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Abstract 
In this paper, a new continuum-based pantograph/catenary model based on the absolute nodal 
coordinate formulation (ANCF) is proposed and used to develop an effective method to control 
the contact force which arises from the pantograph/catenary interaction. In the proposed new 
model, only one ANCF gradient vector is used in the formulation of the pantograph/catenary 
contact conditions, thereby allowing for using the proposed approach for both fully 
parameterized and gradient deficient ANCF finite elements. The proposed contact formulation 
can also be considered as a more general sliding joint formulation that allows for the use of the 
more efficient gradient deficient ANCF finite elements in modeling very flexible cables. A three-
dimensional multibody system (MBS) model of a pantograph mounted on a train is developed 
using a nonlinear augmented MBS formulation. In order to take into account the catenary large 
deformation, ANCF finite elements are used. The contact between the pantograph and the 
catenary system is ensured using a sliding joint constraint whereas the contact between the rail 
vehicle wheels and the train track is modelled using an elastic contact formulation. In addition to 
the use of the new MBS approach to model the pantograph/catenary interaction, the contact force 
between the pantograph and the catenary is computed using a simpler lumped parameter model 
which describes the pan-head and the plunger subsystem dynamics. In order to reduce the 
standard deviation of the contact force without affecting its mean value, a control actuator is used 
between the pan-head and the plunger. To this end, three types of control laws for the control 
action are designed to improve the contact quality both in the transient phase and in the steady 
state phase of the pantograph/catenary interaction. The first control law proposed features a 
feedback structure whereas the second and the third control strategies employ a feedback plus 
feed-forward architecture. In order to demonstrate the effectiveness of the proposed method, the 
results of a set of numerical simulations with and without the controllers are presented. 
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Introduction 

Pantograph catenary systems power the world’s fastest trains because electricity is the only 

viable method to power trains at speeds over 300 km/h.1-3 While operating at such high speeds, 

maintaining stability in the catenary system as well as in the pantograph system becomes a 

primary design goal. Control systems can be employed in order to help the system to operate 

nominally even under harsh operating conditions. In order to design effective control systems, 

accurate modeling of the dynamics of the system components is required.4 Therefore, in this 

investigation the absolute nodal coordinate formulation (ANCF) is used to model the catenary 

whereas the pantograph is modeled using rigid MBS dynamics.5 The proper functionality of the 

current collection system is determined by its dynamic behavior which results from the 

pantograph/catenary interaction; thus, this must be carefully analyzed.6 Particularly, the accurate 

prediction of the time evolution of the contact force between the pantograph strips and the 

catenary wire has been found to be a key metric in assessing the performance of this form of 

energy collection system. The variation of the interaction force between the pantograph and the 

catenary can be due to different factors such as the vibration of the car body or the presence of 

adverse weather conditions.7 In the worst-case scenario, these factors can lead to a complete loss 

of contact or damage of the railway infrastructure. In order to maintain pan-head/catenary 

contact, the sliding contact between the pantograph strips and the catenary wire is imposed 

through the action of an uplift force exerted by an actuator on the pantograph lower arm. If the 

uplift force is too large, a large contact force between the pantograph strips and the catenary wire 

is generated which can lead to escalated wear of the components in contact due to the large 

friction force. On the other hand, if the applied uplift force is too weak, the contact force 
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produced between the pantograph/catenary system is too small, which can lead to a loss of 

contact, increasing the probability of electrical arcing. Thus, the stability of the electrical contact 

is the most important goal during the design of the current collection and transmission systems 

for high speed trains. One possible method for achieving this goal is the application of an active 

controller on the pantograph which could improve the contact quality and help achieve longer 

operation cycles. The active control of the pantograph is realized by allocating a control actuator 

between the pan-head and the plunger of the pantograph. The goal of this control strategy is to 

reduce the standard deviation value of the contact force without affecting its mean value. 

Because the resulting dynamical model of the problem at hand is highly nonlinear, the design of 

a viable control strategy is a challenging task. Therefore, in the design of an effective controller, 

the adjoint method of optimal control theory seemed appropriate from a mathematical viewpoint 

whereas the virtual passive control method seemed appropriate from the physical point of view.8-

9 Inspired by both methods, a control action featuring a combined feed-forward plus feedback 

architecture was designed in order to improve the contact quality in both the transient phase and 

in the steady state phase of the pantograph/catenary interaction. In particular, the control strategy 

adopted in this investigation features a derivative structure for the control action integrated with 

three types of time-varying laws for the controller damping characteristics. In this paper, this 

particular type of control strategy featuring a feedback plus feed-forward architecture is referred 

to as dynamic damping control. The performance of the designed controller is evaluated by 

comparing the mean and the standard deviation values of the contact force with and without the 

controller applied to the system. Numerical simulations showed that the application of the 

designed controllers on the nonlinear pantograph/catenary system produced a significant 

improvement in the contact quality. Finally, the robustness of the proposed controllers was 



5 
 

assessed by testing the designed controllers at greater uplift forces. Even in the case of a different 

uplift force, numerical simulations showed that the proposed control strategies significantly 

improved the contact quality between the pantograph pan-head and the catenary wire, thus 

validating the effectiveness of the proposed controllers and widening the scope of their 

application to various high speed rail infrastructures. 

 In addition to the control strategy proposed in this investigation, a new method for 

modeling the pantograph/catenary interaction is proposed. Unlike the method proposed by Seo et 

al.5 which requires the use of three gradient vectors when fully parameterized ANCF finite 

elements are used to model the pantograph/catenary interaction, the new method proposed in this 

investigation requires the use of only one gradient vector to form a frame at the point of contact 

between the pan-head and the catenary. Therefore, the proposed new method can be used with 

both gradient-deficient and fully parameterized ANCF finite elements. The formulation of the 

contact conditions in terms of one gradient vector is presented. The new approach presented in 

this paper for modeling the pantograph/catenary interaction can be used with the augmented 

constraint contact formulation, the embedding constraint contact formulation, or a penalty-based 

elastic contact formulation. In this investigation, the new formulation is used with the embedding 

constraint contact formulation in order to demonstrate how the arc length parameter (non-

generalized coordinate) can be systematically eliminated using the algebraic contact conditions. 

The steps for eliminating the arc length parameter at the position, velocity, and acceleration 

levels are outlined, and it is shown how the arc length parameter and its first and second time 

derivatives can be expressed in terms of the pan-head and catenary generalized coordinates and 

their first and second time derivatives. 
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 Because the new sliding joint formulation, which is one of the main contributions of the 

paper, does not require the use of a complete set of gradients, efficient continuum-based catenary 

models can be developed and integrated with detailed vehicle model. This formulation is based 

on a new kinematical description that allows using low order finite elements to obtain a more 

efficient solution for the pantograph/catenary interaction. As reported in the literature, the 

constraint and elastic contact formulations, if implemented correctly, give the same nominal 

values of the forces because the elastic contact can be considered as a penalty approach for 

imposing the same conditions. For the control study conducted by the authors, the focus is on 

controlling the nominal value of the contact force, and therefore, the constraint approach is more 

suited because it filters out high frequency oscillations resulting from the use of the penalty 

approach. Because the focus of the paper is on controlling the nominal value of the contact force, 

both approaches should lead to the same conclusions. It is also important to point out that the 

vehicle dynamics can have a significant effect on the pantograph/catenary interaction. The 

computational efficiency, however, is more influenced by the high frequencies in the system. 

