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ABSTRACT 

In this paper, the consistent rotation-based formulation (CRBF) is used to develop new three-
dimensional beam elements starting with the absolute nodal coordinate formulation (ANCF) 
kinematic description. While the proposed elements employ orientation parameters as nodal 
coordinates, independent rotation interpolation is avoided, leading to unique displacement and 
rotation fields. Furthermore, the proposed spatial ANCF/CRBF-based beam elements adhere to 
the non-commutative nature of the rotation parameters, allow for arbitrarily large three-
dimensional rotation, and eliminate the need for using co-rotational or incremental solution 
procedures. Because the proposed elements have a general geometric description consistent with 
computational geometry methods, accurate definitions of the shear and bending deformations can 
be developed and evaluated, and curved structures and complex geometries can be systematically 
modeled. Three new spatial ANCF/CRBF beam elements, which use absolute positions and 
rotation parameters as nodal coordinates, are proposed. The time derivatives of the ANCF 
transverse position vector gradients at the nodes are expressed in terms of the time derivatives of 
rotation parameters using a nonlinear velocity transformation matrix. The velocity transformation 
leads to lower-dimensional elements that ensure the continuity of stresses and rotations at the 
element nodal points. The numerical results obtained from the proposed ANCF/CRBF elements 
are compared with the more general ANCF beam elements and with elements implemented in a 
commercial FE software. 

Keywords: Consistent rotation-based formulation; absolute nodal coordinate formulation; flexible 
multibody system dynamics; large rotation vector formulation; shear deformation.     
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1. INTRODUCTION 

Finite beam elements are widely used in the analysis of structural and mechanical system 

applications (Bathe, 1996; Belytschko et al., 2000; Bonet and Wood, 1997; Cook et al., 1989; 

Crisfield, 1991; Takahashi and Shimizu, 1999; Zienkkiewicz, 1977; Zienkkiewicz and Taylor, 

2000).  In mechanical system applications, in particular, accurate representation of the rotation and 

spinning motion is necessary for the development of robust solution algorithms (Roberson and 

Schwertassek, 1988; Wittenburg, 2007; Shabana, 2013). This investigation is focused on using a 

consistent rotation-based formulation (CRBF) to develop new finite beam elements for the large 

rotation and deformation analysis of flexible multibody system (MBS) applications. Several three-

dimensional ANCF/CRBF beam elements are proposed and their performance is investigated. In 

this section, a brief literature survey of different beam element formulations is provided, with an 

emphasis on different approaches for representing the finite rotations in flexible MBS dynamics. 

The contributions of this study and the organization of the paper are also discussed. 

1.1 Background  

Different formulations have been used in the past to solve nonlinear flexible MBS dynamics 

problems. One of the main differences between these formulations is the way finite rotations are 

treated. The form of the displacement field of a formulation plays an important role in developing 

robust MBS solution algorithms which are based on non-incremental rotation procedures. 

Because conventional structural finite elements such as beams, plates, and shells cannot 

accurately describe finite rotations non-incrementally (Bathe, 1996; Cook et al., 1989), the co-

rotational formulation is often used for the solution of large rotation problems. In the co-rotational 

procedures, the global displacement field is decomposed into rigid body motion and deformation 

(Belytschko and Hsieh, 1973; Rankin and Brogan, 1986). The element forces are first defined in a 
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convected coordinate system and then transformed to a global system. This decomposition of the 

displacement field holds if the element deformation is not large in each time step to allow using 

the current element configuration, in which the equations are defined, as a valid reference 

configuration. Because it is also assumed that there is no large variation in the large reference 

motion in each time step, the time step size must remain small. It has been demonstrated in the 

literature that obtaining a solution for flexible MBS problems characterized by highly nonlinear 

inertia forces, motion constraints, and discontinuities can be difficult when co-rotational 

procedures are used (Campanelli et al., 2000). The non-incremental formulations, on the other 

hand, can accurately capture nonlinearities arising from the finite rotation (Pappalardo, 2015; 

Shabana, 2013).  

 The absolute nodal coordinate formulation (ANCF) was proposed for the analysis of flexible 

MBS applications characterized by large reference displacements and large elastic deformations. 

ANCF elements, which employ global position and gradient vectors as nodal coordinates, can be 

used with non-incremental procedures, define unique displacement and rotation fields, are related 

to computational geometry representations by linear mapping, and lead to a constant mass matrix 

and zero centrifugal and Coriolis inertia forces. Because of the use of the position vector gradients 

as nodal coordinates, ANCF elements, which do not employ an independent rotation field (Simo 

and Vu Quoc 1986; Ding et al., 2014; Shabana, 2010), have been used successfully in the study of 

many problems including MBS applications (Nachbagauer et al., 2011; Nachbagauer, 2013; 

Dmitrochenko and Mikkola, 2011; Gerstmayr and Irschik, 2008; Hu et al., 2014; Liu et al., 2011; 

Orzechowski, 2012; Orzechowski and Fraczek, 2012; Orzechowski and Fraczek, 2015; Tian et al., 

2009; Tian et al., 2013; Patel et al., 2016; Kulkarni et al., 2017, Nicolsen et al., 2017).  
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 The ANCF kinematic description can be used to develop a lower-order CRBF elements that 

employ finite orientation parameters as nodal coordinates without the need for using an 

independent interpolation for the rotation field, that is, the position vector r  of the material points 

and the set of angles θ  that define the orientation of the cross section are not interpolated 

independently (Shabana, 2015). This approach is consistent with the theory of continuum 

mechanics in which the matrix of position vector gradients is defined using the position field 

(Bonet and Wood, 1997). The polar decomposition theorem can be used to define the orthogonal 

rotation and symmetric stretch tensors from the matrix of position vector gradients. Therefore, the 

position field of the material points can uniquely define the rotation and displacement of the 

material points. The ANCF/CRBF approach used in this paper also avoids independent 

interpolations of the position and rotation fields which lead to geometric redundancy issues and 

violate the aforementioned principle of continuum mechanics (Ding et al., 2014; Shabana, 2010). 

Furthermore, the ANCF/CRBF approach is different from the director-based approach proposed 

in some previous investigations which introduced rotation parameters with ANCF elements and 

employed independent interpolations of the positions and angles. Some of these studies reported 

instability problems with the solutions of longer simulation times (Gruber et al., 2013; Gerstmayr 

et al., 2017). Such instability problems are not observed, for the planar examples used in the 

literature, when using the ANCF/CRBF approach which is based on a nonlinear mapping between 

the rotation parameters and the position vector gradients. 

 Three-dimensional ANCF/CRBF elements can capture shear, bending, and torsion 

deformation modes and can be designed to eliminate high frequency modes associated with the 

deformation of the cross-section. To this end, a nonlinear velocity transformation is used to define 

the relationship between the time derivatives of the ANCF position vector gradients and the time 
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derivatives of the finite rotation parameters. This leads to a configuration-dependent nonlinear 

mass matrix and non-zero Coriolis and centrifugal forces. In recent investigations, planar CRBF 

beam and three-dimensional plate elements were proposed (Zheng and Shabana, 2017; Pappalardo 

et al., 2017). Therefore, the focus of this investigation will be on developing and examining the 

performance of new spatial ANCF/CRBF beam elements that can be used in MBS applications.   

1.2 Scope and Contributions of this Investigation 

In this paper, several new three-dimensional ANCF/CRBF beam elements consistent with 

geometry methods are developed. These elements can be used to model arbitrarily large 

displacements and initially curved geometries. Two of the elements developed in this study ensure 

the continuity of the rotation and stress fields. A third lower-order element, which ensures the 

continuity of the rotation field but does not ensure the continuity of the stress field, is also 

developed. Specifically, the main contributions of this paper can be summarized as follows:  

(1) The three-dimensional kinematics of the beam element cross-section is first discussed in order 

to define the curvature, shear, and torsion measures. The curvature and torsion measures 

defined in the classical differential geometry by the Serret-Frenet equations are presented and 

used to shed light on the definitions obtained using the ANCF/CRBF rotational coordinates as 

well as the material curvatures used in the FE literature. The shear strain is defined using the 

dot product of two gradient vectors obtained by differentiation with respect to two independent 

parameters, and therefore, it cannot be determined from the Serret-Frenet equations which are 

based on the geometry of a curve defined by one parameter.   

(2) A new spatial 18-degree-of-freedom ANCF/CRBF shear-deformable beam element is 

developed based on the kinematics of a fully parameterized ANCF element. This new element 

employs, as nodal coordinates, three position coordinates, three rotation parameters, and a 
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longitudinal position gradient vector. Using a nonlinear velocity transformation matrix, the 

time derivatives of the transverse position vector gradients are expressed in terms of the time 

derivatives of the rotational coordinates which are selected in this investigation to be Euler 

angles. This velocity transformation matrix, used to systematically define the mass matrix and 

elastic forces of the element, ensures the continuity of the rotation and stress fields. 

(3) A second new ANCF/CRBF beam element which has 7 coordinates at each node is developed. 

