scaled version of γ2 accounts for
the mutual information already accumulated at the
receiver in the first transmission.
For example, Fig. 4 shows the feedback values for
the ALO protocol with M = 2 retransmissions and
F = 2 feedback values; the region with B1 =
B2 = 0 is divided into two parts, the shaded region
corresponds to an outage while the white region
corresponds to successful decoding.

• Other retransmissions:
For a general m, the mutual information already accu-
mulated from the previous slots is

Im−1 =
m−1∑
t=1

log

(
1 + θ

γt

τt

)
.

If Im−1 ≥ log(1 + θ) then decoding was successful and
the receiver sends Bm = F − 1 to end transmission in
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slot m. If Im−1 < log(1 + θ), then the receiver looks for
the smallest f > 0 such that

Im−1 + log

(
1 + θ

γm

sm,f

)
> log(1 + θ).

If such an f > 0 exists, then Bm = f and transmission
ends with the current slot; otherwise, Bm = 0 and
transmission continues. This procedure is equivalent to
the protocol in Proposition 8 with the fading scaling
defined in (27c).

• Performance:
For INR the probabilities p̃m,f , f ∈ {0, . . . , F − 2},
defined in (34), are:

p̃
(INR)
m,f = Pr

⎡⎣t−1∏
�=0

(
1 + θ γ�

τ�

)(
1 + θ γt

min{τt,st,1}

)
1 + θ

< 1,

∀t < m,
γm

ξ
(INR)
m

< sm,f+1

]
(38)

with γ0/τ0 = 0. With this definition of p̃
(INR)
m,f we obtain

the relationships in (29) for the INR protocol.
In general, there is not a closed form expression available
for p̃

(INR)
m,f , unless it is possible to evaluate the density of

random variables of the type
∏t

�=1

(
1 + θ γ�

τ�

)
in closed

form.

F. Performance with perfect CSI at the transmitter
In order to appreciate the benefits of partial CSI at the

transmitter in the proposed repetition protocols, consider the
performance with perfect CSI (F = +∞).
Since the power control is causal, the throughput is found

as a solution of a dynamic program [13]:

Proposition 9. The throughput η(�)
M,F=∞,lb is the solution of:

max
{Pm≥0}

R
1− Pr[

∑M
t=1 Ut < g(R)]

1 +
∑M−1

m=1 Pr[
∑m

t=1 Ut < g(R)]
(39a)

s.t.

∑M
m=1 E

[
Pm 1{

Pm−1
t=1 Ut<g(R)}

]
1 +

∑M−1
m=1 Pr[

∑m
t=1 Ut < g(R)]

≤ P , (39b)

where: for ALO, Um = 1{γmPm>eR−1} indicates successful
decoding on the m-th transmission and g(R) = 0; for
RTD, Um = γmPm represents the received SNR on the
m-th transmission and g(R) = eR − 1 ≥ 0; for INR,
Um = log(1 + γmPm) represents the mutual information
at the receiver on the m-th transmission and g(R) = R;
the optimization is with respect to causal power policies
Pm = Pm(γ1, . . . , γm), m = 1, . . . , M .

Proof: The optimization of a causal power control system
can be cast as a dynamic program over finite horizon with
complete observations [11], [13], [15], where the system state
is Xt =

∑t−1
m=0 Um, the control is Ut, and the state evolves as

Xt+1 = Xt + Ut, with U0 = 0, from which (39) follows.
The problem in (39a) is similar to the outage minimization

problem in [15]. As in [15], we can write the iterative algo-
rithm that defines the optimal dynamic programming solution,

however an explicit closed form solution is not available in
general. Numerical techniques, as those proposed in [15], must
be used for numerical evaluations of (39).

VII. NOVEL BOUNDING TECHNIQUE
In the previous section we proposed novel protocols that

combine power control with partial CSI and retransmissions.
In all cases, a closed form expression of the throughput
requires a closed form expression for the cumulative density
function of: (a) the fading γ� for p̃