Increasing the number of rigid body degrees of freedom does not have the same adverse effect as 

increasing the frequencies which force the integrator to take a very small time step. The high 

frequencies in the model used in this paper are mostly attributed to the finite element catenary 

model, which is also a nonlinear model that requires numerical integration. Therefore, reducing 

the level of vehicle details will not be of significant help in improving the efficiency. It is 

important to mention that that the continuum-based catenary model used in this investigation 

does not employ a modal or linear approach to model the catenary forces. Furthermore, having a 

detailed coupled analysis is always a step forward toward developing more accurate models. 
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MBS pantograph/catenary model 

In this section, the MBS pantograph/catenary model used in this investigation is described. The 

approach presented in this investigation is general and can be applied to different railroad vehicle 

models, including detailed vehicle models in which the wheel/rail contact is described using a 

three-dimensional contact formulation. 

 

MBS pantograph model 

The pantograph system used in this investigation was developed to represent a Faiveley 

Transport CX pantograph.7 A general MBS model is employed to describe the pantograph which 

is assumed to consist of six rigid bodies connected to the car body of the rail vehicle, as shown in 

Figure 1.  The data for the bodies, including the masses, inertial properties, global initial 

positions, and initial orientations expressed in terms of Euler angles, are given in Table 1. The 

local reference frame for each body is located at the center of mass and oriented such that the 

orientation of the axes is defined to be aligned with the principal inertia directions of each body. 

The kinematic constraints used in this study are described in Table 2, where eight standard joints 

are used to constrain the motion of the pantograph. The contact between the pantograph head and 

the catenary is described using a sliding joint. 

 

 MBS rail vehicle model 

The full rail vehicle model used in this investigation and shown in Figure 2 consists of fourteen 

rigid bodies, forty-eight bushing elements, eight bearing elements, and two revolute joints. A 

three-dimensional wheel/rail contact, described later in this section, is used. All bodies of the 

vehicle model are assumed to be rigid. The data for the vehicle model are provided in Table 3. 
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The vehicle consists of the car body and two bogies; each bogie includes six bodies, two 

wheelsets (front and rear), two equalizers (left and right), a frame, and a bolster. This vehicle 

model includes fifty six force elements, including forty eight bushings and eight bearings. The 

bushing elements connect the equalizers to the frame and the frame to the bolsters, while the 

bearings are used to connect the wheelsets to the equalizers. Each of the bolsters is attached to 

the car body using a revolute joint. 

 

Catenary system 

The function of the catenary system is to provide electrical power to the train. The catenary is 

modeled as a flexible body because of its geometric and material properties. The wire that 

provides the pantograph with electrical power is called the contact wire. A catenary contact wire 

typically has a cross-sectional area of roughly 65-150 mm2 and a span of 50-65 m and is 

composed of a copper alloy.10 Based on the type of trains operating on the catenary system, the 

contact wire may carry between 1,000-25,000 V of power along its length. In addition to the 

contact wire, in its most basic and simplified configuration, the catenary system consists of a 

messenger wire, droppers, and support poles as shown in Figure 3. The messenger wire supports 

the contact wire through droppers between the support poles. The droppers are located between 

the messenger and contact wires; their purpose is to keep the contact wire parallel to the ground 

by preventing it from assuming curved shapes. This ensures that power is consistently delivered 

to the pantograph pan-head. The droppers are usually composed of a copper alloy and carry 

tension only, that is, they have virtually zero stiffness in compression. The support poles provide 

support to both the messenger and contact wires at their respective ends. The contact wire is 

constantly under tension which is the result of the use of tensioning devices and mechanisms. 
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The tension reduces the sag of the contact wire under its own weight and increases the wave 

propagation speed, which helps maintain continuous contact with the pantograph pan-head. The 

tension in catenary systems varies based on the operating speed of the train in the rail corridor. 

Additionally, the catenary contact wire is supported by registration arms at the support poles 

which can move horizontally in order to accommodate the longitudinal oscillations of the contact 

wire.5 The interaction of the catenary contact wire with the pantograph pan-head causes wear to 

both the wire itself and more crucially to the pan-head. This wear can be caused by both contact 

friction and electrical arcing. The electrical arcing occurs when there is a loss of contact between 

the pan-head and the contact wire, which can inflict very heavy damage on both bodies. More 

importantly, the loss of contact translates to loss of power to the train. Control systems that help 

reduce the fluctuations in the contact forces between the pan-head and the contact wire can be 

used in order to improve the pantograph/catenary system operation, as is shown in this 

investigation. 

 

ANCF finite element analysis 

When excited by an external force arising from the contact with the pantograph, the contact wire 

undergoes large and non-linear deformation which needs to be modeled accurately in order to 

realistically simulate the dynamics of the entire system. Several methods have been used in order 

to model the contact wire, including the Euler-Bernoulli beam, the Fourier sine expansion 

method, the ANCF cable element, and the ANCF fully parameterized beam element.6,11-13 There 

has been a significant amount of research invested in modeling and improving the dynamics of 

the catenary system because its design affects the operational speed of the train. The contact with 

the pantograph introduces external forces into the catenary system which creates transverse 
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waves through the contact wire that have a certain propagation speed. The train speed cannot 

exceed the catenary wave propagation speed for safety reasons, and the wave reflection effects 

must also be taken into account in the design of the catenary as well as the operation of the 

train.14 In order to include the non-linear large deformation effects, the ANCF cable element was 

selected to model the catenary contact wire and the messenger wire in this investigation. The 

ANCF cable element utilizes global position and slope coordinates to define the element 

displacement field.15,16 In the ANCF kinematics, the global position vector  , tr x  of an 

arbitrary point P on the flexible body is defined as      , t tr x S x e , where  Tx y zx  is 

the vector of the element spatial coordinates, t  is time,  S S x  is the matrix of element shape 

functions, and ( )te e  is the vector of the element nodal positions and slopes. For an element j  

on the flexible catenary modeled with cable elements, the vector of the nodal coordinates 

( )j j te e  is defined as follows: 

   , 1,2
TTjk jk jk

x k    
e r r                                                              (1) 

where k  refers to the element node number,    1 2
TT Tj j j    

e e e  is the vector of the element 

coordinates, ( , )j j tr r x  is the global position vector of the node j , and ( , )j j
x x tr r x  represents 

the element gradient at the respective node j . Advantages of using the ANCF method to analyze 

large deformations in highly flexible bodies include a constant mass matrix, zero Coriolis and 

centrifugal effects, and guaranteed continuity of slopes and rotations at the nodal points. 

Additionally, ANCF finite elements capture a higher number of deformation modes compared to 

other finite element formulations which only capture selected or specified modes and 

frequencies. 
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Catenary ANCF finite element model 

The catenary model used in this investigation is based on a simple and basic catenary 

configuration, which consists of support poles, a messenger wire, droppers, and the contact wire. 