The nodal coordinates of this element include three position coordinates, three rotation 

parameters, and an extensibility parameter in the longitudinal direction. In developing the 

kinematics of this element, the nodal position gradient vectors are assumed to remain 

orthogonal vectors, and therefore, this element does not experience shearing at the nodal 

points. The extensibility parameter used in the kinematic description of this element allows 

capturing axial stretch. This new element ensures the continuity of the rotation and stress fields. 

(4) A third spatial CRBF beam element is developed based on the kinematics of a gradient 

deficient linear beam element. The new element has 12 degrees of freedom which consist of 

three positions and three rotational parameters at each node. While this element ensures the 

continuity of the rotation field, it does not ensure the continuity of the stress field.  

(5) The proposed ANCF/CRBF and CRBF beam elements are implemented and their performance 

is evaluated using several static and dynamic problems. It is shown that the numerical results 

obtained from the proposed higher order ANCF/CRBF and linear CRBF elements compare 

well with the results obtained from the fully parameterized three-dimensional ANCF beam 

element and the beam element implemented in a commercial FE software. The fully 

parameterized ANCF beam locking problems are discussed and both the continuum and 

enhanced continuum mechanics approaches are used in order to evaluate the locking effect 
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(Nachbagauer et al., 2011; Nachbagauer et al., 2013; Nachbagauer, 2014; Patel and Shabana, 

2018; Gerstmayr et al., 2008).         

1.3  Limitations of the New Elements    

The order of the ANCF/CRBF elements is lower than the order of the ANCF elements, and 

therefore, ANCF/CRBF elements cannot capture all the deformation modes captured by the more 

general ANCF elements. Because of the coordinate reduction, the mass matrix becomes a 

nonlinear function of the coordinates, and as a result, configuration-dependent. As the FE mesh 

size increases, the nonlinearity of the mass matrix can have a negative impact on the computational 

efficiency. Therefore, ANCF/CRBF elements can be less efficient for larger FE mesh as compared 

to ANCF elements which have a constant mass matrix and zero centrifugal and Coriolis forces. It 

is important, however, to point out that all other three-dimensional beam elements, except ANCF 

elements, have a nonlinear mass matrix in the case of large rotations when a consistent mass 

approach is used. Diagonal lumped mass matrices do not correctly represent the inertia of the 

flexible bodies that undergo finite rotations.   

 The choice of the orientation parameters for three-dimensional ANCF/CRBF elements can be 

an important issue. Different sets of orientation parameters can be selected; some of which may 

suffer from singularity problems (Roberson and Schwertassek, 1988; Wittenburg, 2007; Shabana, 

2013). While Euler angles are used in this study to give obvious physical meaning to some of the 

deformation measures, other orientation parameters such as the four Euler parameters which do 

not suffer from the singularity problem can also be used. In the case of Euler parameters, however, 

the interpretation of some deformation modes of the beam can be less obvious and a nonlinear 

algebraic constraint equation that relates Euler parameters must be introduced at each node and 

must be satisfied at the position, velocity, and acceleration levels during the dynamic simulation.    
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1.4  Organization of the Paper 

Section 2 of the paper discusses the beam cross-section kinematics as well as torsion, shear, and 

curvature measures. In Section 3, the formulation of the 18-degrees-of-freedom shear-deformable 

ANCF/CRBF element is presented, and the velocity transformation matrix is developed. Section 

4 presents the formulation of the 14-degree-of-freedom three-dimensional ANCF/CRBF beam 

element which includes an extensibility parameter as a nodal coordinate. In Section 5, a linear 12-

degree-of-freedom CRBF beam element formulation is presented. Because of the linear 

displacement field, the curvature within the element is zero, and classical differential geometry 

curvature definitions cannot be used with such a low order element. Section 6 shows the form of 

the equations of motion used, while in Section 7, numerical results of dynamic and static problems 

are reported to compare the elements, validate their solutions, and evaluate their performance. In 

Section 8, summary and conclusions of this investigation are presented.   

 

2. KINEMATICS OF THE CROSS-SECTION  

The ANCF/CRBF three-dimensional beam cross-section kinematics are discussed in this section 

in order to develop appropriate shear, torsion, and curvature measures. As previously mentioned, 

all the proposed ANCF/CRBF elements employ orientation parameters as nodal coordinates. 

These orientation parameters are systematically used to define orthogonal unit gradient vectors 

which define the cross-section of the beam. This definition is significant in the study of the 

kinematics and deformation modes of the ANCF/CRBF beam elements. 

2.1 Curvature, Torsion, and Shear Measures 

One of the important features of the CRBF elements is that orientation parameters can be 

systematically used to define the cross-section kinematics. The vector normal to the cross-section 
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of the beam can be selected to coincide with the tangent to the centerline in the case of Euler-

Bernoulli beams. However, when a shear-deformable beam is considered, the tangent vector to the 

centerline is not, in general, parallel to the cross-section normal vector. 

 The ANCF/CRBF elements are based on the ANCF kinematic description. If the effect of all 

shear modes is neglected at the nodal points, the orientation parameters can be used to define the 

nodal position vector gradients ,  ,x yr r  and zr  as orthogonal unit vectors that represent the columns 

of an orthogonal matrix  1 2 3( ) A θ a a a , where θ  is the vector of orientation parameters, r  

is the global position vector, and ,x y , and z  are the element spatial coordinates. The global 

position vector cr  of an arbitrary point on the cross-section of the beam with respect to a point on 

the centerline at the intersection with the same cross-section can be defined as c
y zy z r r r , 

demonstrating that an arbitrary vector drawn on the rigid and planar cross-section can be expressed 

as a linear combination of the transverse gradient vectors (Shabana and Yakoub, 2001). For 

example, in the case of the ANCF/CRBF three-dimensional beam elements introduced in Section 

3, the transverse gradient vectors are interpolated linearly, that is,   1 21     r r r  where 

, ,y z   x l  , l  is the length of the beam, and superscripts 1 and 2 refer, respectively, to the 

first and second nodes of the element. As it is known, the interpolation of unit vectors does not 

lead to unit vectors, and the deviation in the magnitude from unity is maximum at the center of the 

element. This deviation remains relatively small as long as the relative rotation between 1
r  and 2

r  

does not exceed 30  (Shabana, 2016). For the 30  relative angle using linear gradient interpolation 

for planar beams, the error is approximately 3.3%. Therefore, the norms of the gradient vectors yr  

and zr  remain close to one.   
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 When the Euler-Bernoulli beam assumptions are considered, the matrix A  defining the three 

orthonormal position vector gradients at the nodes also define a local material frame which can be 

used to further define torsion and curvature measures that appear in the Serret-Frenet equations. 

The Serret-Frenet frame is a coordinate system which defines three vectors, a tangent vector t , a 

normal vector n   and a bi-normal vector b  to the beam centerline (Kreyszig, 1991). When shear 

deformation is not considered in the ANCF/CRBF spatial beams, the first column of the matrix A  

defines the tangent to the centerline and the other two columns can be selected, without loss of 

generality, to be the normal and bi-normal vectors, implying that, 1 2,  ,  x  t a r n a and 3b a . 

The skew-symmetric curvature-torsion matrix associated with this Serret-Frenet frame is 

T
sκ A A , where the subscript s  denotes differentiation with respect to the arc-length s  

(Kreyszig, 1991; Greenberg, 1998). Therefore, the skew-symmetric matrix κ  can be written in 

terms of the curvature   and torsion   as, 

0 0

0

0 0


 



 
   
  

κ                                                             (1)                         

 When the shear deformation is considered in the ANCF/CRBF beams, as will be discussed in 

this paper, the position vector gradient xr  along the longitudinal direction of the element remains 

the first column in the Serret-Frenet frame transformation matrix. The tangent vector can be 

defined as d dst r , where r  is the absolute position vector of a point on the element and ds  is 

the arc-length of an infinitesimal segment of the centerline given by xds dx r . The normal vector 

can be defined as    d ds d dsn t t . The third vector which completes the Serret-Frenet 

orthogonal triad is the bi-normal vector b  and is given by  b t n . Thus, the orientation of this 

Serret-Frenet frame is given by the transformation matrix  sf A t n b . The curvature and 
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torsion of the beam longitudinal fibers can be obtained from the Serret-Frenet formulae as 

described by Eq. 1. The exact geometric curvature is defined as ss d ds  r t . The osculating 

plane is defined by the tangent and the normal vectors of the Serret-Frenet frame. Torsion is the 

rate at which a curve twists out of the osculating plane and is defined as d ds  b .  