(ALO)
m,f in (36), (b) random

variables of the type Sm =
∑m

�=1
γ�

τ�
, for p̃

(RDT)
m,f in (37),

and (c) random variables of the type Im =
∏m

�=1

(
1 + θ γ�

τ�

)
for some θ ≥ 0 for p̃

(INR)
m,f in (38). Since the distribution

of Im is rarely known in closed form, in the following
we propose a novel bounding technique for the cumulative
density function of Im in terms of the the cumulative density
function of Sm. For the case of iid Rayleigh fading, the
density of Sm is known in closed form; hence, our technique
allows to determine closed-form upper and lower bounds for
probabilities involving Im.
Consider generic non-negative constants {τm}, m ∈ N, a

constant θ ≥ 0, and define

p(ALO)
m = Pr

[
γs

τs
< 1, s = 1, . . . , m

]
, (40a)

p(RTD)
m = Pr

[
m∑

s=1

γs

τs
< 1

]
, (40b)

p(INR)
m = Pr

[
1

log(1 + θ)

m∑
s=1

log

(
1 + θ

γs

τs

)
< 1

]
, (40c)

for some sequence {γ�} of iid random variables.
Example: As an example, consider Fig. 5, which shows

in the plane x1 �
γ1

τ1
, x2 �

γ2

τ2
the regions that defines p

(�)
2 ,

� ∈ {ALO, RTD, INR}. The probability p
(ALO)
2 is the integral

of the joint density of (x1, x2) over the square (x1, x2) ∈
[0, 1]2. The probability p

(RTD)
2 is the integral over the triangle

x1 + x2 ≤ 1, x1 ≥ 0 and x2 ≥ 0, that is, over the region
in the positive quadrant below the dotted-line curve labeled
“RTD” in Fig. 5. And finally, the probability p

(INR)
2 is the

integral over the region in the positive quadrant below the
solid-line curve labeled “INR” in Fig. 5. The curve labeled
“INR” in Fig. 5 is a convex function that can be bounded
from above and from below by piece-wise linear functions.
We chose piece-wise linear functions because the region they
define is the union of triangular regions. In particular, for the
inner bound, we take the union of the two regions below the
tangent lines at (x1, x2) = (0, 1) and at (x1, x2) = (1, 0)
(the region in the positive quadrant below the dash-dotted-line
curve labeled “INR inner region” in Fig. 5), while for the outer
bound, we take the union of the two regions below the lines
passing through (x1, x2) = (0, 1) and (x1, x2) = (1/2, 1/2),
and through (x1, x2) = (1, 0) and (x1, x2) = (1/2, 1/2) (the
region in the positive quadrant below the dashed-line curve
labeled “INR outer region” in Fig. 5).
By extending the idea presented in the above example to

the case of a general m ∈ N we can show:
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Fig. 5. The region that defines the probability of outage for INR withM = 2

and its approximations.

Proposition 10. The probability in (40c) can be bounded as:

p(INR)
m ≥ Pr

[
(1 + θ)

m∑
s=1

γs

τs
− θ max

t=1,...,m

γt

τt
< 1

]
(41a)

p(INR)
m ≤ Pr

[
m∑

s=1

γs

τs
+

+

(
θ

(1 + θ)1/m − 1
−m

)
max

t=1,...,m

γt

τt
< 1

]
(41b)

Proof: The proof can be found in Appendix D.
The interesting fact about the two bounds in (41) is that

they are computable from the knowledge of the density of the
random variable

Xa,b = a max
t=1,...,m

γt

τt
+ b

m∑
s=1

γs

τs
(42)

for some fixed (a, b) ∈ R2.

Proposition 11. For the case of iid negative exponential
random variables {γt} (i.e., iid Rayleigh fading), the density
of Xa,b in (42), for any (a, b) ∈ R2, is given in (44) in
Appendix E.

Proof: The proof can be found in Appendix E.

VIII. THE IID RAYLEIGH FADING CHANNEL
To illustrate the gain achievable with the protocols proposed

in Section VI, we evaluate the performance of the different
protocols for the Gaussian iid Rayleigh fading channel, for
which the fading cumulative distribution function is Fγ(x) =
1−e−x for x ≥ 0. We define the exponential integral function
as:

E

[
1

γ
1{γ≥x}

]
RF
=

∫ ∞

x

e−t/t dt � Ei(x)

for x ≥ 0. We use the symbol “RF
= ” to indicate that the equality

holds for Rayleigh fading channels.
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Fig. 6. Ratio between the throughput and η
(INR)
M=∞,F=∞

(the ergodic capacity
with full CSI), for the Rayleigh fading channel.
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Fig. 7. Ratio between the throughput and η
(INR)
M=∞,F=∞

(the ergodic capacity
with full CSI), for the Rayleigh fading channel.

