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Abstract   

 Here we propose a novel method of determining the friction coefficient of intact free 

liquid jets moving in quiescent air. The middle-size jets of this kind are relevant for such 

applications as decorative fountains, fiber forming, fire suppression, agriculture and forensics. 

The present method is based on measurements of trajectories created using a straightforward 

experimental apparatus emulating such jets at a variety of initial inclination angles. Then, the 

trajectories are described theoretically, accounting for the longitudinal traction imposed on such 

jets by the surrounding air. The comparison of the experimental data with the theoretical 

predictions show that the results can be perfectly superimposed with the friction coefficient 

1/2 0.05
fd dC 5Re   , in the d621 Re 1289   range, with Red being the Reynolds number based on 

the local cross-sectional diameter of the jet. The results also show that the farthest distance such 

jets can reach corresponds to the initial inclination angle 35    which is in agreement with 

already published data. 

 

1. Introduction 

Free liquid jets moving in air are a common phenomenon since decorative fountains, fire 

extinguishers and different sprinklers are frequently seen in our everyday life. One of the first 

studies attempting to better understand free liquid jets was sensibly related to large water jets 

used to suppress fires (Freeman 1889). This extensive work quantified friction loss in hoses, 

roughness of various nozzles, effects due to backpressure, and even attempted to formulate a 

simple theory to match the trajectories of large firefighting jets. Practical nozzle designs were 



3 

 

further discussed by Rouse et al. (1951), Arato et al. (1970), and Theobald (1981), which, in 

particular, made additional theoretical predictions of jet trajectories using a model based on 

projectile motion neglecting air resistance. Early work in the field was dominated by 

experimental tests intended to design the best fire suppression or agricultural systems (Bilanski 

and Kidder 1958). It resulted in many practically important observations such as the optimal 

(determined by the maximum range reached by liquid) initial inclination angle of the jet in the 

30-40° range reported by Hatton and Osborne (1979) or 35° reported by Theobald (1981).  

Theoretically, the trajectories of liquid jets have often been predicted using the equations 

of projectile motion where air resistance is either neglected (Rouse et al. 1951, Wahl et al. 2008) 

or empirically accounted for (Hatton and Osborne 1979, Hatton et al. 1985). This results in 

trajectories which form parabolic arcs (Tuck 1976, Hatton and Osborne 1979, Hatton et al. 1985, 

Clanet 1998), even though the effect of the aerodynamic drag has been used to explain the 

difference between theory and experiments (Clanet 1998). For large sprinkler jets it was found 

that air drag should be accounted for as Murzabaev and Yarin (1985) showed in their numerical 

model of multiphase turbulent atomizing jets. Recently, Trettel and Ezeokye (2015) developed a 

theoretical model which assumes the jet to be intact and unaffected by air drag until a breakup 

point, at which the jet instantaneously becomes a droplet train system whose motion is affected 

by air drag. Moreover, for the multiphase atomizing jets relevant in agricultural and forensic 

applications it was shown that the aerodynamic drag experienced by individual drops is 

determined by their corrective interaction similarly to the aerodynamic interaction of birds flying 

in V formation (Lissaman and Shollenberger 1970, Murzabaev and Yarin 1985, Comiskey et al. 

2017b).  
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Liquid in free liquid jets can either be Newtonian, such as water in decorative fountains 

and sprinklers, or non-Newtonian as in fiber forming processes (Ziabicki 1976, Ziabicki and 

Kawai 1985) and in intact jets of blood which can form when a sharp object lacerates a main 

blood vessel (Wonder 2001, Hanson 2004, James et al. 2005). The latter situation is of particular 

interest to the present group, which dealt before with multiphase blood spatter jets resulting from 

a gunshot (Comiskey et al. 2016, 2017a, 2017b, 2018). The ejection of intact blood jets is called 

arterial gushing and originates from a high pressure location within the body such as the neck 

(Wonder 2001, James et al. 2005). Such phenomena can occur when knives or other cutting 

instruments are used as a murder weapon, which, is on the rise. In the United States, knives or 

other cutting instruments accounted for 12.9% of murders in 2005 and 13.1% in 2014, even 

though violent crime was down 16.2% during that period (Federal Bureau of Investigation 2005, 

2014). 