 The transverse position vector gradients can be expressed as orthogonal unit vectors in terms 

of nodal orientation parameters, hence a cross-section frame can be defined using three vectors as, 

2 3,  ,  c c
y z   n r a b r a and c c c t n b . In case of shear deformation, the normal vector to the 

cross-section ct  is not, in general, parallel to the vector t  tangent to the centerline. The relative 

rotations between these two vectors yield the in-plane and out-of-plane shear angles.  The vector

t  can be considered as the axis of rotation and the rotation of the vector ct  about this vector can 

be expressed in terms of three independent rotation parameters as defined by Rodriguez formula 

(Roberson and Schwertassek, 1988; and Shabana, 2013). If the rotation of the cross-section 

defining torsion is excluded, two rotation parameters remain which define the two shear angles 

corresponding to the in-plane and out-of-plane shears, a description consistent with the general 

continuum mechanics approach;  12 2x y  r r   and  13 2x z  r r , where 12  and 13  are the 

continuum mechanics shear strains. In the case of small shear angles (infinitesimal rotations), the 

orientation of the cross-section frame with respect to the Serret-Frenet frame can be used to 

determine the in-plane shear angle 2  and out of plane shear angle 3  using the following matrix 

product: 

1 2 3 3 2

1 2 3 3 1

1 2 3 2 1

1

1

1

T T T

sf T c T T T

T T T

 
 
 

   
        
     

t a t a t a

A A n a n a n a

b a b a b a

                                               (2)     
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Clearly, the angles 2  and 3  correspond, respectively, to the general continuum mechanics 

definition of the shear strains  12 2x y  r r   and  13 2x z  r r . If Euler angles are used to 

define the transformation matrix of the cross-section frame cA  and if the Serret-Frenet 

transformation matrix sfA  is defined in terms of the geometry of a space curve such as the element 

centerline, then the shear angle 2  and 3 , and the torsion angle 1  can be expressed systematically 

in terms of Euler angles and the Serret-Frenet tangent, normal, and bi-normal vectors. In the case 

of large displacements and large deformations, more complex expressions are obtained, and in this 

case, the use of the continuum mechanics definitions of the shear strains to formulate the elastic 

forces is more straight-forward and is more accurate. It is also important to point out that the 

definition of the Serret-Frenet torsion   in Eq. 1 cannot capture the rotation of the cross-section 

of a straight beam about its own axis since such a rotation does not change the position vector r . 

Such a rotation, however, is captured by 1   of Eq. 2.               

2.2 Material Curvature  

For a spatial space curve, the curvature is defined by the Serret-Frenet formula as described in Eq. 

1. According to the principles of continuum mechanics, bending and shear are two independent 

deformation modes and there exists no kinematic coupling between them, although they can be 

kinetically coupled. At an arbitrary point and along a certain direction, a beam can shear without 

bending and bend without shearing. Therefore, the use of a curvature definition, such as the 

material curvature definition, based on the cross-section orientation will produce non-zero 

bending energy in a non-uniform pure shear deformation mode (Zheng et al., 2018; Shabana and 

Patel, 2018). The material curvature is defined as 
Tc c

sκ A A , where the matrix cA  defines the 

orientation of the cross-section, and the subscript s  denotes differentiation with respect to the arc 
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length of the beam longitudinal fiber. The total rotation of the cross-section includes the effect of 

bending, torsion, and shear as well as any finite rigid body rotation experienced by the beam. 

Therefore, when the curvature is defined from the cross-section orientation using the equation 

Tc c
sκ A A , the shear deformation is kinematically coupled with the bending deformation, which 

does not represent a correct shear definition and may lead to incorrect results in certain deformation 

modes. As demonstrated by Zheng et al. (2018), even in the simple case of planar motion, the 

equation 
Tc c

sκ A A  leads to  T Tc c c
sd ds  κ A A A , where   is the angle that defines the 

orientation of the cross section in a planar motion, s s    ,  1 2
c A a a , 

 1 cos sin
T a ,  2 sin cos

T  a ,   1 2s sA a a ,  1 0 1
T

s  a  and  2 0 1
T

s a . As 

discussed by Zheng et al. (2018), the curvature is not the derivative of the angle that defines the 

orientation of the cross section; it is the derivative of the angle that defines the orientation of the 

unit tangent to the space curve which is the same as the magnitude of the curvature vector obtained 

by differentiating the unit tangent with respect to the arc length. One can also show that when 

ANCF elements are used, the material curvature converges to the correct curvature in the case of 

zero shear since the cross section remains in this special case along the normal to the centerline of 

the beam, which is the case of an Euler-Bernoulli beam. 

 

3. ANCF/CRBF SHEAR-DEFORMABLE BEAM 

This section describes the formulation of a new ANCF/CRBF 18-degree-of-freedom spatial 

element, referred to as ANCF/CRBF18. The vector of nodal coordinates for this element includes 

three position coordinates, three components of the longitudinal position gradient vector, and three 

rotational parameters. The time derivatives of the ANCF position vector gradients are expressed 
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in terms of the time derivatives of the orientation parameters using a velocity transformation that 

ensures that the transverse gradient vectors at the nodes remain orthogonal unit vectors. Shear 

deformation can be captured by this element since there is no orthogonality condition imposed on 

the longitudinal position vector gradient. This beam element can correctly describe rigid body 

motion and ensures continuity of the rotation and stress fields at the nodes.  

3.1  Displacement Field  

The formulation of the ANCF/CRBF18 beam element starts with the displacement field of the 

three-dimensional fully parameterized ANCF beam element (shown in Fig. 1), which can be 

written as      , t tr x S x e , where r  is the global position vector of an arbitrary point on the 

element, S  is the element shape function matrix, e  is the vector of nodal coordinates that includes 

absolute positions and position vector gradients,  Tx y zx  is the vector of element spatial 

coordinates, and t  is the time (Yakoub and Shabana, 2001).  This ANCF beam element is referred 

to in this paper as ANCF24. The interpolating polynomials used to define the displacement field 

are cubic in x  and linear in y  and z  and are given by 

2 3
0 1 2 3 4 5 6 7

2 3
0 1 2 3 4 5 6 7

2 3
0 1 2 3 4 5 6 7

a a x a y a z a xy a xz a x a x

b b x b y b z b xy b xz b x b x

c c x c y c z c xy c xz c x c x

       
         
        

r                                  (3) 

where ia , ib  and ,ic 0,1,2,...,7i   are the polynomial coefficients, and ,  x y , and z  are the spatial 

coordinates defined in the beam coordinate system. The vector of nodal coordinates at a node k  

is given by 
T T T T T

k k k k k
x y z

   e r r r r , where r  is the global position vector and 

,  , ,x y z     r r   are the position vector gradients. The ANCF24 element has 24 nodal 
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coordinates which can be written as 1 2T T T
   e e e , where the superscripts refer to the two nodes 

of the element. The shape function matrix S  for the element is defined as 

 1 2 3 4 5 6 7 8S S S S S S S SS I I I I I I I I                                  (4)   

where I  is the 3 3  identity matrix, and the shape functions , 1, 2, ,8kS k   , are given by 

 
   

 

2 3 2 3
1 2

3 4

2 3 2 3
5 6 7 8

1 3 2 , 2 ,

, ,

3 2 ,  ,  ,  

S S l

S l S l

S S l S l S l

    

   

     

     
    


       

                           (5) 

where x l  , y l  , and z l  , and l  is the element length.  The ranges for ,  x y  and z  are 

 [0,  ],  2,  2x l y w w   , and  2,  2z h h  , where w  and h  are the width and the height of 

the element, respectively. Other types of cross-section can be conveniently used with the proposed 

elements as well (Orzechowski, 2012).  

3.2  Characterization of the Finite Rotation  

While the position equations are, in general, nonlinear in the orientation parameters, the velocity 

equations are linear functions in the time derivatives of these parameters. This fact is used in this 

section to develop the equations of the ANCF/CRBF18 beam element without violating the basic 

principles of continuum mechanics in which position coordinates are interpolated only. To this 

end, Euler angles, selected in this investigation as the orientation parameters, are used to develop 

the relationship between the time derivatives of the position vector gradients and the angular 

velocity vector. For a fully parameterized ANCF beam element, the matrix of position vector 

gradients J   can be written as x y z   J r r r . In the case of the ANCF/CRBF18 element, the 

transverse position vector gradients are assumed orthogonal unit vectors at the nodes. Thus, one 

can use the orthogonal matrix    1 2 3A θ a a a  to obtain expressions for transverse position 
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vector gradients, where θ  are the rotation parameters. It follows that 

 2 3x y z x   J r r r r ωa ωa       , where Tω AA  is a skew symmetric matrix associated with 

the angular velocity vector  1 2 3
T  ω . Because the angular velocity vector ω  can always 

be written as ω Gθ , where G  is a matrix that depends on the orientation parameters; the 

relationship between the time derivatives of the position vector gradients and the orientation 

parameters can be written as 

 2 3 2 3x y z x x
           J r r r r a ω a ω r a Gθ a Gθ                                 (6) 

where 2a  and 3a  are the skew symmetric matrices associated with the vectors 2a  and 3a , 

respectively. In this case, no condition is imposed on the longitudinal position vector gradient xr  

in order to allow for capturing the shear deformation. Because of the orthogonality of yr  and zr , 

the transverse normal strain components 22  and 33 , and the shear strain 23  remain zero, ensuring 

that the cross-section of the beam does not deform and remains planar and rigid at the nodes .   