For the plots, communication rates are measured in
bits/sec/Hz and the figures show the relative throughput perfor-
mance with respect to the ergodic water-filling capacity (i.e.,
M = F = ∞ and INR), which is the ultimate performance
limit for a fading channels with full CSI. Table I summarizes
the cases considered in the following.

TABLE I
Amount M = 1 M = 2 M = ∞

of CSI outage cap. HARQ protocols ergodic cap.
Absent in VIII-B1 (impossible, need at in VIII-A1
(F = 1) least 1-bit for ack/nack)
1 bit in VIII-B2 in VIII-C (classical HARQ) in VIII-A2
(F = 2) in VIII-D (proposed HARQ)
Full in VIII-B3 (not evaluated) in VIII-A3

(F = ∞)

A. Throughput upper bound (ergodic capacity)
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1) M = ∞, F = 1, INR: With constant power allocation
the ergodic capacity is:

η
(INR)
M=∞,F=1

RF
= e

1
P Ei

(
1

P

)
.

2) M = ∞, finite F , INR: The ergodic capacity with partial
CSI is given in Theorem 4:

η
(INR)
M=∞,F

RF
= max

{ F−1∑
f=0

− log(1 + Pfsf )e−sf − e1/Pf Ei(1/Pf + sf )

+ log(1 + Pfsf−1)e
−sf−1 + e1/Pf Ei(1/Pf + sf−1)

}
where the thresholds {sf} are defined in (7), the maximization
over {Pf} is subject to the constraint in (5) and

P
RF
=

F−1∑
f=0

Pf [e−sf−1 − e−sf ]

The ergodic capacity with partial CSI can be bounded by
using Proposition 5; in particular, μf in (13a) is given by

μf
RF
=

e−sf−1(1 + sf−1)− e−sf (1 + sf )

e−sf−1 − e−sf
.

3) M = ∞, F = ∞, INR: With water-filling power
allocation the ergodic capacity is:

η
(INR)
M=∞,F=∞

RF
= Ei(λ),

P
RF
=

e−λ

λ
− Ei(λ).

4) Discussion: From Fig. 6 we see that η(INR)
M=∞,F=2 (i.e., 1

bit of feedback) is already at 97% of the water-filling capacity
η
(INR)
M=∞,F=∞ at an SNR as low as -25dB. At high SNR,

η
(INR)
M=∞,F=1 (no CSI) behaves like η

(INR)
M=∞,F=∞ (full CSI) but

at low SNR their ratio tends to zero. This restates a well
know fact that power allocation in single user channels offers
benefits at low SNR only and that a single bit of feedback
(i.e., F = 2) gives almost all the gain achievable by full CSI
(i.e., F = ∞).

B. Throughput lower bound (outage capacity)
1) M = 1, F = 1, ALO: With constant power allocation

the outage capacity is:

η
(ALO)
M=1,F=1

RF
= max

s1≥0
log(1 + Ps1)e

−s1 .

2) M = 1, F = 2, ALO: With 1-bit of feedback, the
throughput is the solution of:

η
(ALO)
M=1,F=2 = max

0≤s1≤s2≤∞
e−s1 ·

· log

(
1 +

P
1−e−s1

s2
+ e−s1−e−s2

s1
+ e−s2

s2

)
= max

0≤s1≤∞
e−s1 log(1 + Ps1e

s1).

3) M = 1, F =∞, ALO: With truncated channel inversion
power allocation the outage capacity is:

η
(ALO)
M=1,F=∞

RF
= max

τ≥0
log

(
1 +

P

Ei(τ)

)
e−τ .

4) Discussion: When M = 1, there is no need to send
a ACK/NACK because the transmitter cannot retransmit. In
this case, the one bit of feedback should indeed be used at
the beginning of the slot to inform the transmitter about the
state of the channel. From Fig. 6 we observe that 1-bit of
feedback at -25dB results in η

(ALO)
M=1,F=2/η

(INR)
M=∞,F=∞ = 81%

while (with constant power) η
(ALO)
M=1,F=1/η

(INR)
M=∞,F=∞ = 10%

only. At +5dB, η
(ALO)
M=1,F=2/η

(INR)
M=∞,F=∞ = 73% while (with

constant power) η
(ALO)
M=1,F=1/η

(INR)
M=∞,F=∞ = 45%. In fact, at

high SNR, power allocation is less critical and the gain due to
CSI vs. no CSI diminishes. We also reported for comparison
the achievable throughput for ALO with F = 4 (2 bits of
feedback) by using the approximation s� = s1 ξ�−1 as in
Proposition 7, and for ALO with F = ∞ (full CSI). We see
that the gains attainable at low SNR due to only a few bits
of feedback are dramatic and that 2 bits of feedback attain a
throughput remarkably close to the case with full CSI.

