
1

Optimization of pilot overhead in communications
with ARQ-feedback

Besma Smida, Maliha Hossain and Yi Zhao

Abstract—In this work, we optimize the pilot overhead in
communication with re-transmission and investigate the depen-
dence of this overhead on various system parameters, e.g. fading
rate, target rate and signal-to-noise ratio. We formalize the
optimization and frame it in terms of throughput maximization;
this leads to an accurate optimal pilot overhead closed-form
expression. Results show that the optimal overhead expressions
are roots of quartic polynomials. At a high-power regime they
decrease with the target rate and increase with the normalized
Doppler frequency, and at low-power regime they are only
function of the target rate.

I. INTRODUCTION

Wireless networks must significantly improve their infor-
mation rate in order to meet the increasing demand for high-
speed data services. One key limit to the information rate is
low packet efficiency: a packet typically carries less than 60%
to 70% of actual data. The goal of this research is to increase
packet efficiency by optimizing the pilot overhead. In this
paper, we consider the common scenario of communication
with ARQ feedback. Our pilot-overhead optimization take into
account the tradeoff between training and re-transmission.
Allocating more resources to training reduces the number of
re-transmissions needed for successful decoding, so the system
performance may therefore be dominated by the channel
estimation accuracy. In contrast, by allocating fewer resources
to training, the number of re-transmissions may increase
and the performance may be dominated by the number of
re-transmissions. To investigate this tradeoff, we used the
throughput formulation – not the ergodic capacity formula-
tion – derived in our previous paper [1]. This throughput
formulation led to a numerical computation of the optimal
pilot overhead. This paper expands upon the original numerical
analysis [1] by analytically optimizing the pilot overhead in
the case of ARQ-feedback. This leads to a quantification of the
dependence of this overhead on various system parameters.

A. Related works – Pilot overhead optimization

The optimization of pilot overhead, predicated on the max-
imization of the ergodic channel capacity, has been largely
studied in the literature [2]–[11]. In more common systems,
where the pilot symbol power is fixed, the optimization is
over the number of pilot symbols. In that case, some explicit
results have been established in both low and high power
regimes. Numerical solutions are derived for general power
levels. By maximizing a tight lower-bound of the average
channel capacity, a closed-form solution for the average rate of
pilot symbol in block-fading [5] and in continuous fading with
rectangular Doppler spectrum is derived in [7]. More recently,

the optimization of the pilot overhead in a unified continuous
and block-fading model is investigated in [12], [13], and
the dependence of the optimum overhead on various system
parameters of interest (e.g., fading rate, signal-to-noise ratio)
is quantified. We studied training in two-way communication
with re-transmission and derived an expression for throughput
that takes into account training bits [1]. This paper is an
extension of this work – it provides an analytical optimization
of the pilot overhead in the case of ARQ-feedback.
Remark. All current wireless systems include Automatic Re-
peat reQuest (ARQ) protocol1 to ensure reliable delivery of
data. Therefore, we decided to employ a framework that takes
into account re-transmission when optimizing the pilot over-
head. This throughput formulation will lead to more practical
results. Indeed, the prior works – posed on maximization of the
ergodic channel capacity – showed that one would select the
number of pilot symbols to be as small as possible assuming
that the SNR is sufficiently high [5], [8], [9]. This small
number can be justified thus: the resources allocated to training
directly reduce the amount of data in the forward channel,
reducing the rates in the pre-log factor outside the log(1 +
SNR) (SNR is Signal to Noise Ratio) of capacity expressions
for Gaussian channels. However, SNR-gain due to training
improves rates inside the log. With our throughput formulation
[1], the SNR-gain due to training not only improves rates
inside the log but also reduces the number of re-transmissions,
which leads to more realistic tradeoffs.

Channel C1

Data for BSTraining for C1

A
R

Q

Fig. 1: The packet structure.