Assumptions which did not drastically alter the dynamics of the system were applied to the 

catenary model; examples include the dropper elements being modeled as spring-damper 

elements which represented the stiffness and damping characteristics of a physical dropper. 

Additionally, in this work, the staggering of the messenger wire and of the contact wire has been 

neglected for simplicity. The contact wire was modeled using the three-dimensional ANCF cable 

element with the material properties of copper. The messenger wire was also modeled using the 

three-dimensional ANCF cable element and the entire catenary system was represented by a total 

of 20 spans, where each span is 56.25 m long. The catenary model is showed in the Figure 4 and 

is described in Table 4. Furthermore, the tensioning of the contact wire as well as the messenger 

wire is very important in modeling the dynamics of the catenary system. In the finite element 

model described in this investigation, instead of directly applying nodal forces at the ends of the 

contact and messenger wires, equivalent nodal displacements are applied to all the nodes that 

coincide with the support pole positions in order to obtain a suitable pre-tensioning of the 

catenary. The magnitudes of the displacement boundary conditions applied to the catenary 

system are calculated based on the tensioning required in the contact and messenger wires, which 

is 20000 N and 14000 N respectively. A preliminary simulation is performed to compute the 

stable equilibrium configuration of the catenary system. Using the equilibrium configuration 

from the initial pre-strained straight configuration of the contact and messenger wires, a separate 
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set of dynamic simulations are performed with the pantograph and the complete train vehicle 

model in order to tune the parameters of the proposed control strategies. 

 The catenary model developed in this paper does not neglect the dropper stiffness in the 

case of tension. At each time instant, the state of every dropper is individually checked for 

tension or compression in order to determine its tension or compression state. For simplicity, the 

slackening of the droppers is neglected in this investigation. Nonetheless, this nonlinear slacking 

effect can be a topic for future studies. 

 

Pantograph/catenary contact kinematics 

Two approaches can be used to model the pantograph/catenary contact, the constraint and elastic 

contact approaches.17 The constraint approach will be used in this study in order to avoid the 

oscillations and high frequencies that result when the elastic contact approach is used. This is 

particularly important when embarking on a new control investigation as the one considered in 

this paper. To this end, a sliding joint formulation that requires the use of the concept of the non-

generalized coordinates is used.  

 The sliding joint is used to describe the movement of one body along another when the 

two bodies are rigid or flexible. Specifically, the sliding joint can be used to model the relative 

motion between the rigid pan-head of the pantograph and the flexible catenary cable.5 To this 

end, considering a contact point P , the constraint equations ( , , , )s s p c s tC C q e  which represent 

the sliding joint can be expressed as s p c  C r r 0 where ( , )p p p tr r q  is the global position 

vector of the contact point P  on the pan-head, ( , , )c c c s tr r e  is the global position vector of the 

contact point P  on the catenary, ( )p p tq q  is the vector of generalized coordinates of the 
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pantograph,  c c te e  is the vector of the nodal coordinates of the catenary, and  s s t  is the 

non-generalized coordinate which identifies the location of the contact point on the catenary 

cable. An alternate formulation of the sliding joint constraint equations which employs the unit 

vectors of a tangent frame defined on the catenary cable is the following: 

   
   
   

Tc p c
t

Ts c p c
t

Tc P c
t

 
 
 

 
 
 
 



 



0

i r r

C j r r

k r r

                                                                                                    (2) 

where ( , , )c c c
t t s ti i e , ,( , )c c c

t t s tj j e  and ( , , )c c c
t t s tk k e  are the three unit vectors of a tangent 

frame defined on the catenary cable at the contact point.18 In this investigation, a new definition 

of a contact frame that employs only one gradient vector instead of three gradient vectors is 

proposed. This allows for developing a general sliding joint formulation that can be used with 

both ANCF fully parameterized and gradient deficient finite elements. The resulting set of the 

constraint equations models the pantograph/catenary interaction and it can be used to develop 

two general approaches to solve the contact problem; the augmented and embedding techniques. 

The first approach employs the constraint equations and Lagrange multipliers, while in the 

second approach, the arc length parameter is eliminated to reduce the number of constraint 

equations to two. In this investigation, the embedding technique is used. The new sliding joint 

formulation which requires the use of one gradient vector only to define the contact frame and 

the procedure used to systematically eliminate the arc length parameter are introduced in later 

sections of this paper. 

  

Wheel/rail contact kinematics 
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In this study, the assumption of a non-conformal wheel/rail contact is made. The location of the 

wheel/rail contact points are determined online by solving a set of nonlinear algebraic equations. 

The solution of these nonlinear equations defines the wheel and rail surface parameters. The four 

algebraic equations           1 2 1, ,
T T Tr w r r w r w r   0 0 0t r r t r r t n , and  2

Tw r  0t n , where 

superscripts w  and r  refer, respectively, to wheel and rail, wr  and rr  are the global position 

vectors of the potential contact point on the wheel and rail, respectively,  1
wt  and 2

wt  are the 

tangents to the wheel surface at the contact point, wn  is the normal to the wheel surface at the 

contact point, 1
rt  and 2

rt  are the two tangents to the rail, and rn  is the normal to the rail. The 

solution of the nonlinear algebraic equations ensures that the contact points on the wheel surface 

and on the rail surface have the same coordinates along the two tangents 1
rt  and 2

rt , and the 

tangent planes at the contact point are the same for the two surfaces. These equations can be 

written in a vector form as  , , , , ,w r r w r w t C q q s s 0 , where rq  is the vector of generalized 

coordinates of the rail, wq  is the vector of generalized coordinates of the wheel, rs  is the vector 

of non-generalized coordinates or surface parameters of the rail, ws  is the vector of non-

generalized coordinates or surface parameters of the wheel.17 Given the vectors of the 

generalized coordinates of the wheel and rail wq  and rq , the nonlinear algebraic equations for 

each wheel and rail contact can be solved for the surface parameters using an iterative Newton-

Raphson solution procedure. To this end, the following equation is used in the Newton-Raphson 

iterations:    w,r w w w,r r r w,r        C s s C s s C , where ws  and rs  are the Newton 

differences.19 
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MBS dynamic equations 