C. Classical HARQ protocols with F = 2 and M = 2

Classical HARQ protocols use the 1 bit of feedback (i.e.,
F = 2) to signal ACK/NACK. Classical HARQ protocols
are a special case of the protocols proposed in Section VI
obtained by setting sm,f = ∞ for all m > 0 and f > 0
in (25). In classical HARQ protocols the power can vary across
repetitions (i.e., different values of τm, m = 1, . . . , M ) but it
cannot depend on the CSI [7]. In this case the throughput
in (28) is a function only of {p̃m,0}, m ∈ {1, . . . , M + 1}
given by:

p̃
(ALO)
m,0

RF
=

m∏
s=1

(1− e−τs)

p̃
(RTD)
m,0

RF
=

m∑
s=1

1− e−τs∏
s�=j(1− τs/τj)

p̃
(INR)
m,0 = Pr

[
m∑

s=1

log

(
1 + θ

γs

τs

)
< log(1 + θ)

]
,

for θ � eR−1 ≥ 0 and m ≥ 1. Consider the case M = 2: the
only probability not known in closed form is p̃

(INR)
m,0 , which

we bound by using the technique developed in Proposition 11
in Section VII as follows:

p̃
(in)
2,0 = 1− q

(
1

2 + θ

)
≤ p̃

(INR)
2,0 = E

[
Fγ

(
τ2

1− γ1/τ1

1 + γ1/τ1 θ

)]
≤ p̃

(out)
2,0 = 1− q

(√
1 + θ − 1

θ

)
≤ p̃

(RTD)
2,0 = 1− q(1/2) = 1− e−τ1

1− τ1/τ2
− e−τ2

1− τ2/τ1

≤ p̃
(ALO)
2,0 = (1 − e−τ1)(1− e−τ2)

where the function q(x) is given by (44) in Appendix E.
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1) Discussion: In Fig. 7, classical HARQ protocols are
labeled as “classical” in order to distinguish them from the
novel protocols proposed in this work, which are labeled as
“new”. The case of M = 2 transmission is considered (which
implies that the throughput needs to be optimized with respect
to the two parameters (τ2, τ1)). From the numerical results
for SNR = P ∈ [−25, +25]dB, we saw that equal power
allocation across transmissions (i.e., τ2 = τ1) is optimal at all
SNR’s for ALO; for RTD and INR, the use of different power
(i.e., τ2 �= τ1) offers benefits; however the improvement is
negligible (for example less than 0.3% across the entire range
of simulated powers for RTD) for this reason in Fig. 7 we
only show the throughput with the optimized (τ2, τ1) only
for INR. We see that the throughput trend for the classical
HARQ protocols with F = 2 and M = 2 is the same as the
one for F = 1 and M = 1 reported in Fig. 6. This shows
that the 1 bit of feedback used for ACK/NACK only does
not offer substantial throughput improvement compared to the
outage capacity with constant power allocation (F = 1 and
M = 1). Only for SNR’s larger than 10dB, using classical
INR with F = 2 and M = 2 gives a larger throughput that
ALO with F = 1 and M = 1 with power control. From
these observations we conclude that classical HARQ make an
inefficient use of the feedback resources.

D. New protocols for M = 2 and F = 2

Figs. 2, 3, and 4 show the bits fed back to the transmitter
as a function of (γ1/τ1, γ2/τ2). Since we consider the case
F = 2, we only need to characterize p̃m,f , for m ∈ {1, 2, 3}
and f = 0, as per Proposition 8.
The probability of requesting a retransmission is:

p̃1,0 = Pr[B1 = 0] = Pr

[
γ1

s1,1
< 1

]
= Pr[T = 2]