B. Contributions

The key departure from prior work on pilot overhead
optimization is that we (a) consider a continuous time fading
model that is more general than block Rayleigh, (b) find
an accurate analytical expression for the optimal number of
pilot symbols for communication with ARQ feedback, and
(c) investigate the dependence of this overhead on various

1ARQ scheme may be improved by various packet combining schemes
that may be loosely arranged into two categories: diversity-combining and
incremental redundancy.
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system parameters, e.g. fading rate, target rate and signal-to-
noise ratio.

II. PRELIMINARY

We consider a point-to-point communication with ARQ
feedback as illustrated by Fig. 1, in which one end-user wishes
to send messages to a central node, or base-station2. We
assume that the receiver sends a ACK or NAK to indicate
the success/failure of transmission3. The transmitter moves on
to the next message in the transmission queue if it receives
an ACK and re-transmits if it receives a NAK. In this work,
we consider basic-ARQ; the transmitter sends the same packet
and the receiver discards the erroneous packets.

A. Channel Model

In this system, we consider a Rayleigh fading channel and
additive white Gaussian noise (AWGN). Let each packet con-
tain T symbols. The transmission s is divided into two phases:
training (Tt(s) symbols) and data transmission (T − Tt(s)
symbols). Under this model, the input-output relationship of
ith received symbol in the s-th packet is given by:

ys(i) = hs(i)xs(i) + ws(i), i = 0, 1, . . . , T − 1 (1)

where xs(i) is the ith symbol in the sth transmitted packet4 of
constant power P , ys(i) is the corresponding received symbol,
ws(i) is AWGN with zero mean and variance N0 and the
channel gain hs(i) is a discrete-time complex Gaussian sta-
tionary random process, with a continuous spectral distribution
function whose derivative is the Doppler spectrum [13], [14].

B. Channel Estimation

The Tt(s) training symbols are used to estimate hs(i)
for all i in the data transmission phase5. We evaluate the
minimum channel estimation error of the channel vector hs :=
[hs(0), . . . , hs(T )]T , as a function of Tt(s), which is needed to
subsequently derive the throughput. Without loss of generality,
we normalize the Rayleigh fading channel (|hs|2= 1). Let
h̃s = hs − ĥs denote the mismatch between the true channel
hs and its estimate ĥs. Assuming Minimum Mean Square
Error (MMSE) estimation, we get the estimation error of the
channel vector hs at the receiver side as:

σ2
h̃
(s) =

1

1 + Tt(s)P
2fDTN0

for a rectangular Jake’s power spectrum [7], [13], where
fD ≤ 0.5 is the Doppler frequency normalized by the symbol
rate. Based on the orthogonality principle of the MMSE
estimate, the channel estimation and the estimation error are
uncorrelated. The random variables |h̃s|2 and |ĥs|2, derived
from uncorrelated complex Gaussian, are independent and

2This study is valid for frequency-division duplexing (FDD) and time-
division duplexing (TDD).

3Note that to increase the feedback reliability, the feedback ACK/NAK data
may be coded over a larger block length.

4We assume that the pilot and data symbols have the same power P .
5To ensure that the decimated channel observed through the pilot transmis-

sions has an un-aliased spectrum, it is necessary that Tt(s)
T

> 2fD .

have an exponential distribution with mean σ2
h̃
(s), 1− σ2

h̃
(s),

respectively 6 [5], [8], [13].

III. THROUGHPUT MAXIMIZATION

In this section, we focus on our main goal: the optimization
of pilot overhead in the case of ARQ feedback. Our analysis
is valid under the following idealized assumptions: identical
packet sizes, capacity achieving codes, negligible signaling
overhead, perfect feedback and fixed rate target R in bits/Hz/s.
To obtain the throughput we first need an expression for aver-
age rate per transmission. This depends on the the probability
of outage, or that the target rate we are transmitting at, R, is
above what the channel may support, modeled as its mutual
information. We define the event As := {Is > R}, where Is is
the mutual information (MI) after the s-th transmission/packet.
Under Gaussian inputs and noise, the MIs are functions of the
Signal to Interference plus Noise Ratio (SINR) β(s) as

Is = (1− α(s)) log(1 + β(s)), (2)

where β(s) = |ĥs|2P
No+|h̃s|2P

and α(s) = Tt(s)
T . The mismatch

h̃s = hs − ĥs is unknown at the destination, and hence
considered unresolvable.