Consider a general multibody system which consists of rigid bodies, flexible bodies, and very 

flexible bodies subject to a set of kinematic constraints and external forces. The vector of system 

generalized coordinates p  can be written as 
TT T T T

r f  p q q e s , where rq  defines the 

reference coordinates of the bodies, fq  defines the vector of the system small deformations when 

the floating frame of reference (FFR) formulation is used, e  defines the vector of the system 

large deformations, and s  defines the vector of non-generalized coordinates or surface 

parameters. While an elastic wheel/rail contact and embedding sliding joint formulations are 

used in this investigation, the algorithm developed allows for treating surface parameters as non-

generalized coordinates when an augmented wheel/rail contact and sliding joint formulations are 

used. Using an augmented Lagrangian formulation, the system equations of motion can be 

written using d’Alembert-Lagrange principle as follows: 

r

f

r f

T
rr rf rr

T
fr ff ff

T
eee

T

c

                                  

q

q

e

s

q q e s

M M O O C Qq
M M O O C Qq

QeO O M O C
0sO O O O C

λ QC C C C O






                                                                            (3)  

where λ  is the vector of Lagrange multipliers, rrM  is the mass matrix associated with the 

reference motion of the bodies, ffM  is the mass matrix associated with the system small 

deformation of the bodies modeled using the FFR formulation, rfM  is the mass matrix that 

defines the dynamic coupling between the reference motion and the small deformations, eeM  is 

the mass matrix of the ANCF finite elements, ,
r fq qC C , and eC  are the constraint Jacobian 

matrices associated with the coordinates r f,q q , and e , respectively, ,r fQQ , and eQ  are the 
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generalized forces associated with these coordinates,  and cQ  is a quadratic velocity vector 

which results from the differentiation of the constraint equations twice with respect to time.20  

 

New sliding joint formulation 

In this section, a new constraint formulation for the sliding joint is presented. This formulation 

can be used to model the contact between the pan-head and the catenary. Unlike the formulation 

used by Seo et al. which is applicable only to fully parameterized ANCF elements5, the 

formulation used in this investigation can be used with both fully parameterized and gradient-

deficient ANCF finite elements. This will allow for the development of more efficient catenary 

models as compared to the models that can be developed using the approach presented by Seo et 

al.. In the approach used by Seo et al., full parameterization is assumed, and three gradient 

vectors are required to define a tangent frame which depends on and requires the use of the three 

gradient vectors. In the method proposed in this section, on the other hand, one gradient vector is 

required.  

 

Constraint formulation 

Recall that the three constraint equations used to define the contact between the catenary and the 

pan-head were defined in the preceding section and can be rewritten as 

   0, 0
T Tc p c c p c

t t   r r i r r j , and   0
Tc p c

t r r k . In the approach used in this investigation, 

the use of unit vectors is not necessary, and only one gradient vector, 

     
1 2 3

T
c c c c
x x x x

   r r r r  is required. In this case, the three unit vectors c c
t t,i j , and c

tk  are 

replaced, respectively, by the three orthogonal vectors20,21: 
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 
 
 

   
     

   

 

 

1 2
1 3

22

1 22 1 3

13 2 3

0

c c
c cx x
x x

c c c c c c
x x x x

cc c c
xx x x

, ,

                             

r rr r

r r n r r n

rr r r

                         (4) 

In these equations,  c
x k

r  refers to the kth component of the gradient vector c
xr . Note that these 

three orthogonal vectors, which depend only on the gradient vector c
xr , are always well defined 

as long as the gradient vector c
xr  is not parallel to the vector  0 1 0

T
. In the case of the 

singular configuration in which c
xr  is parallel to the vector   0 1 0

T
, one can always use the 

following three orthogonal vectors20,21: 

 
 

2

1 22

0 0

0 0

0 10

c
x

c c c c
x x , ,

                       

r

r r n n                                       (5) 

Using the new orthogonal vectors, one can write the constraint equations for the contact between 

the catenary and pan-head as 

 
 
 

1

2

Tc p c
x

Ts c p c

Tc p c

 
 
 

 
 
 
 



 



r

n 0

n

r r

C r r

r r

                                                                                                       (6) 

These three algebraic equations are functions of one gradient vector only. In the case of the 

pantograph/catenary contact, these equations can be used to determine the arc length s  of the 

catenary centerline at which the contact occurs. Imposing these contact conditions at the 

position, velocity, and acceleration levels ensures that the pan-head remains in contact with the 

catenary. The same algebraic equations can also be used as the basis for developing an elastic 

contact formulation that allows pantograph/catenary separations. When ANCF finite elements 
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are used to model the catenary, the element spatial coordinate x  can always be written in terms 

of the arc length s , that is  x x s . Clearly, c
xr  and c

sr  are two parallel vectors and they differ 

by a scalar multiplier. Therefore, any one of these vectors can be used in the formulation of the 

preceding algebraic contact equations. 

 For the control study presented in this paper and in order to avoid discontinuities that 

result from the use of the elastic contact formulation, a constraint contact approach is used. There 

are two constraint contact formulations that can be developed, the augmented and the embedded 

constraint contact formulation. In both formulations, the arc length parameter is treated as a non-

generalized coordinate.22 In the first approach, the augmented constraint contact formulation, 

the arc length parameter s  is kept in the formulation and is treated as a coordinate that can be 

selected as a degree of freedom. In the second approach, the embedded constraint contact 

formulation, the arc length is systematically eliminated using the first equation 

  0
Ts c p c

e xC   r r r , while the other two equations, referred to as s
m C 0 , are not eliminated 

and are combined with the equations of motion using the technique of Lagrange multipliers. The 

embedded constraint contact formulation is discussed in the following section. 

 

 Embedded constraint contact formulation 

In this section, the embedded constraint contact formulation of the sliding joint is discussed. It is 

shown how one of the algebraic constraint equations of the sliding joint is used to systematically 

eliminate the arc length parameter. The procedure is demonstrated using the three orthogonal 

vectors of equation (4). 
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Elimination of the arc length parameter 

 The first constraint equation,   0
Ts c p c

e xC   r r r  can be used to systematically eliminate the 

arc length s . For a given set of generalized coordinates, this equation can be considered as a 

nonlinear equation in the arc length parameter s . An iterative Newton-Raphson algorithm can be 

used to solve for s  by iteratively solving the equation  s s
e es

C s C   , where  s s
e es

C C s   , 

and s  is the Newton difference. One can show that 

     Ts s c c cpT c
e e x xs

C C s s s        r r r r , where cp c p r r r . Because of the simplicity of 

the geometry of the catenary, the scalar      Ts c c cpT c
e x xs

C s s     r r r r  will be different 

from zero. This condition is necessary in order to be able to systematically eliminate the arc 

length s . 

 In order to impose the other two constraints s
m C 0  at the position, velocity, and 

acceleration levels, one must define the Jacobian matrix of these constraints as well as their first 

and second time-derivatives. The first constraint leads to     0s s
e e s

C C s  
q

q , where 

TT pT   q e q  is the vector of the generalized coordinates of the pantograph and catenary, 

 s s s s p
e e e eC C C C         q

q e q  is the Jacobian matrix associated with the vector of 

generalized coordinates q , and  s s cpT c cT c
e e xs x ss

C C s    r r r r  is the Jacobian matrix associated 

with the arc length parameter s . Using the assumption of rigid pan-head, one can show that  

   Ts s s p cp cT cT p
e e e x x xC C C             q

e q r S r S r L                                (7) 
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In this equation, p p p p p p p p p p               L r q r R r θ I A u G , where I  is the 3 3  

identity matrix, 
Tp pT pT   q R θ , pR  is the vector the defines the global position vector of the 

origin of the pan-head coordinate system, pθ  is the set of parameters used to define the 

orientation of the pan-head coordinate system, pA  is the transformation matrix that defines the 

orientation of the pan-head coordinate system, pu  is the skew symmetric matrix associated with 

the vector pu  that defines the location of the contact point on the pan-head with respect to the 

pan-head coordinate system, and pG  is the matrix that relates the angular velocity vector pω  

defined in the pan-head coordinate system to the time derivatives of the pan-head orientation 

coordinates pθ , that is p p pω G θ .  It follows that 

 
 

 
 

 
 

 
 

s s s s
e e e e

s s s s
e e e es s s s

C C C Cd
s , s , s

dtC C C C
 

       
             
       
       

q q q qq q q q                (8) 

For example, in the case of a rigid pan-head in contact with the ANCF catenary, one can show 

that 

        cpT c cpT c s s s
x x e e es s

s C C C    
q

r v v r q                                      (9) 

where c
x xv S e , c v Se , p p p p  v R ω u , pω  is the vector that defines the absolute angular 

velocity of the pan-head body coordinate system, p p pu A u  is the vector that defines the 

position of the pan-head contact point with respect to the pan-head coordinate system, and 

cp c p v v v .  