 Because in the case of Euler angles, Gθ 0   in general, the second time derivatives of the 

position vector gradients can be written as 

  
  

2 2 2

3 3 3

y

z

        


        

r a Gθ a Gθ ω a Gθ

r a Gθ a Gθ ω a Gθ

   

   
                                         (7) 

In this investigation, the orthogonal transformation matrix A  is obtained by performing successive 

rotations ,  ,    and   about the axes ,  ,X Y  and Z , respectively, leading to 

 1 2 2

cos cos cos sin sin

sin sin cos cos sin cos cos sin sin sin sin cos

cos sin cos sin sin sin cos cos sin sin cos cos

    
           
           



 
     
    

A a a a

      (8) 
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In this case, one has 

1 0 sin

0 cos sin cos

0 sin cos cos


  
  

 
   
  

G                                                       (9)  

The matrix G  becomes singular when  2 1 2n   , where n  is an integer. As previously 

mentioned, Euler parameters can be used to avoid the singularity at the expense of introducing an 

algebraic constraint equation at each node. The use of angles is also advantageous because, in the 

case of infinitesimal rotations, Euler angles can be related to the shear and torsion. 

3.3 Velocity Transformation 

The kinematic equations developed in this section can be systematically used to obtain the velocity 

transformation matrix that defines the relationship between ANCF coordinates and ANCF/CRBF 

coordinates at a node as  

2

3

x
x

y

z

  
   
         
        

I 0 0r
r

0 I 0r
r

0 0 a Gr
θ

0 0 a Gr







 


                                                      (10) 

where I  is the 3 3  identity matrix. The acceleration-level equations can be written as 

 
 

2 22

3 33

x
x

y

z

   
     
                
                

0I 0 0r
r

00 I 0r
r

ω ω a a Gθ0 0 a Gr
θ

ω ω a a Gθ0 0 a Gr





   

 

                                 (11) 

This equation can be written for a node k  as  

k k k k e B p γ                                                (12) 

where 1,2, ,k n  , n  is the number of nodes, and 
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 
 

2 22

3 3 3

,  ,  ,  

k
k

k
k k k k kx

k k k k k kxk kk
ky

k kk k k k k k k
z

                                                

0I 0 0r
r 00 I 0r

e B p r γ ω ω a a G θ0 0 a Gr
θ

0 0 a Gr ω ω a a G θ

 
  

                (13) 

In Eq. 13, ke  is the vector of ANCF nodal coordinates at node k , kB  is the velocity transformation 

matrix associated with node k , kp  is the vector of nodal coordinates of the ANCF/CRBF element 

at node k , and kγ  is the vector which absorbs terms that are quadratic in the velocities. Using Eq. 

12 and the element connectivity conditions, one has the ANCF/CRBF mesh equations 

 e Bp γ                                                                   (14) 

where 

1 1 1 1

2 2 2 2

, , ,

n n n n

       
       
          
       
       
              

e B 0 0 0 p γ

e 0 B 0 0 p γ
e B p γ

e 0 0 0 B p γ

      
                          (15) 

The kinematic equations developed in this section will be used in a later section of this paper to 

define the governing equations of motion of the ANCF/CRBF mesh. Similar equations can be 

developed using other sets of orientation parameters by only changing the form of the two matrices 

A  and G .  

 

4. ANCF/CRBF BEAM WITH EXTENSIBILITY 

The three-dimensional 14-degree-of-freedom ANCF/CRBF beam element, referred to as 

ANCF/CRBF14, employs as nodal coordinates absolute positions, orientation parameters, and an 

extensibility parameter along the longitudinal direction of the beam at each node. The kinematic 

description of this element is also based on the displacement field of the ANCF24 element. For the 
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ANCF/CRBF14 element, all the gradient vectors, ,  ,x yr r  and zr  are assumed to be orthogonal 

vectors at the nodes. Therefore, the cross-section does not deform and shear deformation is 

eliminated at the nodal points, leading to Euler-Bernoulli beam assumptions. An extensibility 

parameter   is used in the axial direction of the beam to allow for capturing stretch. In this case, 

the longitudinal gradient vector can be written as 1x r a , which upon differentiation leads to 

 1 1 1 1x        r a a ω a a    . Since 1 1 1     ω a a ω a Gθ , one has 1 1x    r a Gθ a   . 

Using this equation and following the procedure described in the preceding section, one has 

1 1 2 3 ( )x y z            J r r r a Gθ a a Gθ a Gθ                                        (16) 

The second time derivatives of the gradient vectors can be written as 

        
 
 

1 1 1 1 1

2 2 2

3 3 3

2x

y

z

               
        
        

r a Gθ a ω ω a ω a a Gθ

r a Gθ ω ω a a Gθ

r a Gθ ω ω a a Gθ

    
  
  

                      (17) 

The velocity relationship for the ANCF/CRBF14 element is 

1 1

2

3

x

y

z





  
              
        

I 0 0r
r

0 a G ar
θ

0 a G 0r

0 a G 0r




 





                                                        (18) 

For the ANCF/CRBF14 element, the matrices of node k   that appear in Eq. 12 are 
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                                      (19) 

Using these matrices, an equation similar to Eq. 14 can be developed for this element. 

 

5.  LOWER ORDER LINEAR CRBF BEAM ELEMENT 

The element developed in this section, referred to as CRBF12, has six coordinates per node which 

include three positions and three rotation parameters. The CRBF12 element is derived from a lower 

order 18-degree-of-freedom linear element, referred to as LINBEAM18, which employs positions 

and only transverse position vector gradients as nodal coordinates and can be considered as the 

three-dimensional version of the planar element presented in the literature (Matikainen et al., 

2010). The LINBEAM18 element does not ensure continuity of the longitudinal position vector 

gradient xr . The interpolation polynomials chosen for the LINBEAM18 element are 

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

a a x a y a z a xy a xz

b b x b y b z b xy b xz

c c x c y c z c xy c xz

     
       
      

r                                             (20) 

where ,i ia b , and ,  0,1, 2,...,5ic i   are the polynomial coefficients. Using these polynomials, the 

element displacement field can be written as ( , t) ( ) (t)r x S x e , where 1 2T T T
   e e e  is the vector 

of nodal coordinate, , 1,2
T T T T

k k k k
y z k   e r r r ,  
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 1 2 3 4 5 6 ,S S S S S SS I I I I I I                                  (21)   

I  is the 3 3  identity matrix, and the shape functions are given by 

   1 2 3

4 5 6

1 ,  ,  ,  

,  ,  

S S l S l

S S l S l

    

  

      


   
                           (22) 

Following a procedure similar to the one previously used in this paper, one can write 
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   
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                                                       (23) 

The CRBF12 element vectors and matrices at node k  used in Eq. 12 are  
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p γ ω ω a a G θ
θ

ω ω a a G θ
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

 

 

                                      (24) 

The form of the acceleration equations of the CRBF12 mesh is the same as given by Eq. 14. 

 

6. ELEMENT EQUATIONS OF MOTION 

The element velocity transformation matrix can be used to develop the CRBF equations of motion 

at the element level from the ANCF element equations of motion. These equations of motion can 

be assembled to obtain the mesh equations of motion. Another alternate, yet equivalent, approach 

described in this section is to use the assembled ANCF element equations and the mesh velocity 

transformation matrix (Eq. 14) to obtain directly the assembled CRBF equations.  The assembled 

ANCF system equations of motion can be written as Me Q , where e  is the ANCF mesh nodal 
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acceleration vector, M  is the constant and symmetric mesh mass matrix, and Q  is the total vector 

of the generalized nodal forces. Substituting Eq. 14 into the ANCF equation of motion and pre-

multiplying both sides of the equation Me Q  by the transpose of the system velocity 

transformation matrix, the equations of motion for the ANCF/CRBF and the CRBF elements are 

obtained as    T T B MB p B Q Mγ , which can be further written as Mp Q ,                         

where TM B MB  is the mass matrix which is configuration-dependent and nonlinear in the 

CRBF nodal coordinates,  T Q B Q Mγ  is the generalized nodal force vector associated with 

CRBF elements, and p  is the vector of CRBF nodal accelerations. The equations of motion 

Mp Q  can be solved using direct numerical integration methods. 

 Because the fully parametrized ANCF beam element, ANCF24, suffers from locking problems, 

it can produce inaccurate results in some problems (Nachbagauer et al., 2011; Nachbagauer et al., 

2013; Nachbagauer, 2014; Patel and Shabana, 2017). Several locking alleviation techniques have 

been applied to obtain improved solutions. In this investigation, the general continuum mechanics 

and enhanced continuum mechanics techniques are used to evaluate the element elastic forces 

(Nachbagauer et al., 2013). With the general continuum mechanics approach, the strain energy of 

a beam element with rectangular cross-section can be written as 

/2 /2

2 0

/2 /2 0

1

2

W H L
T

G P

W H

U J dxdydz
 

    ε σ                                                 (25)  

where 2 2 2
T

xx yy zz xy xz yz        ε  and 2Pσ  are the Voigt notations of the Green-

Lagrange strain tensor and the second Piola-Kirchhoff stress tensor, respectively, and W ,  H , and 

L  are the width, height, and length of the beam, respectively. The evaluation of the determinant 

   0 0det detJ    J X x  is required in the case of initially curved reference configuration, 
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0X Se  is the vector of the parameters in the stress-free reference configuration, and x  is the 

vector of the element coordinates in the straight configuration.   The constitutive relations can be 

written in terms of the elastic coefficient matrix D  as 2P σ Dε , where D  is given in the Appendix 

in the case of the general continuum mechanics approach. The generalized elastic forces can be 

obtained by differentiating the strain energy with respect to the nodal coordinates. The strain 

energy in the case of the enhanced continuum mechanics approach can be written as 

/2 /2
0

0 0

/2 /2 0 0

1 1

2 2

W H L L
T T

E

W H

U J dxdydz HW J dx

 

    ε D ε ε D ε                                 (26) 

The elasticity matrices 0D  and D  are provided in the Appendix. Both, the general continuum 

mechanics and enhanced continuum mechanics approaches are used in this investigation to 

evaluate the elastic forces of the proposed elements.  