The transition from dripping to an intact liquid jet can happen at a large enough outflow 

velocity (Yarin 1993, Clanet and Lasheras 1999). As the outflow velocity increases, such jets 

break up due to the surface-tension-driven capillary instability, then, at a higher velocity, by the 

bending instability and the atomization process, with the latter two mechanisms being driven by 

the dynamic interaction with the surrounding air (Rayleigh 1878, Rutland and Jameson 1971, 

Basaran 1992, Yarin 1993, Lin and Reitz 1998, Clanet and Lasheras 1999, Ashgriz and Yarin 

2011, Yarin 2011, Yarin et al. 2014, 2017). Free jets of non-Newtonian polymeric liquids in 

many practically important applications are unaffected by these instabilities and stay intact even 

though their velocities of motion relative to air are very high, for example in fiber forming 

processes such as melt spinning, solution and melt blowing, etc. (Ziabicki 1976, Ziabicki and 

Kawai 1985, Yarin 1993, Yarin et al. 2014 and references therein). Accordingly, in this latter 
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group of works, the significant effect of the coefficient of friction drag acting on elongated 

cylindrical bodies was in focus. It was established that it cannot be described by the standard 

Blasius or Schultz-Grunow and other theoretical and empirical correlations based on the 

boundary layer theory and dependent on the Reynolds number based on the longitudinal length 

scale (Schlichting 1979). In the case of elongated cylindrical bodies, the boundary layer 

thickness becomes larger than the cross-sectional diameter, and as a result, the average friction 

coefficient is determined by the Reynolds number based on the diameter, Red, rather than on the 

longitudinal scale. Accordingly, several semi-empirical and empirical correlations for the friction 

coefficient of intact straight solid cylinders (wires) or liquid jets moving in air were established 

in the d0.04 Re 400   range. For example, Glicksman (1968) proposed the expression for the 

friction coefficient in the form of 0.7
fd d0.4RC e  , while Yarin (1992, 1993) employed 

0.81
fd d0.65RC e  , where the dimensionless friction coefficient is defined as the friction force  

(traction) T, rendered dimensionless by the product of the jet surface area S and the dynamic 

pressure of the surrounding air 2
aV / 2 . Here ρa is the air density and Vτ is the tangential 

velocity of a liquid jet; also, the Reynolds number is defined as Red=2aVτ /νa, with d=2a being 

the cross-sectional jet diameter (with the radius denoted as a), and νa being the kinematic 

viscosity of air. Several other works in which a wire was either supported in a wind tunnel, or 

was moving through air at rest resulted in the expressions of the type fd dReC   , with   in the 

0.23-1.78 range and   in the 0.62-0.81 range valid in different intervals of Red in the 5-400 

range (Ziabicki 1976, Ziabicki and Kawai 1985, and references therein). The applicability of 

these expressions for the average friction coefficient to curved intact free liquid jets arising in 
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decorative fountains, sprinklers and forensic applications has never been examined. An ad hoc 

hypothesis of their applicability is questionable. 

The internal geometry of the nozzle is one of the most fundamental components in the 

formation of an intact free liquid jet. In such applications as decorative fountains and small 

sprinklers, the nozzles are typically designed to provide a gradual transition toward the exit and 

are operated with a backpressure which keeps the working fluid attached to the nozzle walls. If 

the working fluid becomes detached from the nozzle walls, however, a constricted jet can be 

created. Such a jet can travel distances further than normally obtained because the destabilizing 

effects from the nozzle walls are eliminated (Tafreshi and Pourdeyhimi 2003). Such jet 

detachments appear on sharp orifices and stiff nozzle generatrices, e.g. of the so-called Borda 

mouthpiece (de Borda 1766), and result from an essentially inviscid flow kinematics (leading to 

vena contracta) supplemented by the momentum balance in the form of the Bernoulli equation 

(Lamb 1959, Kochin et al. 1964). The nozzles used in the present experiments did not create 

constricted jets, because their internal geometry closely followed that of a pressure washer 

except designed to work at a low backpressure. 