= p̃2,1;

the probability of decoding failure after the first transmission
is:

p̃2,0 = Pr[B1 = 0, B2 = 0] =

Pr

[
γ1

min{τ1, s1,1}
< 1,

γ2

s2,1
< 1

]
ALO

Pr

[
γ1

min{τ1, τ1,1}
< 1,

γ1

τ1
+

γ2

s2,1
< 1

]
RTD

Pr

[
γ1

min{τ1, τ1,1}
< 1,

γ1

τ1
+

γ2

s2,1

(
1 + θ

γ1

τ1

)
< 1

]
INR,

and the probability of decoding failure after the second trans-
mission, which coincides with the probability of outage, is:

p̃3,0 = Pr[B1 = 0, B2 = 0, B3 = 0] =

Pr

[
γ1

min{τ1, s1,1}
<1,

γ2

min{τ2, s2,1}
<1

]
ALO

Pr

[
γ1

min{τ1, s1,1}
<1,

γ1

τ1
+

γ2

min{τ2, s2,1}
<1

]
RTD

Pr

[
γ1

min{τ1, s1,1}
<1,

γ1

s1
+

γ2

min{τ2, s2,1}
(
1+θ

γ1

τ1

)
<1

]
INR.

The probabilities for ALO and RTD can be evaluated in closed
form, while the probabilities for INR can be bounded as in
Subsection VIII-C (from Proposition 11 in Section VII) for the
classical HARQ protocols by using the function q(x) in (44).
1) Discussion: Fig. 7 shows the ratio among the throughput

of new protocols and the ergodic water-filling capacity. We see
that the new protocols dramatically outperform the classical
repetition protocols, especially at low SNR (compare with
Fig. 6). Indeed, at low SNR it is critical to be able to save
power when the channel is in deep fade. By providing the
transmitter with a 1-bit quantization of the current channel
gain (rather than ACK/NACK), we enable the transmitter to
do so. At low SNR, the repetition is not needed (ALO with
M = 1 and F = 2 has the same throughput of INR with
M = 2 and F = 2), while at high SNR, the repetition helps.
Notice that here high SNR means is SNR > 5dB, at which
η
(INR)
M=2,F=2 is about 67% of η

(INR)
M=∞,F=∞. We did not report

the RTD and ALO curve for M = 2 and F = 2 with CSI as
they do not differ much from ALO with M = 1 and F = 2.

IX. CONCLUSIONS AND FUTURE WORK

In this work we considered HARQ protocols where the
feedback bits not only convey a retransmission request to the
transmitter but also inform the transmitter coarsely about the
channel state. We developed a new class of protocols that
feedback the quantized index of a suitably scaled version
of the current fading value; the scaling factor is such that
the mutual information already accumulated at the transmitter
from the previous transmissions is taken into account. We
showed that our proposed protocols significantly outperform
classical HARQ protocols for the same amount of feedback
resources, especially at low SNR; this shows that ACK/NACK
feedback is suboptimal in time-varying channels.
As future work, it would be interesting to evaluate the

throughput performance when the cost of acquiring the CSI
and the error in the estimated CSI are taken into account. Also,
it is important to test the proposed protocols with practical
codes, instead of with ideal Gaussian codes.
Extensions to multiple access channels are presented in [18].
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APPENDIX A
PROOF OF THEOREM 1

As a direct application of the renewal-reward theorem [2],
we have that the limit in (3) converges almost surely to
E[P ]/E[T ] and the limit in (1) converges almost surely to
E[R]/E[T ]. The average inter-renewal time E[T ] is given by:

E[T ] =

M∑
m=1

m Pr[T = m] =

M∑
m=1

Pr[T ≥ m].

The average reward E[R] is given by:

E[R] = R(1− Pout) = R(1− Pr[T = M, fail to decode]).
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since in our framework, a packet is lost (R = 0) only if on
the last transmission decoding was not successful. The average
transmit power E[P ] is given by:

E[P ] =

M∑
m=1

Pr[T = m]E[P| T = m]

=

M∑
m=1

Pr[T = m]

m∑
t=1

E[Pt| T = m]

=

M∑
t=1

M∑
m=t

Pr[T = m] E[Pt| T = m]

=

M∑
t=1

Pr[T ≥ t]

∑M
m=t Pr[T = m] E[Pt| T = m]∑M

m=t Pr[T = m]

=

M∑
t=1

Pr[T ≥ t] E[Pt| T ≥ t],

QED.