A. Derivation of Outage Probability

We state the probability p(m) that the random sequence
I1, I2, . . . , Im of mutual information at the user decoder
did not cross the level R at the m-th step, p(m) =
Pr{A1, A2, . . . , Am}. The p(m) for ARQ is derived as follows
[1]:

p(m) =

m∏
s=1

Pr ((1− α(s)) log(1 + β(s)) < R)

=

m∏
s=1

Pr
(
|ĥs|2<

N0γ(s)

P
+ γs|h̃s|2

)
,

:=

m∏
s=1

Po(s),

where Po(s) =
(

1− 1−σ2
h̃

(s)

1−σ2
h̃

(s)+γ(s)σ2
h̃

(s)
exp

(
− N0γ(s)
P−Pσ2

h̃
(s)

))
and γ(s) = exp

(
R

1−α(s)

)
− 1.

B. Maximization of Throughput

We define the throughput as ν = R
T where, assuming

maximum M transmissions7, the expected rate R in bits/Hz/s
isR = R(1−p(M)), and the expected number of transmission
per packet T is T = 1 +

∑M−1
m=1 p(m). Our definition of

throughput assumes all nodes always have packets to send
[15], [16]. The goal of this research is to maximize the
throughput with respect to [α(1), ..., α(M)]. Assuming ARQ
re-transmission protocol and rectangular Doppler-spectrum

6Note that the distribution of ĥs and h̃s vary with the resources allocated
to training Tt(s).

7We stop transmitting the same packet after M attempts.
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fading, the maximization of the throughput can be tackled as
follows:

[α∗(1), . . . , α∗(M)] = arg max
R
T
,

= arg max
R(1− p(M))

1 +
∑M−1
m=1 p(m)

,

= arg max
R(1−

∏M
s=1 Po(s))

1 +
∑M−1
m=1

∏m
s=1 Po(s)

,

⇒ ∀s = 1, . . . ,M α∗(s) = arg minPo(s). (3)

Equation (3) follows from the derivation of the throughput
with respect to [α(1), ..., α(M)] as:

∀s = 1, . . . ,M
∂RT
∂α(s)

=
∂Po(s)

∂α(s)

(−RR− T
∑M−1
m=1

∏m
l=1,l 6=s Po(l))

T 2
.

In this case, the maximization of the throughput is reduced
to the minimization of the outage probability Po(s), ∀s =
1, . . . ,M . This minimization is performed independently at
each transmission s. Note that Equation (3) is not valid if we
use Hybrid-ARQ re-transmission protocols (e.g. chase com-
bining or incremental redundancy). By differentiating Po(s),
the optimization problem is distilled to solving the following
equation for x ∈ [0, 1]

e
R

1−x

(
−8f2

D + 16f2
Dx+ 2fD

P

No
x+ 2fD(

P

No
)2x

+4f2
DRx− 8f2

Dx2 − 4fD
P

No
x2 − 4fD(

P

No
)2x2

−2fD(
P

No
)2Rx2 + (2fD

P

No
+ 2fD(

P

No
)2 − (

P

No
)2R)x3

)
+e

2R
1−x

(
4f2

D − 8f2
Dx− 4f2

DRx+ 4f2
Dx2 − 2fD

P

No
Rx2

)
+4f2

D − 8f2
Dx− 2fD

P

No
x− 2fD(

P

No
)2x+ 4f2

Dx2

+4fD
P

No
x2 + 4fD(

P

No
)2x2

−2fD
P

No
x3 − 2fD(

P

No
)2x3 = 0.