 

Derivatives of the contact equations 
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The derivatives of the contact equations can be written in simpler forms by using the following 

definitions:  

 

 2 2 22

p p p p p p p

c c
x x x xs

c c
x x x xs xss xs

d dt s

d dt s s s

     
   
     

a R α u ω ω u

r r S e r

r r S e S e r r



  
     

                                   (10)  

where pα  is the angular acceleration vector of the pan-head body coordinate system. Using these 

definitions, one can write  

      s s s
e e ec s

s C Q C  
q

q                                                            (11) 

In this equation 

        2 22 2 2s cpT c cpT c cT c p
e x xs xss x s ss cc

Q s s s s     r r r S e r r S e r a       ,          (12) 

and  p p p p p p p p
c    a ω ω u A u G θ  .  

 A virtual change in the coordinates leads to    s s s
m m m s

s    
q

C C q C 0 . Similarly, 

one can write the constraints at the velocity level as    s s s
m m m s

s  
q

C C q C 0   . It follows that 
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    


  
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q q
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                                   (13) 

These equations show that the Jacobian matrix of the constraints s
m C 0  must be modified in 

order to account for the elimination of the arc length parameter s . One can show that 
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One can show that c r e , c s r , and c
x r e  can be written in a straight forward manner in 

terms of the shape function and its derivative as well as x s  . It can be shown also that 1
c n e  

and 2
c n e  can be written, respectively, as  

 
 
 
 

1 1
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                                                  (15) 

where 

   
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                                  (16) 

While the constraint equations at the acceleration level, s
m C 0 , can always be obtained by 

direct differentiation of the constraint equations at the velocity level, a simple approach can be 

used to define the second derivatives of the constraint functions. Consider a constraint in the 
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form 1 2cpT c
i , i , r n 0 . The second derivative of this constraint with respect to time can be 

written as   

2cT cp cpT c cpT c
i i i  n r r n r n 0                                                               (17) 

In this equation, 
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                                               (18) 

Using the preceding two equations, and writing s  in terms of the generalized accelerations q  as 

explained previously in this section, one can show that the constraint equations at the 

acceleration level s
m C 0  can be written as 

 
   

   
s s
m ess s s

m m ms c
e s

C

C

 
    
 
 

q

q

C
C C q Q 0                                                (19) 

where  s
m c

Q  is a vector that is quadratic in the velocities. The two scalar equations in equation 

(19) can be combined with the equations of motion and other constraint equations using the 

technique of Lagrange multipliers, as previously described in this paper. 

 

Pantograph/catenary contact regulations 



24 
 

The contact between the pan-head and the catenary is defined by a specific European Norm 

EN50367. The most important parameters used to evaluate the quality of the electrical contact 

are the mean contact force, the standard deviation in the contact force, and the maximum contact 

force. The regulations that describe the allowable limits for the contact between the pan-head and 

the catenary are as follows; Mean Contact Force: 20.00097 70NmF v 
 
, where v  represents 

the velocity of the train; Standard Deviation: 0.3max mF   ; Maximum Contact Force:  

350NmaxF  ; Maximum Catenary Wire Uplift at Steady Arm: 120 mmupd  ; Maximum 

Pantograph Vertical Amplitude: 80mmz ; Percentage of Real Arcing: 0.2%NQ . In this 

investigation, the dynamics of the pantograph catenary computational model were validated 

using each of the above stated thresholds except the percentage of real arcing. 

 

Adjoint method for optimal control design 

In this section, the adjoint method for optimal control design that will be used in this 

investigation is briefly reviewed. Consider a set of n  differential equations which describes the 

state evolution of a dynamical system as  z f , where ( )tz z  is the state vector of the 

dynamical system, ( , , )tf f z u  is the system state function, and ( )tu u  is the vector of the 

control actions.  Adopting a combination of feedback and feed-forward control strategy, the 

structure of the control action u  can be pre-established considering a set of time-varying 

parameters ( )tγ γ  such that ( , , )tu u z γ . The central idea of optimal control theory is to derive 

a time history of the control parameters γ  in order to minimize a cost functional 0( )J J z , 

where 0z  is the known system initial state vector. Considering a fixed time domain T  for the 

control actuation, a general form of the cost functional can be expressed as: 
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0

T

T
J h gdt                                                                                                                   (20) 

where ( , , )h h t z z  is the terminal cost function, ( , , , , )g g t z z u u   is the current cost function, 

( )tz z   is the reference trajectory, and ( )tu u   is the reference control action. Thus, the 

problem at hand is to minimize the cost functional J  subjected to a set of differential constraint 

equations which represents the system dynamical model. A method to address the problem under 

study is to resort to Pontryagin’s minimum principle.23 This algorithm is based on the adjoint 

method and can be used to obtain the set of differential-algebraic equations whose solution 

corresponds to the minimum of the cost functional.24 Therefore, to accomplish this task, the key 

concept is to exploit the adjoint method which considers the system dynamical model as a set of 

differential constraint equations for the minimization problem under consideration.25 To this end, 

the system state-space equations of motion can be adjoined to the cost functional J  to get an 

augmented cost functional 0( )J J z  defined as follows: 

  
0

T T

T
J h g dt    v f z                                                                                              (21) 

where ( )tv v  represents a co-state or adjoint state vector which defines the Lagrange 

multipliers corresponding to the adjoining process of the system dynamical equations to the cost 

functional J . To simplify the derivation of the necessary conditions which lead to minimum cost 

functional, a Hamiltonian function ( , , , , )H H t z z u u   can be introduced as  
TH g v f . 