The present work aims at establishing the average friction coefficient of intact liquid jets 

moving in air under the conditions characteristic of decorative fountains, smaller sprinklers and 

forensic applications, which are drastically different from those in melt spinning and in the 

above-mentioned experiments with wires.  

 

2. Experiment 
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Intact jets were experimentally issued using a three-tiered nozzle system (Fig. 1). The 

working fluid was kept in a storage vessel and supplied to the nozzle system using a submerged 

circulation pump (Marineland Maxi-Jet 600). The first tier of the nozzle system which the 

working fluid encountered consisted of a porous medium which acted to smooth the pulsing, 

slightly-transient flow from the circulation pump. Then, the second stage was an elongated 

honeycomb mesh intended to prevent any possible swirling or secondary flows. The final stage 

consisted of an enclosed cavity which filled uniformly and smoothly as it supplied the working 

fluid into the nozzle. Two different solid-stream spray nozzles with cross-sectional areas of 0.04 

cm2 and 0.13 cm2 (McMaster-Carr 7611T43 and 7611T46), were used. The free liquid jets were 

collected in a second storage vessel which had another submerged circulation pump (Marineland 

Maxi-Jet 600) to pump the working fluid back to the first storage tank, thus creating a closed-

loop system schematically shown in Fig. 1. 
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Fig. 1. Schematic of the experimental setup. The free liquid jet issued from the nozzle is shown 

in blue, whereas the gray lines indicate tubing. Tier 1 corresponds to the porous medium, tier 2 is 

the elongated honeycomb mesh, and tier 3 is the enclosed cavity.  

 

 There were 2 replicated experiments, one for each nozzle type with 4 different initial 

inclination angles, with a total of 9 experiments listed in Table 1. The two nozzle types were 

tested at the initial inclination angles of o o o o,  20 ,  40 ,  an0 d 60  . The inclination angle values 

were measured with a digital level on site and later corrected to more precise values based upon 

the images taken during each experiment, which resulted in the corrected values listed in Table 

1. The pressure head between the first submerged circulation pump and the nozzle system had to 

be overcome by the pump, which sustained a nearly constant flow rate. Accordingly, simply 

raising the three-tiered nozzle system reduced the flow rate of the working fluid through the 

nozzle. As a result, low-velocity jet experiments could easily be performed by inducing in this 

way a large opposite pressure head as is the case of experiment 9 in Table 1. Note that for all 

other experiments, the pressure head was effectively kept constant, however, slight deviations 

led to a difference in jet velocity even for the same nozzle type. The velocity was determined 

through measuring the volumetric flow rate approximately 30 times for each experiment and 

using the known nozzle outlet area. The values were then averaged, with the results and the 

corresponding standard deviations being listed in Table 1. No discharge coefficients were needed 

in this calculation because the internal geometry of the nozzles was smooth and gradual resulting 

in a discharge coefficient very close to unity, which was corroborated by the jet images of the 

type shown in Fig. 2. The working fluid used in all experiments was water. 
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Table 1. Experimental parameters. Note that the values of   listed here were measured from 

experimental images and Red is the jet Reynolds number based on the jet velocity, diameter at 

the nozzle exit, and the kinematic viscosity of air.  

Experiment 
Number 

Cross-sectional 
Nozzle Area [cm2] 

 [deg]
Jet Velocity 

[cm/s] 
Red 

1 0.04 2.00 438.69 ± 12.78 743 

2 0.04 19.00 412.85 ± 5.96 652 

3 0.04 38.73 404.22 ± 6.08 650 

4 0.04 58.28 390.38 ± 7.63 621 

5 0.13 -4.14 398.29 ± 12.8 1180 

6 0.13 22.87 422.82 ± 19.37 1289 

7 0.13 41.86 386.85 ± 15.05 1097 

8 0.13 58.00 373.37 ± 9.96 1075 

9 0.13 0.00 238.75 ± 8.46 713 

 

 

3. Theoretical 

 The momentless quasi-one-dimensional theory of planar bending liquid jets yields the 

following continuity equation (1), and two projections (tangential and normal to the jet 

trajectory) of the momentum balance equation (Yarin 1993), 

f fW
0

t x

 
 

 
,                                                                                                                             (1) 
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fWkV fF q
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 

 
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     
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
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


,                                                     (2) 

n n
n

n
n

fVfV V fV W 1 1
fWkV kP fF q

t x x




  
        

 


   
.                                                  (3) 

Here   is the arc length of the jet axis,  2
xH1     , H and x are the vertical and 

horizontal coordinates of the jet axis, f is the cross-sectional area of the jet, with the cross-section 

being approximately circular, and thus, 2f a  , with a being the cross-sectional radius. Also, 

 nV HV xW     , with subscripts τ and n corresponding to the tangential and normal 

velocity components, respectively, k is the curvature of the jet axis, i.e. 