APPENDIX B
PROOF OF THEOREM 6

Given a partition {Rf} of R+, the transmit power is defined
through the thresholds in (7) as

P =
F∑

f=1

eR − 1

sf
1{γ∈Rf},

and must satisfy the average power constraint
F∑

f=1

eR − 1

sf
Pr[γ ∈ Rf ] ≤ P .

For a fixed rate R, the throughput is maximized if the outage
probability is minimized. The outage probability satisfies

Pr

⎡⎣log

⎛⎝1 + γ

F∑
f=1

eR − 1

sf
1{γ∈Rf}

⎞⎠ < R

⎤⎦
= E

[
1
{log

“
1+γ

P
F
f=1

eR−1
sf

1{γ∈Rf}

”
<R}

]

= E

⎡⎣ F∑
f=1

1{γ∈Rf}1{γ<sf}

⎤⎦
≥ E

[
min

f=1,...,F
1{γ<sf}

]
,

where the last inequality holds with equality for

R(ALO)
f =

{
γ ∈ R

+ : f = arg min
�=1,...,F

{
1{γ<s�}

}}
.

By assuming without loss of generality that the thresholds
{sf} are ordered in increasing order, we have:

arg min
f=1,...,F

1{γ<sf}

∈ {1, . . . , f} if γ ∈ [sf , sf+1), f = 1, . . . , F − 1,

∈ {1, . . . , F} if γ ∈ [sF , +∞) ∪ [0, s1).

In order to use the least power we choose

arg min
f=1,...,F

1{γ<sf}

= f if γ ∈ R
(ALO)
f = [sf , sf+1), f = 1, . . . ., F − 1,

= F if γ ∈ R
(ALO)
F = [sF , +∞) ∪ [0, s1).

With these quantization regions, an outage only occurs when
the feedback value is F and the fading is in [0, s1), hence the
throughput is

η
(ALO)
M=1,F

= max
R,{sf ,Rf}

R Pr

⎡⎣R ≤ log

⎛⎝1 + γ

F∑
f=1

eR − 1

sf
1{γ∈Rf}

⎞⎠⎤⎦
= max
{sf}

log

⎛⎝1 +
P

Pr[γ∈[0,s1)]
sF

+
∑F

f=1
1
sf

Pr[γ ∈ [sf , sf+1)]

⎞⎠ ·
· Pr[γ ≥ s1].

APPENDIX C
PROOF OF PROPOSITION 7

The optimal values of 0 ≤ s2 ≤ . . . ≤ sF ≤ sF+1 = ∞ for
η̂
(ALO)
M=1,F in (22) minimize

F∑
f=1

1

sf
[Fγ(sf+1)− Fγ(sf )]. (43)

By assuming that the fading has a density fγ(x) =
dFγ(x)/dx, by taking the partial derivatives of (43) with
respect to s� for 	 ≥ 2, and solving them equal to zero, we
get that the thresholds satisfy

s� − s�−1

s�−1
=

Fγ(s�+1)− Fγ(s�)

s� fγ(s�)
, 	 ≥ 2.

For sufficiently large F , since the thresholds are going to be
close to each other, we can approximate

Fγ(s�+1)− Fγ(s�)

(s�+1 − s�)
≈ dFγ(x)

dx

∣∣∣∣
x=s�

= fγ(s�),

and hence we conclude that the optimal thresholds satisfy

s2
� ≈ s�−1s�+1 ⇐⇒ s� ≈ s1 ξ�−1,

for some ξ ≥ 1.

APPENDIX D
PROOF OF PROPOSITION 10

For a general m ∈ N, the probability in (40c) (with X� =
γ�/τ�) is equivalent to

p(INR)
m = Pr[Xm − f(X1, . . . , Xm−1) < 0],

for

f(x1, . . . , xm−1) =
1

θ

(
1 + θ∏m−1

s=1 (1 + θxs)
− 1

)
.

Our goal is to bound the region below f(x1, . . . , xm−1) in the
positive quadrant by regions defined as union of hyperplanes.
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Toward this goal, it is useful to keep in mind that the partial
derivatives of f(x1, . . . , xm−1) are given by

∂f(x1, . . . , xm−1)

∂xj
= −1 + θ f(x1, . . . , xm−1)

1 + θxj
.