According to Pontryagin’s minimum principle, an optimal set of time histories for the system 

trajectory * *( )tz z  and for the control parameters * *( )tγ γ  corresponds to a minimum of the 

Hamiltonian function * * * *( , , , , )H H t z z u u  . Thus, the augmented cost functional J  can be 
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reformulated in terms of the Hamiltonian function H  using the integration by parts rule as 

follows: 

       
0 00

T TT T T T

T T T
J h H dt h H dt        v z v z v z v z                                         (22) 

For the problem under consideration, the analytical functions subjected to the minimization 

procedure are the system state vector z  and the vector of the control parameters γ . Hence, by 

using calculus of variation theory,26 the first variation of the augmented cost functional J  with 

respect to the system state vector z  and with respect to the vector of the control parameters γ  

yields: 

 
00

T TT T
TT

T

h H HJ dt   
                           

    
 v z λ z v z γ

z z γ
                                  (23) 

Using the definition of the Hamiltonian function H , the analytic expression of the first variation 

of the augmented cost functional can be reformulated as: 

        0 00

T T TT TT T T T T T

T

J dt dt            μ v z v z φ A v v z ψ B γ                     (24) 

where   A f z  represents the sensitivity matrix of the system state function f  with respect to 

the system state z ,   B f γ  represents the sensitivity matrix of the system state function f  

with respect to the vector of the control parameter γ , h  μ z  represents the sensitivity vector 

of the terminal cost function h  with respect to the state vector z , g  φ z  represents the 

sensitivity vector of the current cost function g  with respect to the system state z , and 

g  ψ γ  represents the sensitivity vector of the current cost function g  with respect to the 

control parameter vector γ . Considering that the initial state 0z  is given and assuming that the 

time domain T  is fixed, the necessary conditions which identify the minimum of the cost 
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functional J  can be derived using the fundamental theorem of the calculus of variation to yield: 

27 
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    
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z f z z v φ A v

v μ ψ B v 0

 
                                                             (25) 

These resulting differential-algebraic equations constitute a coupled nonlinear two-point 

boundary value problem which defines the minimum cost functional. The differential-algebraic 

two-point boundary value problems are challenging to solve analytically but can be solved 

effectively using certain numerical procedures. For instance, among the gradient-based 

optimization techniques the iterative adjoint-based control optimization algorithm is an efficient 

and effective computational method to design control actions for nonlinear mechanical 

systems.28-29 

 

Practical implementation of optimal controller 

The suspension used in vehicle dynamic systems can be classified into three categories, each of 

which could be employed to control the dynamic response of the pantograph. The three 

categories that can be implemented into the pantograph include passive, semi-active, and active 

suspension systems. Passive systems have no feedback and thus do not have the ability to filter 

out undesired frequencies or stabilize a system in response to operative conditions which differ 

from the desired conditions. These systems also do not have the ability to vary the spring, 

damping, or actuator forces as a function of time. However, these systems are inexpensive 

compared to active systems as there are no electronics or measurement devices required. Active 

controllers, however, are often implemented in dynamic systems to effectively eliminate the 

undesired motion of the system. The active systems can be implemented via sensor data obtained 
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from load cells and accelerometers within the system under control. These data are then analyzed 

in real time by an onboard computer and used to control actuator devices in accordance with the 

sensor input. This can be costly to implement compared to the passive system because of the 

additional cost of purchasing and maintaining the input sensors and output devices. Semi-active 

suspension systems are an attractive alternative to these systems due to the increased 

performance over the passive system and the decreased economic investment as compared to the 

active system. These characteristics can be obtained through the use of time-variable dampers 

which utilize control devices. The smart fluid technology has gained attention for its ability to 

rapidly change its damping coefficient by changing the fluid properties within the damper from a 

free-flowing liquid to a semi-solid state. There are two methods in which these smart fluid 

dampers are controlled: electro-rheological (ER) and magneto-rheological fluids (MR). In ER 

systems, the fluid within the damper is excited by inducing a large electric field within the 

damper, whereas the MR systems change the viscosity of the fluid by creating a magnetic field in 

the damper.30 MR dampers are able to produce larger dynamic forces and operate at a greater 

temperature range than ER dampers, and thus MR dampers have drawn more attention from 

researchers.31 The MR damper has been studied in a semi-active secondary suspension system 

on a full-sized railway vehicle as a possible means to control the vertical, pitch, and roll 

vibrations of the rail vehicle trucks. This system has also been applied to determine if improved 

ride quality on railway vehicles is feasible and effective.32 Additionally, MR dampers have been 

utilized in the seats of commercial vehicles.33 

 

Pantograph/catenary contact force 
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While a detailed MBS vehicle model that includes a flexible pantograph/catenary system is used 

in this investigation and such a model can be used to determine the pantograph/catenary normal 

contact forces, in this section a simpler two degree of freedom model is used to obtain an 

approximation of the nominal value of the contact force. This simpler model, in addition to 

providing a smoother representation of the normal contact forces, is similar to the models 

commonly used in the literature. The MBS solution for the contact forces was found to be in a 

good agreement with the results of the simpler model except for the very high frequencies 

resulting from the use of the ANCF finite elements.  

 A simple lumped parameter model of the pan-head/plunger subsystem is developed in 

this section in order to obtain an estimation of the contact force resulting from the 

pantograph/catenary interaction. This simple force model will be used to evaluate the controller 

performance before its application to the more detailed MBS vehicle model that includes the 

ANCF catenary. A schematic representation of the pan-head/plunger subsystem is shown in 

Figure 5, where   1 1( )y y t ,  1 1( )y y t  ,  and 1 1( )y y t   are, respectively, the displacement, 

velocity, and acceleration of the pan-head, 2 2 ( )y y t ,  2 2 ( )y y t  , and  2 2 ( )y y t   are, 

respectively, the displacement, velocity and acceleration of the plunger, 1m  is the mass of the 

pan-head, 2m  is the mass of the plunger, g  is the gravitational acceleration, sk  is the stiffness of 

the pantograph secondary suspension, sl  is the undeformed length of the secondary suspension, 

sc  is the damping of the pantograph secondary suspension, ( )c cF F t  is the contact force 

between the catenary and the pan-head, and   ( )p pF F t  is the force exerted by the pantograph 

upper arm. The equations of motion which describe the dynamic behavior of the pan-

head/plunger subsystem are the following: 



30 
 

  
 

 

  
 

 

2 1 2
1 1 1 2 1 2 12

1 2

2 2 1
2 2 2 1 2 1 22

2 1

s s s c

s s s p

y ym y k y y l c y y m g F
y y

y ym y k y y l c y y m g F
y y









       


       


  

  
                                       (26) 

Thus, an approximation of the pantograph/catenary interaction force can be computed as 
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The reduction of the variance in the contact force between the pantograph and the catenary 

without affecting its mean value is the objective for the design of a control system featuring a 

feed-forward plus feedback architecture. To this end, the preceding equation for the estimation of 

the pantograph/catenary interaction force is used to assess the controller performances. 

 

Controllers design and numerical results 

In this section, the design of the control system is discussed. Numerical results are also presented 

in order to demonstrate the effectiveness of the proposed control strategy in improving the 

behavior of the pantograph/catenary system when complex railroad vehicle models that include 

significant details are considered. While the new sliding joint formulation proposed in this paper 

can be used with both gradient deficient and fully parameterized ANCF beam elements, gradient 

deficient cable elements are used in this investigation to model the catenary in order to have 

more efficient simulations and avoid some of the locking problems that characterize fully 

parameterized elements. 