   
3/222 2k H x H x1


       ,   is the liquid density, Fτ and Fn denote the tangential and 

normal components of the acceleration associated with the body force (gravity, in the present 

case). Similarly, qτ and qn denote the tangential and normal components of the force imposed by 

the surrounding air on a unit length of the jet. 

In the momentum balance, Eqs. (2) and (3), P is the longitudinal force acting in the jet 

cross-section given as 

 1
n

1
nV xP 3 kV sign k PVV x G f 

  
            ,                                                    (4) 

where µ is the liquid viscosity,   is the surface tension, G is the double mean curvature of the 

surface of the jet, and  
1/2221P 2 a a x





        . It should be emphasized that here the 

liquid is assumed to be Newtonian, as in the present experiments with water. For any other non-
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Newtonian fluid [e.g. blood, which is pseudoplastic and viscoelastic, (Kolbasov et al. 2016)], Eq. 

(4) should be modified, as described in Yarin (1993).  

 For a steady state jet n 0H t V     . Also, if the jet is thick enough, as in the present 

experiments, the effect of surface tension can be neglected. Then, Eqs. (1)-(4) take the following 

form 

Q fV ,                                                                                                                                         (5) 

dV dP
Q fg q

dx dx


      ,                                                                                                          (6) 

2
nkfV kP f g    ,                                                                                                                        (7) 

d
P

V
3

1
f

dx



  ,                                                                                                                              (8) 

where Q is the volumetric flow rate in the jet. 

 Projecting the acceleration of the body force onto the normal and tangent to the jet axis 

(the trajectory arc), one obtains ng g   , and   g g 1/ dH dx    , respectively, with g 

being gravity acceleration. This transforms Eqs. (6) and (7) to the following form 

dV dP dH
Q fg q

dx dx dx


     ,                                                                                                        (9) 

 2 fg
fV P k


   


.                                                                                                                  (10) 

 In the steady-state case, the only non-zero tangential aerodynamic force, q , acting on a 

unit jet length can be expressed as shear 2 aq    , where shear  is the shear stress acting at the jet 
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surface. It is related to the friction coefficient Cfd as  shear
2

a fd1 2 V C   . Also, noting that 

 a VQ /   , Eqs. (9) and (10) are transformed to 

  1/2 3/2 1/2
a fd

d gQ dH
QV P C

dx V dx
V Q 




       ,                                                                       (11) 

 
 

2
2

2

dH dxg 1d H Q

dx V QV P 

    
 

.                                                                                                   (12) 

Moreover, for water used in the present experiments, viscous effects can be essentially 

neglected, i.e. according to Eq. (8), P=0, which reduces the order of the differential equation 

relative to Vτ to the first one.  Then, the boundary conditions for the system of Eqs. (11) and (12) 

are imposed only at the nozzle exit and read 

0 0

dH
,    H Hx 0 :      V , tan

dx
V     .                                                                                (13) 

The governing equations, Eqs. (11) and (12) subjected to the boundary conditions (13) 

are solved numerically using Kutta-Merson with an automatically adjustable stepping in x. 

 

4. Results and Discussion 

 The experimental apparatus described in Sect. 2 performs best with water as a working 

fluid. An image at the onset of the water jet used to determine the initial inclination angle and jet 

diameter is shown in Fig. 2(a), and an image of the trajectory arc of the water jet used to 

determine the experimental jet location is shown in Fig. 2(b). 
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Fig. 2. Images of the water jets used in experiment 5 (a) and experiment 8 (b).  