C. Pilot overhead optimization

Solving the previous equation does not yield an explicit
solution and therefore must be computed numerically. Next,
we overcome this difficulty by appropriately expanding the
exponential function. In particular, we will expand it with
respect to x ≈ 0. This leads to a quartic polynomial that
can be solved analytically. In addition to being analytically
convenient, this approach illustrates the dependency of x on
the parameters of interest such as R, fD, and P

No
. After

replacing exp( R
1−x ) and exp( 2R

1−x ) by their two-term power
series expansions, we get the following quartic polynomial:

(4)

−eR
P

No
R

(
−2fD(1 +

P

No
) +

P

No
R

)
x4

+

(
8eR(eR − 1)f2

DR− eR(
P

No
)2R

− 2fD
P

No

(
1 +

P

No
+ 2e2RR2

+ eR(2R− 1 +
P

No
(R2 + 2R− 1))

))
x3

−2fD

(
(eR−1)

P

No
(2+2

P

No
+eRR)+fD(−2

−2eR(R2+4R−2)+e2R(4R2+8R−2))

)
x2

+ 2(eR − 1)fD

(
P

No
(1 +

P

No
)

+ 2fD(2 + eR(R− 2))

)
x

+ 4f2
D − 8eRf2

D + 4e2Rf2
D = 0.

This quartic polynomial has real coefficients and can be
factored. The factoring procedure is outlined in detail in [17].
It is briefly summarized in the appendix8. We discard the roots
that are not in the interval [0, 1]. The roots of the Equation (4)
are shown alongside the exact numerical value in Fig. 2, for
R = 1, 2 and 3 and fD = 0.5, 0.2 and 0.05. By examining the
polynomial coefficients in Equation (4) we notice that when
fD ≈ 0 all but the high-order polynomial coefficient ≈ 0,
hence the optimal pilot overhead is very small (x ≈ 0).

High-power regime: For high-power regime, assuming that
( PNo

)2 � P
No
� R yields to the simplification of Equation (4)

as follow:

(5)

−eRR(R− 2fD)

2fD(eR − 1)
x3

−
(
2fD(1 + eR(R2 + 2R− 1)) + eRR

)
2fD(eR − 1)

x2

− 2x+ 1 = 0.

Note that the roots of this polynomial are not function of
the power, which is validated by the exact numerical values
in Fig. 2. The optimization of the pilot overheard is then
reduced to solving a simple cubic polynomial. By examining
the polynomial coefficients9, we prove that the optimal pilot
overhead decrease with R and increase with fD.

Low-power regime: For low-power regime, assuming that
( PNo

)2 � P
No
� R yields to the simplification of Equation (4)

as follow:

(6)

2eR(eR − 1)Rx3

−
(
e2R(2R2 +4R−1)−eR(R2 +4R−2)−2

)
x2

+

(eR−1)
(
2+eR(R−2)

)
x+1−2eR+e2R = 0.

8For clarity purpose, we decided here to display the polynomial instead of
the roots.

9The two high-order polynomial coefficients increase with R and decrease
with fD .
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Fig. 2: Optimal pilot overhead.

Note that the roots of this polynomial are only function of R,
as validated by Fig. 2.
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APPENDIX

Assuming a quartic polynomial ax4 + bx3 + cx2 + dx+ e.
The roots are given by

x1 = − b
4a − S + 1

2

√
−4S2 − 2p+ q

S ,
x2 = − b

4a − S −
1
2

√
−4S2 − 2p+ q

S ,
x3 = − b

4a + S + 1
2

√
−4S2 − 2p+ q

S ,
x4 = − b

4a + S − 1
2

√
−4S2 − 2p+ q

S .

Where, the discriminant is ∆ = 256a3e3 − 192a2bde2 −
128a2c2e2 − 27a2d4 + 144ab2ce2 − 6ab2d2e − 80abc2de +
18abcd3 + 16ac4e − 4ac3d2 − 27b4e2 + 18b3cde − 4b3d3 −
4b2c3e + b2c2d2, and the following intermediate variables
are ∆0 = c2 − 3bd + 12ae, ∆1 =

√
4∆3

0 − 27∆, p =
8ac−3b2

8a2 , q = b3−4abc+8a2d
8a3 Q = 3

√
∆1+

√
−27∆

2 , and S =

1
2

√
2
3p+ 1

3a

(
Q+ ∆0

Q

)
.