 

Uncontrolled dynamics 



31 
 

The dynamics of an uncontrolled pantograph/catenary system is described in this section. The 

train is assumed to have a forward speed of 200 km/h and the uplift force applied to the lower 

arm of the pantograph is assumed to be 1521 N. Because the catenary is limited in length, 

overlapping transverse waves are generated in the contact wire at the start of the simulation. 

These waves are gradually attenuated by the dampers between the messenger and the contact 

wires, and the system reaches a steady state of operation between 1.0 s and 2.0 s. Initially, high 

frequencies are observed; these represent the waves passing through the system which are 

attenuated at roughly 1.0 s onwards. Figure 6 shows the variation of the contact force between 

the pan-head and the contact wire as a function of time. A zoomed window that shows the details 

of the contact force in the interval between 7.0 s and 10.0 s is presented in Figure 7. The 

requirements for both the mean contact force and the standard deviation as defined by European 

Regulation EN50367 are satisfied by the contact force results shown in Figure 6. The mean 

contact force for an uncontrolled system with an uplift force of 1521 N is -110.427 N, while its 

standard deviation is 37.3033 N.  

 

Dynamic damping controller design 

The goal of the controller design is the reduction of the standard deviation value of the contact 

force resulting from the pantograph/catenary interaction without affecting its mean value. To this 

end, the iterative adjoint-based control optimization algorithm is used to obtain the time 

evolution of the controller parameters for a reduced two dimensional pantograph/catenary 

model.8,34-35 This controller is then adapted to the fully non-linear three-dimensional 

pantograph/catenary model developed in this investigation. In particular, the control strategy 

adopted features a derivative structure for the control action integrated with three types of time-
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varying laws for the controller damping characteristics. The control actuator u  is located 

between the pan-head and the plunger as shown in the following simplified system equations of 

motion relative to the pan-head/plunger subsystem: 
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The main idea is to design a dynamic damping controller by adopting the virtual passive control 

strategy for tuning the control parameters directly by using the nonlinear model of the 

pantograph/catenary system. The virtual passive control strategy considers the control system as 

a passive mechanical subsystem which serves to stabilize the actual dynamical system under 

study.9 Thus, the control system is virtual in the sense that it reproduces the dynamics of a 

mechanical system through the control actions and it is passive because the simulated 

mechanical system is composed only of passive components. The simplest combination of the 

virtual passive control strategy with the idea of using a linear dissipative control action yields the 

derivative control structure  1 2cu r y y   , where ( )c cr r t  is a damping function which must be 

designed with a trial-and-error approach using the full nonlinear model. Hence, the derivative 

controller behaves like a dashpot featuring a damping characteristic cr  which acts in parallel with 

the physical damper of the secondary suspension sc . The first control strategy analyzed makes 

use of a pure feedback architecture featuring a derivative structure with a constant damping 

coefficient d
c cr r .  In this investigation, this controller is simply referred to as derivative 

controller. Adopting a purely derivative control strategy, the derivative controller can be simply 

expressed as  1 2
d

cu r y y   , where d
cr  is a constant. An optimal damping coefficient which 

balances the performance of the contact force in the transient phase and in the steady state phase 
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was found to be 3500d
cr   Ns/m, as can be seen in Figure 8. The mean and the standard 

deviation of the contact force arising from the use of the proposed derivative controller are 

reported in Table 5. The resulting improvement in the contact quality can be quantified 

considering the relative reduction of the mean and of the standard deviation when comparing the 

dynamic behavior of the system with and without the derivative controller as shown in Table 5. 

Furthermore, different performances of the derivative controller in the transient phase and in the 

steady state phase of the contact force evolution in time suggest that the value of the controller 

damping can be adapted to the system behavior using a feedback plus feed-forward control 

architecture. The simplest method to design a time-varying derivative controller is to use a finite 

set of damping coefficients which are selected during the time evolution of the nonlinear system, 

which is the main idea utilized to design a bang-bang controller. Thus, the second control 

strategy derived in this paper employs a feedback architecture featuring a derivative structure 

with a time-varying damping coefficient ( )b b b b
c cr r t  . In this paper, this controller is referred to 

as derivative/bang-bang controller. From a theoretical point of view, it is important to note that a 

bang-bang controller is the result of an optimal control problem for a nonlinear system featuring 

a linear control action when a minimum-time response is required and at the same time the 

control action is limited in magnitude to a prescribed range.36 Adopting the bang-bang control 

strategy for the time evolution of the damping, the derivative/ bang-bang control law can be 

expressed as: 
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where 1
b br   and 2

b br   are two damping coefficients which must be optimized with a trial-and-error 

strategy, and ct  is a fixed time instant. An optimal combination of the damping coefficients 
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found for the dynamical system analyzed in this investigation is 1 1123b br    Ns/m and 

2 6000b br   Ns/m with a time shift at 0.5ct  s. This combination of damping coefficients 

considers a trade-off between the contact force behavior in the transient phase and the contact 

force behavior in the steady-state. The resulting contact force for this derivative/bang-bang 

controller is shown in Figure 9. The mean and the standard deviation of the contact force which 

arises from the use of the proposed derivative/bang-bang controller are reported in Table 5. 

Moreover, the optimal combination of the damping coefficients for the architecture of the 

derivative/bang-bang controller shows that a small damping magnitude is required in the 

transient phase whereas a larger damping magnitude is required in the steady state. Thus, the 

performances of the derivative/bang-bang controller suggest that increasing the damping 

coefficient during the time evolution of the system can further improve the contact quality 

between the pantograph and the catenary. This idea is used to design the third control strategy 

considered in this paper which features a simple feedback plus feed-forward dynamic damping 

controller with an exponentially increasing damping coefficient ( )e e
c cr r t . In this investigation, 

this controller is referred to as derivative/exponential controller. Therefore, considering an 

exponential law for the time evolution of the damping, the derivative/exponential controller can 

be expressed as: 

 1 2 , 1 c

t

e e f
c c cu r y y r r e 

 
  
 

                                                                                      (30) 

where f
cr  is a constant damping coefficient which arises from the derivative control strategy and 

c  is a time constant which must be optimized with a trial-and-error strategy. In particular, an 

optimal combination of the damping coefficient and of the time constant which considers a trade-

off between the contact force behavior in the transient phase and the contact force behavior in the 
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steady state is 7500f
cr   Ns/m and 0.5c   s. The contact force which results from the 

implementation of the derivative/exponential controller is shown in Figure 10. The mean and the 

standard deviation of the contact force deriving from the use of the proposed 

derivative/exponential controller are reported in Table 5. These results show that all the designed 

dynamic damping controllers produce a significant improvement in the contact quality between 

the pantograph pan-head and the catenary wire. 