 

 The experimental results for the trajectories of water jets issued from the nozzle with the 

cross-sectional exit area of 2
0 0.0f 4 cm  at the inclination angles of   19.00°, 38.73°, and 

58.28° are shown in Fig. 3. The experimental results for the nozzle with the larger cross-sectional 

area, 2
0f 0.13 cm , at the initial inclination angles of   22.87°, 41.86°, and 58.00°, are shown 

in Fig. 4. In the numerical simulations of the problem, Eqs. (11)-(13), the input velocities used 

were within the standard deviation of the experimentally measured values. The dependence for 

the friction coefficient was chosen as fd dReC   . The best fit of the predicted trajectories with 

the experimental data for all the experiments shown in Figs. 3, 4, and 5 was achieved with 

5.0   and 1/ 2  0.05   , which means that the dependence 1/2 0.05
dfdC 5Re   was established 

and it was uniformly valid for all experiments. Note that in Figs. 3 and 4 the experimental data 

are given for only the intact parts of the jets. 
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Fig. 3. Three superimposed trajectories for the intact free water jets. The legend refers to 

experiments 2 through 4 from Table 1. The experimental data are shown by symbols and solid 

lines correspond to the numerical predictions with 1/2 0.05
dfdC 5Re  . 
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Fig. 4. Three superimposed trajectories for the intact free water jets. The legend refers to 

experiments 6 through 8 from Table 1. The experimental data are shown by symbols and solid 

lines correspond to the numerical predictions with 1/2 0.05
dfdC 5Re  . 

 

 The results for 2
0 0.0f 4 cm  and 20.13 cm  with the corresponding initial angles of 

inclination of   2.00° and -4.14°, respectively as well as for the low-velocity jet with 
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2
0f 0.13 cm  and   0.00° are shown in Fig. 5. Here again, one finds the agreement of the 

predictions with the experimental data to be excellent when 1/2 0.05
dfdC 5Re   is used. 

 

Fig. 5. Three superimposed trajectories for the intact free water jets. The legend refers to 

experiments 1, 5, and 9 from Table 1. The experimental data are shown by symbols and solid 

lines correspond to the numerical predictions with 1/2 0.05
dfdC 5Re  . 
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 The accurate prediction of all jet trajectories with the uniformly valid friction coefficient 

1/2 0.05
dfdC 5Re   allows one to use the numerical simulations to find the optimal inclination 

angle for reaching the farthest distance. Figure 6 shows the corresponding results, which were 

obtained by varying only the initial inclination angle with the other parameters being fixed for 

two different jet Reynolds numbers corresponding to the experimentally studied range. Figure 6 

reveals the optimal value of the inclination angle of 35   . This prediction is within the 

30 40     range of Hatton and Osborne (1979) and is in agreement with the experimental data 

of Theobald (1981) ( 35   ). Note also that the optimum angle is essentially the same as for the 

large scale two-phase sprinkler jets as shown by Murzbaev and Yarin (1985) where they found 

36   . 

 



18 

 

 

Fig. 6. Jet distance versus the initial inclination angle. The horizontal axis χ is the jet distance 

rendered dimensionless by the maximum value corresponding to 35   . The friction 

coefficient was 1/2 0.05
dfdC 5Re  .  

 

5. Conclusion 

 Experiments conducted in this work with water jets combined with the predictions of the 

quasi-one-dimensional theory developed here revealed that the friction factor Cfd for the intact 
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curved free liquid jets moving in air is given by the following dependence on the Reynolds 

number, Red, based on the jet velocity, diameter and air viscosity: 1/2 0.05
dfdC 5Re   (in the 

d621 Re 1289   range).  This dependence for the friction coefficient reveals the optimal 

inclination angle corresponding to the farthest reaching jet, 35   , which is in the agreement 

with previous experimental results. It should be emphasized that the established dependence 

 fd f ddC C Re  is radically different from those established for melt spinning, where tiny 

filaments (of about 100 µm in diameter) move with velocities of the order of 1 km/min. Note that 

the present result 1/2 0.05
dfdC 5Re   corresponds to jets of about 0.32 cm in diameter moving in air 

with velocities of about 4 m/s, and is applicable to jets originating from decorative fountains, 

smaller sprinklers, as well as to blood jets originating from knives or other cutting instruments 

used as a murder weapon, which is of interest in forensic applications.  
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