 The kinematics of the elements developed in this paper significantly influence the element 

performance. The low order element in particular cannot assume complex shapes and it is 

necessary in some application to use a large number of elements. Because the curvature inside this 

element is identically zero, classical beam theories that require the use of the differential geometry 

curvature definitions cannot be used with this low order element (Zheng et al., 2018). Figure 2 

shows the three different elements developed in this investigation and their nodal coordinates. 

Table 1 shows a comparison between all the elements considered in this study. 

 

7.  NUMERICAL RESULTS AND DISCUSSION 

The higher order ANCF/CRBF elements, ANCF/CRBF18 and ANCF/CRBF14, ensure continuity 

of the rotation and stress fields at the nodal points, while the lower order elements, LINBEAM18 

and CRBF12, do not ensure continuity of xr  and hence only position and rotation field continuity 
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is ensured at the nodes. The numerical results obtained from all the proposed elements are validated 

against the results obtained using the fully parameterized ANCF beam element (ANCF24) and a 

beam element implemented in the commercial FE software ANSYS. Both static and dynamic 

examples are considered in this study for validation of the numerical results. The static analysis 

include validation for a small deformation and a large deformation cantilever beam problem. 

Simulation of a beam pendulum falling under the effect of gravity is performed in order to evaluate 

the dynamic performance of the element. A detailed convergence analysis of the displacement and 

strain variables is performed. A simulation time study is presented at the end of the section to 

analyze element efficiency using different geometric and material properties.  

7.1  Static Analysis 

A cantilever beam problem is considered in this section in which one end of the beam is fixed and 

a vertical tip load is applied at the free end as shown in Fig. 3. Two cases are considered, a small 

deformation problem and a large deformation problem, both of which are considered in the 

literature (Nachbagauer et al., 2013). The beams analyzed in this problem have Young’s modulus

112.07 10  PaE   , Poisson ratio 0.3  , length 2 m,L   width 0.5 m,W   and height 

0.1 mH  . For the small deformation problem, the analytical solution for the vertical 

displacement of the tip  yu  is given in Timoshenko and Goodier (1970) as  

2
3(4 5 ) 2

6 4y

P W L
u L

EI


 
    

 
                                            (27) 

where I  is the second moment of area of the cross-section, and P  is the vertical applied tip load. 

Considering the above-mentioned parameters and a tip load 46.25 10  NP   , the vertical tip 

displacement value is 48.06159 10  myu    . The commercial FE software ANSYS yields 

vertical tip displacement equal to 48.1024 10  m  . Table 2 shows the results obtained for this 
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problem using the higher order elements ANCF24, ANCF/CRBF18, and ANCF/CRBF14, while 

Table 3 shows the numerical results obtained for the linear elements, LINBEAM18 and CRBF12. 

As can be observed from these numerical results, with the general continuum mechanics approach 

an under-predicted solution is obtained due to the locking effect. However, with the enhanced 

continuum mechanics, the solutions obtained by all elements match the analytical value as well as 

the solution given by the commercial FE software. It can be observed that the convergence rate for 

the ANCF24 and both ANCF/CRBF elements is comparable and these elements require around 

fifteen elements to achieve convergence. In case of the linear elements, the convergence properties 

of the LINBEAM18 and CRBF12 are very similar.  

 In the large-deformation cantilever beam problem, the tip load value is increased to 

76.25 10 NP    and the remaining beam properties are kept the same. The beam element 

BEAM188 implemented in the commercial software ANSYS gives a vertical tip displacement 

solution of 0.71131 m . Tables 4 and 5 show the results obtained for the large deformation 

problem using the higher order and linear elements, respectively. As can be observed, when the 

general continuum mechanics approach is used, the locking effect has an impact on the solution of 

the ANCF/CRBF and the CRBF elements. When the locking effect is alleviated using the enhanced 

continuum mechanics approach, the solutions obtained using all the presented elements become 

close to the solution predicted using the commercial FE software. The ANCF/CRBF14 element 

under-predicts the solution by a small amount as compared to the other elements due to elimination 

of deformation modes resulting from the orthogonality condition imposed on the nodal position 

vector gradients. The shear effect at nodes cannot be captured with this element as previously 

mentioned. With regard to the linear elements, the tip vertical displacement obtained from 

LINBEAM18 element compares well with the solution of the ANCF24 element, whereas the small 
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difference between the solutions of the LINBEAM18 and CRBF12 elements can be justified 

because of the rigidity of the cross-section of the CRBF12 element. As expected in case of a large 

deformation nonlinear problem, all elements exhibit different convergence rates.  

  7.2  Dynamic Analysis 

A beam pendulum problem is considered in order to demonstrate the ability of the proposed 

elements to handle large-rotation and large-deformation MBS applications. The beam pendulum, 

shown in Fig. 3, which has one end attached to a support using a spherical joint, is allowed to fall 

under the effect of gravity. The beam considered in this problem has Young’s modulus

72 10  PaE   , Poisson ratio 0.3  , density 37200 kg/m  , length 1 m,L  and width and 

height 0.02 mW H  . The general continuum mechanics approach is used in this case to 

evaluate the element elastic forces. The time span considered for the numerical simulations is 2 

seconds and a variable-step, variable-order Adams-Bashforth-Moulton PECE integrator is used to 

solve the equations of motion (Shampine and Gordon, 1975). 

 The results of the higher order ANCF/CRBF elements are analyzed first. Figure 4 shows the 

comparison of converged results for the x  displacements of the tip of the pendulum for the 

ANCF24 beam, the higher order ANCF/CRBF elements, and the element implemented in the 

commercial FE software.  As can be seen, the solutions obtained from the proposed elements agree 

well with the solutions obtained from the ANCF24 element and the commercial FE software. As 

shown in Fig. 5, the displacement convergence rate for the ANCF/CRBF18 and ANCF/CRBF14 

elements is comparable. Normalized RMS error against number of elements employed in the 

solution is used as a convergence rate measure. The converged ANCF24 solution is used as the 

reference solution while computing the normalized RMS error. As observed, the displacement 

convergence rate for both the higher order ANCF/CRBF elements is very similar. The convergence 



28 
 

of the longitudinal strain at the center of the ANCF24 beam pendulum is presented in Fig. 6 to 

establish a reference for assessing the longitudinal strain convergence of the proposed elements. 

Converged longitudinal strain results are compared for both the ANCF/CRBF elements in Fig. 7, 

and as can be observed there is a close match between the two. Figure 8 shows the longitudinal 

strain normalized RMS error for the ANCF/CRBF higher order elements. It is clear that both the 

elements have similar longitudinal strain convergence rate. However, the normalized longitudinal 

strain RMS error value is slightly higher, which can be attributed to the fact that the cross-section 

of the ANCF/CRBF elements is rigid at the nodes and Poisson coupling affects strain values. This 

error significantly decreases if zero Poisson ratio is considered. Shear strain convergence is shown 

in Fig. 9 for the ANCF24 element to establish base for convergence analysis of the shear-

deformable ANCF/CRBF18 element. As can be seen in Fig. 10, the converged shear strain results 

for the ANCF24 and ANCF/CRBF18 elements show a good agreement. In Fig. 11, the 

ANCF/CRBF18 element shear strain convergence rate is presented where the normalized RMS 

error stabilizes to a small value as the number of elements increases. As expected, more 

ANCF/CRBF18 elements are required compared to the more general ANCF24 element to achieve 

converged shear strain results. 

  Figure 12 compares the time histories of the pendulum tip displacement predicted using the 

linear beam elements, LINBEAM18 and CRBF12, and the ANCF24 element. There is a good 

agreement between the converged displacements of the linear elements and the ANCF24 element. 

As shown in Fig. 13, the LINBEAM18 beam has a similar displacement convergence rate as the 

CRBF12 element. Since there is no constraint on the transverse position vector gradients in case 

of the LINBEAM18, the longitudinal strain obtained for this element shows a reasonable agreement 

with the results of the ANCF24 element as demonstrated in Fig. 14. The decreasing normalized 
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RMS error for the longitudinal strain of the LINBEAM18 element demonstrates a good 

convergence rate as observed from the results of Fig. 15. The LINBEAM18 element requires a 

much finer mesh to produce converged results as compared to the higher order elements due to the 

linear interpolation field. Figure 16 shows the longitudinal strain time histories predicted using the 

CRBF12 and the ANCF/CRBF18 elements. It is observed that the CRBF12 strain follows the same 

trend as the ANCF/CRBF18 strain but tends to deviate slightly towards the end of the simulation. 