Being f(x1, . . . , xm−1) a concave function in all its argu-
ments, it can be lower-bounded by any hyperplane tangent
to it. In particular, if we consider the hyperplanes tangent to
f(x1, . . . , xm−1) at those points with at most one non-zero
coordinate at value 1, we obtain:

f(x1, . . . , xm−1) ≥ −
∑

s=1,...,m−1, s�=t

(xs − 0)− 1

1 + θ
(xt − 1) ,

for all t = 1, . . . , m, which is equivalent to

xm−f(x1, . . . , xm−1) ≤
m∑

s=1

xs−
1 + xt θ

1 + θ
, ∀t = 1, . . . , m.

This bound implies

p(INR)
m ≥ Pr

[
m⋃

t=1

(1 + θ)

m∑
s=1

γs

τs
< 1 + θ

γt

τt

]

= Pr

[
(1 + θ)

m∑
s=1

γs

τs
< 1 + θ max

t=1,...,m

γt

τt

]
= (41a).

In the same spirit, we bound f(x1, . . . , xm−1) from above
by considering the union of the region below the m hyper-
planes defined as follows: for a fixed t ∈ {1, . . . , m}, the
hyper-plane that passes through the points with coordinates
xk = 1 and xj = 0 for all j �= k and k �= t (this defines
m− 1 points with only a single non-zero coordinate at 1) and
the point x1 = . . . = xm = (1+θ)1/m−1

θ is defined as
m∑

s=1

xs +

(
θ

(1 + θ)1/m − 1
−m

)
xt = 1.

The region below the union of the above hyperplanes for all
t = 1, . . . , m contains the region that defines p

(INR)
m and hence

p(INR)
m ≤ Pr

[
m⋃

t=1

m∑
s=1

γs

τs
+

(
θ

(1 + θ)1/m − 1
−m

)
γt

τt
< 1

]

= Pr

[
m∑

s=1

γs

τs
+

(
θ

(1 + θ)1/m − 1
−m

)
max

t=1,...,m

γt

τt
< 1

]
= (41b).

APPENDIX E
PROOF OF PROPOSITION 11

It is a well known result in order statistics [19, Ch.5]
that the order statistics of a sample of independent negative
exponential random variables can be expressed as the unorder
statistics of a sample of independent negative exponential
random variables with appropriate mean value. We report the
derivation of result here for sake of completeness.
Let {γk}K

k=1 be an independent sample of size K of
negative exponential distributed random variables with mean
E[γk] = μk. Let π be a permutation of the integers

{1, 2, . . . , K} and let PK be the set of the K! such permuta-
tions. With an abuse of notation, we also indicate with π the
event

Pr[π] � Pr[γπ(1) ≥ γπ(2) ≥ . . . ≥ γπ(K)], ∀π ∈ PK .

It is well known that

fγ1,...,γK|π(x1, . . . , xK)

=
1

Pr[π]

K∏
i=1

1

μi
exp

(
− xi

μi

)
1{xπ(1)≥...≥xπ(K)≥0}.

Fix a permutation π, define γπ(K+1) = 0, and consider
the following change of variables with c

(π)
i > 0 for all

i = 1, . . . , K:

Zi � c
(π)
i (γπ(i) − γπ(i+1))⇐⇒ γπ(i) =

K∑
j=i

Zj

c
(π)
j

.

The random variables {Zk}K
k=1 are non-negative by definition.

Moreover, the transformation giving {Zk}K
k=1 from {γk}K

k=1

has Jacobian
∏K

i=1 c
(π)
i . Hence, the joint density of {Zk}K

k=1

is

fZ1,...,ZK |π(z1, . . . , zn)

=
1

Pr[π]

1∏K
i=1 μi c

(π)
i

exp

⎛⎝− K∑
k=1

1

μπ(k)

K∑
j=k

zj

c
(π)
j

⎞⎠ K∏
i=1

1{zi≥0}

=

K∏
j=1

1

θ
(π)
j

exp
(
− zj

θ
(π)
j

)
1{zj≥0},

where

θ
(π)
j �

c
(π)
j∑j

k=1
1

μπ(k)

,

obtained by recalling that

1

Pr[π]
=

K∏
j=1

(
j∑

k=1

μπ(j)

μπ(k)

)
.

In words, the change of variables has produced the unorder
statistics of an independent sample of sizeK of negative expo-
nential distributed random variables with mean E[Zk] = θ

(π)
k .