This can be justified because of the significant difference between the kinematic descriptions of 

these elements and the order of the polynomial interpolation, as well as the lack of longitudinal 

position vector gradient continuity in the case of the CRBF12 element. The CRBF12 element 

longitudinal strain RMS error is shown in Fig. 17.  

7.3  Simulation Time Study 

In order to compare simulation times for different beam geometries and material properties, two 

sets of simulations for the pendulum problem are performed. In the first set, which has a beam 

with a thicker cross section, the following properties are used: Young’s modulus 62 10  PaE   , 

Poisson ratio 0  , density 35400 kg/m  , length 2 mL  ,  and width and height 

0.1 mW H  . The second simulation set has a beam Young’s modulus 72 10  PaE   , Poisson 

ratio 0.3  , length 1 mL  , and a relatively thinner cross-section 20.02 0.02 m . Tables 6 and 

7 show the CPU times for the two simulation sets. It is observed that for the beam set having a 

thick cross-section of 20.1 0.1 m  , the ANCF24 element model is always more efficient than the 

higher order ANCF/CRBF elements, and similarly the LINBEAM18 element is always more 

efficient than the CRBF12 element. However, in the case of a slender beam (the second set), for a 

smaller number of elements, the ANCF/CRBF elements tend to be more efficient than the ANCF24 

element, and similarly the CRBF12 is more efficient than the LINBEAM18 beam. As the mesh is 
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refined, the gradient-based elements, ANCF24 and LINBEAM18, become more efficient as the 

mass matrix nonlinearity impacts the simulation speed of the rotation-based elements.  

 

8.  SUMMARY AND CONCLUSIONS 

Starting with the kinematic description of the ANCF elements, several new CRBF beam elements 

were developed in this investigation. These elements employ rotation parameters as nodal 

coordinates without the need for the use of independent interpolation of the rotation field. Only 

one interpolation position field is used in order to ensure consistency with the principles of 

continuum mechanics and avoid the redundancy problems associated with other finite rotation-

based formulations. Furthermore, the kinematic description used for the new elements allows for 

describing arbitrarily large displacements, and therefore, the resulting equations can be solved non-

incrementally, eliminating the need for using the co-rotational procedures. The transverse position 

vector gradients are expressed as orthogonal unit vectors in terms of finite rotation parameters at 

nodal points, thereby eliminating high frequency modes associated with the cross-section 

deformation. The time derivatives of the position vector gradients were expressed in terms of the 

time derivatives of the orientation parameters using a velocity transformation matrix. 

Acceleration-level equations were obtained for all the proposed elements. As demonstrated by the 

static and dynamic simulations performed in this investigation, the proposed CRBF elements yield 

results which agree well with the original ANCF elements and with a beam element implemented 

in a commercial FE software. Displacement and longitudinal strain comparisons were made for all 

the proposed elements, and the comparative study showed a good agreement for the displacements 

obtained. There is a slight discrepancy observed in the case of longitudinal strains which can be 

attributed to the Poisson effect and the assumption of the rigidity of the cross-section.  The shear 
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strain results obtained using the higher order shear-deformable ANCF/CRBF element were found 

to be in a good agreement with the results of the ANCF beam element. The linear CRBF element 

requires higher number of elements to achieve converged displacement and strain results. The 

gradient continuity along the longitudinal direction is not ensured in the case of the linear elements, 

and because these elements employ linear polynomial interpolations, a high number of elements 

may be required to achieve good results for complex nonlinear geometries. Nonetheless, these 

elements are efficient and can yield acceptable displacement results, while strain results may not 

be accurate. A simulation time comparison was performed to shed light on the computational 

efficiency of the proposed elements with beams having different geometries and material 

properties. It was found that for thick beams, the gradient-based elements are always more efficient 

than the proposed consistent rotation-based elements. However, for slender beams and smaller 

mesh sizes, the proposed rotation-based elements tend to be more efficient up to the point at which 

the nonlinearity of the mass matrix starts to negatively impact the simulation efficiency when finer 

mesh sizes are used.  
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APPENDIX 

Elasticity Matrices- General and Enhanced Continuum Mechanics Approaches 

The elasticity matrix used in the linear elastic constitutive material model is given by 
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0 0 0 0 0
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1 2
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(A.1) 

where   is the Poisson ratio. In the general continuum mechanics approach, the axial and the 

transverse normal strains are coupled using the Poisson ratio. This effect causes Poisson locking 

and as recommended in the literature (Nachbagauer et al., 2013) the elasticity matrix is split into 

two parts as 0  D D D  , where 0D  does not include the Poisson ratio and can be written as 

0
2 3( , , , , , )diag E E E Gk Gk GD , where G  is the shear modulus and 2k  and 3k are the shear 

correction factors. The matrix D includes the Poisson terms and is given by, 
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0 0 0 0 0 0(1 )(1 2 )

0 0 0 0 0 0

0 0 0 0 0 0

E





 

 
 
 
 

     
 
 
 

D                                           (A.2)                         

  



33 
 

REFERENCES 

1. Bathe, K.J., 1996, Finite Element Procedures, Prentice Hall, Inc., Englewood Cliffs, New 

Jersey. 

2. Belytschko, T. and Hsieh, B.J., 1973, “Non‐linear transient finite element analysis with 

convected co‐ordinates”, International Journal for Numerical Methods in Engineering, 7(3), 

pp.255-271. 

3. Belytschko, T., Liu, W.K., and Moran, B., 2000, Nonlinear Finite Elements for Continua and 

Structures, John Wiley & Sons, New York. 

4. Bonet, J., and Wood, R.D., 1997, Nonlinear Continuum Mechanics for Finite Element 

Analysis, Cambridge University Press. 

5. Campanelli, M., Berzeri, M., and Shabana, A.A., 2000, “Performance of the incremental and 

non-incremental finite element formulations in flexible multibody problems”, Transactions-

American Society of Mechanical Engineers Journal of Mechanical Design, 122(4), pp.498-

507. 

6. Cook, R.D., Malkus, D.S., and Plesha, M.E., 1989, Concepts and Applications of Finite 

Element Analysis, Third Edition, John Wiley & Sons. 

7. Crisfield, M.A., 1991, Nonlinear Finite Element Analysis of Solids and Structures, Vol. 1: 

Essentials, John Wiley & Sons. 

8. Ding, J., Wallin, M., Wei, C., Recuero, A. M., and Shabana, A. A., 2014, “Use of Independent 

Rotation Field in the Large Displacement Analysis of Beams”, Nonlinear Dynamics, 76, pp. 

1829-1843. 



34 
 

9. Dmitrochenko, O., and Mikkola, A., 2011, “Digital Nomenclature Code for Topology and 

Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation”, 

IMechE Journal of Multibody Dynamics, Vol. 225, pp. 34-51. 

10. Gerstmayr, J., Gruber, P. and Humer, A., 2017, “Comparison of Fully Parameterized and 

Gradient Deficient Elements in the Absolute Nodal Coordinate Formulation”, ASME 2017 

International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference, pp. V006T10A025-V006T10A025. 

11. Gerstmayr, J., and Irschik, H., 2008, “On the Correct Representation of Bending and Axial 

Deformation in the Absolute Nodal Coordinate Formulation with an Elastic Line Approach,” 

Journal of Sound & Vibration, 318(3), pp. 461-487. 

12. Gerstmayr, J., Matikainen, M.K., and Mikkola, A.M., 2008, “A geometrically exact beam 

element based on the absolute nodal coordinate formulation”, Multibody System 

Dynamics, 20(4), pp.359-384.  

13. Greenberg, M. D., 1998, Advanced Engineering Mathematics, Second Edition, Prentice-Hall, 

Englewood Cliffs, NJ. 

14. Gruber, P.G., Nachbagauer, K., Vetyukov, Y. and Gerstmayr, J., 2013, “A novel director-based 

Bernoulli–Euler beam finite element in absolute nodal coordinate formulation free of 

geometric singularities”, Mechanical Sciences, 4(2), pp.279-289. 

15. Hu, W., Tian, Q., and Hu, H. Y., 2014, “Dynamics Simulation of the Liquid-Filled Flexible 

Multibody System via the Absolute Nodal Coordinate Formulation and SPH Method”, 

Nonlinear Dynamics, Vol. 75, pp. 653-671.  

16. Kreyszig, E., 1991, Differential Geometry, Dover Publications. 



35 
 

17. Kulkarni, S., Pappalardo, C. M., and Shabana, A. A., 2017, “Pantograph/Catenary Contact 

Formulations”, ASME Journal of Vibrations and Acoustics, 139(1), pp. 1-12. 

18. Liu, C., Tian, Q., and Hu, H. Y., 2011, “Dynamics of Large Scale Rigid-Flexible Multibody 

System Composed of Composite Laminated Plates”, Multibody System Dynamics, Vol. 26, pp. 

283-305. 

19. Matikainen, M.K., von Hertzen, R., Mikkola, A. and Gerstmayr, J., 2010, “Elimination of high 

frequencies in the absolute nodal coordinate formulation”, Proceedings of the Institution of 

Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 224(1), pp.103-116. 

20. Nachbagauer, K., 2013, “Development of Shear and Cross-Section Deformable Beam Finite 

Elements Applied to Large Deformation and Dynamics Problems”, Ph.D. dissertation, 

Johannes Kepler University, Linz, Austria. 

21. Nachbagauer, K., Pechstein, A.S., Irschik, H., and Gerstmayr, J., 2011, “A new locking-free 

formulation for planar, shear deformable, linear and quadratic beam finite elements based on 

the absolute nodal coordinate formulation”, Multibody System Dynamics, 26(3), pp.245-263. 

22. Nachbagauer, K., Gruber, P., and Gerstmayr, J., 2013, “Structural and continuum mechanics 

approaches for a 3D shear deformable ANCF beam finite element: application to static and 

linearized dynamic examples”, Journal of Computational and Nonlinear Dynamics, 8(2), pp. 

021004-1 - 021004-7. 

23. Nachbagauer, K., 2014, “State of the art of ANCF elements regarding geometric description, 

interpolation strategies, definition of elastic forces, validation and the locking phenomenon in 

comparison with proposed beam finite elements”, Archives of Computational Methods in 

Engineering, 21(3), pp.293-319. 



36 
 

24. Nicolsen, B., Wang L., and Shabana, A. A., 2017, “Nonlinear Finite Element Analysis of 

Liquid Sloshing in Complex Vehicle Motion Scenarios”, Journal of Sound and Vibration, 405, 

pp. 208-233. 

25. Orzechowski G., 2012, “Analysis of Beam Elements of Circular Cross-Section Using The 

Absolute Nodal Coordinate Formulation”, Archive of Mechanical Engineering, Vol. 59, pp. 

283-296. 

26. Orzechowski G., Frączek J., 2012, “Integration of The Equations of Motion of Multibody 

Systems Using Absolute Nodal Coordinate Formulation”, Acta Mechanica et Automatica, Vol. 

6, pp. 75-83. 

27. Orzechowski G., Frączek J., 2015, “Nearly Incompressible Nonlinear Material Models in The 

Large Deformation Analysis of Beams Using ANCF”, Nonlinear Dynamics, pp. 1-14. 

28. Pappalardo, C. M., 2015, “A Natural Absolute Coordinate Formulation for the Kinematic and 

Dynamic Analysis of Rigid Multibody Systems”, Journal of Nonlinear Dynamics, 81, pp. 

1841-1869. 

29. Pappalardo, C. M., Wallin, M., and Shabana, A. A., 2017, “A New ANCF/CRBF Fully 

Parametrized Plate Finite Element”, ASME Journal of Computational and Nonlinear 

Dynamics, 12(3), pp. 1-13. 

30. Patel, M. D., Orzechowski, G., Tian, Q., and Shabana, A. A., 2015, “A New Multibody System 

Approach for Tire Modeling using ANCF Finite Elements”, Proceedings of the Institution of 

Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 0(0), 1-16. 

31. Patel, M. and Shabana, A.A., 2018, “Locking alleviation in the large displacement analysis of 

beam elements: the strain split method”, Acta Mechanica, accepted for publication.  



37 
 

32. Rankin, C. C., and Brogan, F. A., 1986, “An Element Independent Corotational Procedure for 

the Treatment of Large Rotations’’,  ASME J. Pressure Vessel Technol., 108, pp. 165–174. 

33. Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody Systems, Springer, 

Berlin, Germany. 

34. Shabana, A. A., 2010, “Uniqueness of the geometric representation in large rotation finite 

element formulations”, Journal of Computational and Nonlinear Dynamics, 5(4), pp. 044501-

1 – 44501-5. 

35. Shabana, A. A., 2013, Dynamics of Multibody Systems, Fourth Edition, Cambridge University 

Press, Cambridge, United Kingdom.  

36. Shabana, A. A., 2016, “ANCF Consistent Rotation-Based Finite Element Formulation”, ASME 

Journal of Computational and Nonlinear Dynamics, 11(1), pp. 014502-1 - 014502-4. 

37. Shabana, A.A. and Patel, M., 2018, “Coupling between shear and bending in the analysis of 

beam problems: Planar case”, Journal of Sound and Vibration, 419, pp.510-525. 

38. Shabana, A.A., and Yakoub, R.Y., 2001, “Three-dimensional absolute nodal coordinate 

formulation for beam elements: Theory”, Transactions-American Society of Mechanical 

Engineers Journal of Mechanical Design, 123(4), pp.606-613. 

39. Shampine, L., and Gordon, M., 1975, Computer Solution of ODE: The Initial Value Problem, 

Freeman, San Francisco. 

40. Simo, J. C., and Vu-Quoc, L., 1986, “On the Dynamics of Flexible Beams under Large Overall 

Motions - The Plane Case, Part I”, Journal of Applied Mechanics, 53, pp. 849-863. 

41. Takahashi, Y. and Shimizu, N., 1999, Study on Elastic Forces of the Absolute Nodal 

Coordinate Formulation for Deformable Beams, Proc. ASME International Design 



38 
 

Engineering Technical Conferences and Computer and Information in Engineering 

Conference, Las Vegas, NV. 

42. Tian, Q., Chen, L. P., Zhang, Y. Q., and Yang, J. Z., 2009, “An Efficient Hybrid Method for 

Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation”, ASME 

Journal of Computational and Nonlinear Dynamics, Vol. 4, pp. 021009-1 - 021009-14. 

43. Tian, Q., Sun, Y. L., Liu, C., Hu, H. Y., and Paulo, F., 2013, “Elasto-Hydro-Dynamic 

Lubricated Cylindrical Joints for Rigid-Flexible Multibody Dynamics”, Computers & 

Structures, Vol. 114-115, pp. 106-120. 

44. Timoshenko, S.P., and Goodier, J.N., 1970, “Theory of elasticity”, McGraw-Hill Book Co., 

Inc., New York. 

45. Wittenburg, J., 2007, Dynamics of Multibody Systems, Second Edition, Springer, Berlin, 

Germany. 

46. Yakoub, R.Y., and Shabana, A.A., 2001, “Three dimensional absolute nodal coordinate 

formulation for beam elements: implementation and applications”, Transactions-American 

Society of Mechanical Engineers Journal of Mechanical Design, 123(4), pp.614-621. 

47. Zheng, Y., and Shabana, A.A., 2017, “A two-dimensional shear deformable ANCF consistent 

rotation-based formulation beam element”, Nonlinear Dynamics, 87(2), pp.1031-1043. 

48. Zheng, Y., Shabana, A.A., and Zhang, D., 2018, “Curvature Expressions for the Large 

Displacement Analysis of Planar Beam Motions”, ASME Journal of Computational and 

Nonlinear Dynamics, Vol. 13, pp. 011013-1 – 011013-12. 

49. Zienkiewicz, O.C., 1977, The Finite Element Method, Third Edition, McGraw Hill, New York. 

50. Zienkiewicz, O.C., and Taylor, R.L., 2000, The Finite Element Method, Vol. 2: Solid 

Mechanics, Fifth Edition, Butterworth Heinemann. 



39 
 

 

 

  



40 
 

List of Figures 

 

Figure 1. Three-dimensional ANCF fully parameterized beam element 

Figure 2.  Element coordinates  

Figure 3. Numerical tests on proposed elements 

Figure 4. Pendulum tip X -displacement comparison ( 25 ANCF24 elements,  25 

ANCF/CRBF18 elements,   25 ANCF/CRBF14 elements, 25 Commercial FE 
code beam elements) 

Figure 5. Tip X -displacement normalized RMS error for higher order ANCF/CRBF elements (

ANCF/CRBF18 element, ANCF/CRBF14 element) 

Figure 6. Longitudinal strain convergence for ANCF24 element ( 25 elements, 35 
elements, 45 elements) 

Figure 7. Longitudinal strain comparison between higher order ANCF/CRBF elements (

55 ANCF/CRBF18 elements, 55 ANCF/CRBF14 elements) 

Figure 8. Longitudinal strain normalized RMS error for higher order ANCF/CRBF elements (

ANCF/CRBF18 element, ANCF/CRBF14 element) 

Figure 9. Shear strain convergence for ANCF24 element ( 25 elements, 35 
elements, 45 elements) 

Figure 10. Shear strain comparison between ANCF24 and ANCF/CRBF18 elements ( 35 

ANCF24 elements, 45 ANCF/CRBF18 elements) 

Figure 11. Shear strain normalized RMS error for ANCF/CRBF18 element 

Figure 12. Pendulum tip X -displacement comparison for linear elements ( 25 ANCF24 

elements, 95 LINBEAM18 elements, 95 CRBF12 elements) 

Figure 13. Tip X -displacement normalized RMS error for lower order linear elements (

LINBEAM18 element, CRBF12 element) 

Figure 14. Longitudinal strain comparison between ANCF24 and LINBEAM18 elements (

25 ANCF24 elements, 115 LINBEAM18 elements) 

Figure 15. Longitudinal strain normalized RMS error for LINBEAM18 element 

Figure 16. Longitudinal strain comparison between ANCF/CRBF18 and CRBF12 elements (

55 ANCF/CRBF18 elements, 115 CRBF12 elements) 



41 
 

Figure 17. Longitudinal strain normalized RMS error for CRBF12 element 

  