Remark: in the case μi = μ for all i = 1, . . . , K one obtains
the familiar result (think at the inter-arrival times of a Poisson
process):

θ
(π)
j

c
(π)
j

=
μ

j
,

1

Pr[π]
= K!

We now apply this result to the computation of the distri-
bution of

Xa,b � a max
k=1,...,K

γk + b

K∑
k=1

γk
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For general a and b we have:

Pr[Xa,b ≤ x]

= Pr

[
a max

k=1,...,K
γk + b

K∑
k=1

γk ≤ x

]

=
∑

π∈PK

Pr[π] Pr

[
a γπ(1) + b

K∑
k=1

γπ(k) ≤ x |π
]

=
∑

π∈PK

Pr[π] Pr

[
a

K∑
�=1

Z
(π)
�

c
(π)
�

+ b

K∑
k=1

K∑
�=k

Z
(π)
�

c
(π)
�

≤ x |π
]

=
∑

π∈PK

Pr[π] Pr

[
a

K∑
�=1

Z
(π)
�

c
(π)
�

+ b
K∑

�=1

	
Z

(π)
�

c
(π)
�

≤ x |π
]

.

We next chose c
(π)
� =

∑�
k=1

1
μπ(k)

so that the Z
(π)
� are iid neg-

ative exponential with unit mean value for all 	 ∈ {1, . . . , K}
and for all π ∈ PK , hence we obtain

Pr[Xa,b ≤ x] =
∑

π∈PK

Pr[π] Pr

⎡⎣ K∑
�=1

Z�
a + b 	∑�
k=1

1
μπ(k)

≤ x

⎤⎦
At this point, the problem reduces to that of finding the density
of a random variable Y that is a linear combination of iid
negative exponential with unit mean random variables, i.e.,
Y =

∑K
k=1 vkZk for vk ∈ R for all k = 1, . . . , K . The

calculus of residues applied to the characteristic function of
Y , assuming that all the coefficients vi are distinct, gives:

gY (ω) � E[exp(−jω

K∑
k=1

vkZk)]

=
K∏

k=1

E[exp(−jωvkZk)]

=
K∏

k=1

1

1 + jωvk
=

K∑
k=1

αk

1 + jωvk
,

with αk � Residue[gY (ω), vk] =

K∏
� �=k,�=1

1

1− v�/vk
,

such that
K∑

k=1

αk = 1.

By taking the inverse Fourier transform of gY (ω) we obtain
the density function of Y given by

fY (x) =

K∑
k=1

αk

|vk|
e−x/vk 1{x sign(vk)≥0}

and hence

Pr
[ K∑

k=1

vkZk ≤ x
]

=
[
1−

K∑
k=1:vk>0

αke−x/vk

]
1{x≥0}+

+
[ K∑

k=1:vk<0

αke−x/vk

]
1{x≤0}

If some coefficients are equal, say v1 and v2, then it suffices
to late the limit for v1 → v2 of Pr

[∑K
k=1 vkZk ≤ x

]
.

Back to our original problem:

Pr[Xa,b ≤ x] =
∑

π∈PK

Pr[π]
[(

1−
∑

�:v
(π)
� >0

α
(π)
� e−x/v

(π)
�

)
1{x≥0}+

+
( ∑

�:v
(π)
� <0

α
(π)
� e−x/v

(π)
�

)
1{x≤0}

]
,

v
(π)
� �

a + b 	∑�
k=1

1
μπ(k)

,

α
(π)
� �

K∏
j �=�,j=1

1

1− v
(π)
j /v

(π)
�

For example, with b > 0 and a + b > 0, so that a + b	 > 0
for all 	 ∈ N (this is the case of interest in our problem), for
K = 1: Xa,b = (a + b)γ1, for x ≥ 0

1− FXa,b
(x) = e

−x 1
(a+b)μ1

For K = 2: Xa,b = (a + b)max{γ1, γ2}+ b min{γ1, γ2}, for
x ≥ 0

1− FXa,b
(x)

= e−xτ1
c τ2

c τ1 + c τ2 − τ1
+ e−xτ2

c τ1

c τ1 + c τ2 − τ2
+

+ e−c x(τ1+τ2)
τ1τ2(1 − 2c)

(c τ1 + c τ2 − τ1)(c τ1 + c τ2 − τ2)
,

τk =
1

(a + b)μk
, c =

a + b

a + 2b
. (44)
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