42 
 

Table 1. ANCF and ANCF/CRBF element comparison 

Element  Property ANCF24 ANCF/CRBF18 ANCF/CRBF14 LINBEAM18 CRBF12 

Nodal coordinates 

Positions 
and gradient 

vectors in 
all three 

directions 

Positions, 
longitudinal 

gradient vector, 
and angles  

Positions, 
angles, and 
extensibility 

parameter along 
longitudinal axis 

Positions and 
transverse 
gradient 
vectors 

Positions 
and angles 

Number of element 
coordinates 

24 18 14 18 12 

Order of interpolation 
along longitudinal 
axis 

Cubic Cubic Cubic Linear Linear 

Order of interpolation 
along transverse axes 

Linear Linear Linear Linear Linear 

Shear deformation Yes Yes No Yes Yes 

Bending deformation Yes Yes Yes No No 

Stretch deformation Yes Yes Yes Yes Yes 

Torsional 
deformation 

Yes Yes Yes Yes Yes 

Cross-section 
deformation 

Yes No No Yes No 

Strain continuity Yes Yes Yes No No 
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Table 2. Small deformation cantilever beam problem tip vertical displacements in meters-  

Elements 
ANCF24 ANCF/CRBF18 ANCF/CRBF14 

General 
Continuum  

Enhanced 
Continuum 

General 
Continuum  

Enhanced 
Continuum 

General 
Continuum  

Enhanced 
Continuum 

5 -5.9911E-04 -8.0201E-04 -5.9911E-04 -8.0201E-04 -5.9461E-04 -7.9662E-04 
10 -6.0378E-04 -8.0825E-04 -6.0378E-04 -8.0825E-04 -5.9892E-04 -8.0242E-04 
15 -6.0471E-04 -8.0947E-04 -6.0471E-04 -8.0947E-04 5.9972E-04 -8.0349E-04 
20 -6.0505E-04 -8.0992E-04 -6.0505E-04 -8.0992E-04 -6.0000E-04 -8.0386E-04 
25 -6.0521E-04 -8.1014E-04 -6.0521E-04 -8.1014E-04 -6.0013E-04 -8.0404E-04 
30 -6.0531E-04 -8.1027E-04 -6.0531E-04 -8.1027E-04 -6.0020E-04 -8.0413E-04 
35 -6.0537E-04 -8.1034E-04 -6.0537E-04 -8.1034E-04 -6.0024E-04 -8.0419E-04 
40 -6.0541E-04 -8.1040E-04 -6.0541E-04 -8.1040E-04 -6.0027E-04 -8.0423E-04 

 

Table 3. Small deformation cantilever beam problem tip vertical displacements in meters-  

Elements 
LINBEAM18 CRBF12 

General Continuum  Enhanced Continuum General Continuum  Enhanced Continuum 
10 -5.7912E-04 -7.7109E-04 -5.7912E-04 -7.7109E-04 
20 -5.9875E-04 -8.0037E-04 -5.9875E-04 -8.0037E-04 
40 -6.0386E-04 -8.0804E-04 -6.0386E-04 -8.0804E-04 
60 -6.0482E-04 -8.0947E-04 -6.0482E-04 -8.0947E-04 
80 -6.0516E-04 -8.0998E-04 -6.0516E-04 -8.0998E-04 

100 -6.0531E-04 -8.1021E-04 -6.0531E-04 -8.1021E-04 
120 -6.0540E-04 -8.1034E-04 -6.0540E-04 -8.1034E-04 
140 -6.0545E-04 -8.1042E-04 -6.0545E-04 -8.1042E-04 

 
 

Table 4. Large deformation cantilever beam problem tip vertical displacements in meters-  

Elements 
ANCF24 ANCF/CRBF18 ANCF/CRBF14 

General 
Continuum  

Enhanced 
Continuum 

General 
Continuum  

Enhanced 
Continuum 

General 
Continuum  

Enhanced 
Continuum 

10 -0.561554634 -0.712463018 -0.55630973 -0.705176357 -0.552383366 -0.70109317 
20 -0.562793972 -0.714094246 -0.558952941 -0.708529064 -0.554745158 -0.704029801 
30 -0.563070396 -0.714463954 -0.5598123 -0.709741826 -0.555528786 -0.705140965 
40 -0.563182513 -0.714615838 -0.560230427 -0.710347297 -0.555911812 -0.705701245 
60 -0.563276796 -0.714744706 -0.560638531 -0.710946329 -0.556286462 -0.706258417 
80 -0.56331709 -0.714800073 -0.560838268 -0.711242035 -0.556470044 -0.706534344 

100 -0.563339031 -0.714830262 -0.560956601 -0.711417914 -0.556578855 -0.7066987 
120 -0.563352715 -0.714849094 -0.561034831 -0.711534447 -0.556650806 -0.70680769 
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Table 5. Large deformation cantilever beam problem tip vertical displacements in meters-  

Elements 
LINBEAM18 CRBF12 

General Continuum  Enhanced Continuum General Continuum  Enhanced Continuum 
20 -0.557828944 -0.707665414 -0.554101713 -0.702249911 
40 -0.562003027 -0.713092558 -0.559083546 -0.708866867 
60 -0.562783387 -0.714109553 -0.560163466 -0.710334906 
80 -0.563057139 -0.714466747 -0.560591127 -0.71092506 

100 -0.563183965 -0.714632336 -0.560811415 -0.711232472 
120 -0.563252891 -0.71472236 -0.560943066 -0.711417822 
140 -0.563294462 -0.714776669 -0.56102963 -0.711540577 
160 -0.563321448 -0.714811928 -0.561090457 -0.711627355 

 
 

Table 6. CPU time (s) comparison for thick beam geometry 

Elements ANCF24 ANCF/CRBF18  ANCF/CRBF14 LINBEAM18 CRBF12 

1 11.623 11.596 7.012 7.410 7.247 

5 55.357 59.604 48.613 34.082 39.068 

15 378.821 420.711 381.033 120.938 132.092 

25 1003.928 1206.375 1079.887 268.585 292.275 

35 2056.425 2764.407 2510.736 488.024 566.244 

45 3489.381 5061.560 4506.753 759.079 953.694 

55 5471.129 8524.073 7254.975 1197.076 1672.551 

 
 

Table 7. CPU time (s) comparison for thin beam geometry 

Elements ANCF24 ANCF/CRBF18  ANCF/CRBF14 LINBEAM18 CRBF12 

1 224.146 114.151 18.809 165.359 81.404 

5 629.860 389.228 171.531 396.917 207.660 

15 1875.058 1631.783 1207.202 951.967 679.977 

25 3492.149 3933.574 3759.607 1593.738 1312.408 

35 7341.493 9709.677 8656.744 2332.738 2374.667 

45 12461.359 16931.749 14191.537 3230.719 3668.342 

55 18738.160 28308.096 23652.541 4876.967 5846.339 
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Figure 1.   Three-dimensional ANCF fully parameterized beam element  
 
 
 

 
 

Figure 2. Element coordinates 
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Figure 3. Numerical tests on proposed elements 

 
 

 
Figure 4. Pendulum tip X -displacement comparison ( 25 ANCF24 elements,  

25 ANCF/CRBF18 elements,   25 ANCF/CRBF14 elements, 
 25 Commercial FE code beam elements) 
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Figure 5. Tip X -displacement normalized RMS error for higher order ANCF/CRBF 

elements  

( ANCF/CRBF18 element, ANCF/CRBF14 element) 

 
Figure 6. Longitudinal strain convergence for ANCF24 element ( 25 elements, 

 35 elements, 45 elements) 
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Figure 7. Longitudinal strain comparison between higher order ANCF/CRBF elements 

( 55 ANCF/CRBF18 elements, 55 ANCF/CRBF14 elements) 

 
Figure 8. Longitudinal strain normalized RMS error for higher order ANCF/CRBF elements  

( ANCF/CRBF18 element, ANCF/CRBF14 element) 
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Figure 9. Shear strain convergence for ANCF24 element ( 25 elements, 

 35 elements, 45 elements) 

 
Figure 10. Shear strain comparison between ANCF24 and ANCF/CRBF18 elements  

( 35 ANCF24 elements, 45 ANCF/CRBF18 elements) 
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Figure 11. Shear strain normalized RMS error for ANCF/CRBF18 element 

 
Figure 12. Pendulum tip  X -displacement comparison for linear elements ( 25 

ANCF24 elements, 95 LINBEAM18 elements, 95 CRBF12 elements) 
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Figure 13. Tip X -displacement normalized RMS error for lower order linear elements  

( LINBEAM18 element, CRBF12 element) 

 
Figure 14. Longitudinal strain comparison between ANCF24 and LINBEAM18 elements  
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( 25 ANCF24 elements, 115 LINBEAM18 elements) 
 

 
Figure 15. Longitudinal strain normalized RMS error for LINBEAM18 element 

 
Figure 16. Longitudinal strain comparison between ANCF/CRBF18 and CRBF12 elements  
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( 55 ANCF/CRBF18 elements, 115 CRBF12 elements) 
 

 
Figure 17. Longitudinal strain normalized RMS error for CRBF12 element 
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