 

Evaluation of the robustness of the proposed control strategies 

From a qualitative point of view, a control system designed assuming a particular set of 

parameters is robust when it ensures the desired performances for a reasonably wide range of 

operative conditions which are different from those used to design the controller itself. In order 

to verify the robustness of the three control strategies proposed, they were tested in a stressed 

scenario in which a greater value of the uplift force is applied to the lower arm. In particular, an 

uplift force of 3042 N, which corresponds to an increment of 100% of the nominal uplift force, is 

considered to perform the robustness test of the proposed controllers and in this investigation this 

scenario is referred to as high uplift scenario. Considering the high uplift scenario, Figure 11 

shows the contact force when the system is uncontrolled, Figure 12 shows a zoomed window of 

the details of the contact force in the time interval between 7.0 s and 10.0 s, Figure 13 shows the 

contact force resulting from the application of the derivative controller, Figure 14 shows the 

contact force resulting from the application of the derivative/bang-bang controller, and Figure 

15 shows the contact force resulting from the application of the derivative/exponential 

controller. In the high uplift scenario, the mean values and the standard deviation values of the 

contact force arising from the use of respectively all the three types of dynamic damping 
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controllers are shown in Table 6. These results show that the action of the designed derivative 

controllers on the nonlinear pantograph/catenary system in the high uplift scenario produces a 

significant improvement in the contact quality characterized by a relative magnitude comparable 

to that of the design scenario, thus validating the effectiveness of the proposed controllers. 

 

Summary and conclusions 

In this investigation, a new sliding joint formulation and a dynamic damping control method 

were developed to control the contact force of the pantograph/catenary system. The new sliding 

joint formulation requires the use of only one gradient vector, and therefore, it can be used with 

both ANCF gradient-deficient and fully parameterized beam elements to model the catenary [37-

39]. In order to have efficient simulations in this investigation, ANCF cable elements are used to 

model both the messenger wire and the contact wire. Using this new sliding joint model, three 

different control strategies were designed to control the contact force between the pantograph 

and the catenary; these are a derivative controller, a derivative/bang-bang controller, and a 

derivative/exponential controller. All three proposed controllers improve the standard deviation 

of the contact force by more than 35% when compared to an uncontrolled system. In order to 

design an effective controller, accurate modeling of the system dynamics represents a crucial 

step. The accurate modeling of the pantograph/catenary system was achieved by using ANCF 

finite elements that can be used in the large deformation and rotation analysis. ANCF finite 

elements were employed to model the catenary, while a rigid MBS approach was used to model 

the pantograph and the rail vehicle. Optimal control theory and the theory of virtual passive 

control were used to design the three different control strategies proposed in this paper. In 

addition, the robustness of the control strategies was verified by applying the controllers to a 
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system with a greater uplift force, which is referred to as high uplift scenario. Additionally, the 

physical implementation of the proposed control laws was discussed, ranging from the use of 

electro-rheological or magneto-rheological devices to general actuators. It is shown in this 

investigation that the use of the proposed control method to accurately regulate the contact 

between the pantograph pan-head and the catenary can be achieved, which can lead to lower 

wear rates, lower probability of network damage for the rail corridor, and higher interoperability 

among countries as the behavior of the contact force can be controlled to suit the needs of the 

region in which the train is operating.  
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Appendix  

Notation 

A     sensitivity matrix of state function with respect to system state 

B     sensitivity matrix of state function with respect to control parameter 

C     vector of constraint equations 

rqC     constraint Jacobian matrix associated with rigid body coordinates 

fqC     constraint Jacobian matrix  associated with FFR body coordinates 

eC     constraint Jacobian matrix associated with ANCF coordinates 

sc     damping value of damper between pan‐head and plunger 

e     vector of element nodal coordinates of ANCF body 

f     system state function 

pG     matrix relating the angular velocity vector to the pan‐head orientation velocities 

g     current cost function 

h     terminal cost function 

H     Hamiltonian function 

J     cost functional 

sk     stiffness of spring between pan‐head and plunger 

sl     undeformed length of spring between pan‐head and plunger 

pL     Jacobian of position vector of contact point associated with pan‐head coordinates 

M     mass matrix 

1m     mass of pan‐head 

2m     mass of plunger 

wn     normal vector to the wheel surface at the contact point 
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rn     normal vector to the rail surface at the contact point 

p     vector of system generalized coordinates 

Q     vector of system generalized forces 

q     vector of generalized coordinates 

r     position vector of an arbitrary point 

pr     global position vector of contact point P on pan‐head 

cr     global position vector of contact point P on catenary  

d
cr     damping coefficient of derivative controller 

b b
cr
     damping coefficient of derivative/bang‐bang controller 

e
cr     damping coefficient of derivative/exponential controller 

S     element shape function matrix 

s     non‐generalized coordinate related to catenary wire 

rs     non‐generalized coordinates vector or surface parameters of rail 

ws     non‐generalized coordinates vector or surface parameters of wheel  

t     time 

ct     time shift constant for derivative/bang‐bang controller 

wt     tangent vector to the wheel surface at contact point 

rt     tangent vector to the rail surface at the contact point 

u     vector of control actions   

u     reference control action   

u     control actuator or control force applied to pan‐head/plunger subsystem 

v     co‐state or adjoint vector 

x y z   element spatial coordinates 
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1y ,  1y ,  1y   position, velocity, acceleration of pan‐head 

2y ,  2y ,  2y   position, velocity, acceleration of plunger 

z     state vector of a dynamical system 

z     reference trajectory 

ω     angular velocity vector 

γ     set of time varying parameters 

μ     sensitivity vector of cost function with respect to state vector 

φ     sensitivity vector of the cost function with respect to system state  

ψ     sensitivity vector of the cost function with respect to vector of control parameters 

c     time constant for derivative/exponential controller 

λ     vector of Lagrange multipliers 
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Table 1. Pantograph body data 

Body Mass (kg) 
Initial 

Position (m) 
(xi

0, y
i
0, z

i
0) 

Initial 
Orientation  
( ,  ,  ) 

Inertia  
(kg·m2)  

(Ixxi, Iyyi, Izzi) 

Lower arm 32.18 
11.26924156, 
0, 3.84511275 

2/ߨ , 
0.5528807212, 

 2/ߨ-
0.31, 10.43, 10.65 

Upper arm 15.60 
11.45796454, 
0, 4.52440451 

 ,2/ߨ-
0.2896816713, 

 2/ߨ
0.15, 7.76, 7.86 

Lower Link 3.10 
10.96436876, 
0, 3.81940451 

 ,2/ߨ
0.6234559506, 

 2/ߨ-
0.05, 0.46, 0.46 

Upper link 1.15 
11.58587608, 
0, 4.49940451 

 ,2/ߨ-
0.3028168645, 

 2/ߨ
0.05, 0.48, 0.48 

Plunger 1.51 12.5, 0, 4.835 0, 0, 0 0.07, 0.05, 0.07 

Pan-head 9.50 12.5, 0, 4.945 0, 0, 0 1.59, 0.21, 1.78 

 

 
 
 
Table 2. Pantograph joint data 
Joint Constraint First Body  Second Body  

Revolute Car Body Lower Arm 
Revolute Lower Arm Upper Arm 
Revolute Upper Arm Plunger 
Spherical Car Body Lower Link 
Spherical Upper Arm Lower Link 
Spherical Plunger Upper Link 
Spherical Lower Arm Upper Link 
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Table 3. Vehicle body data 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Catenary properties 
Contact/Messenger Wire Geometry 

Elements per Span 9 
Element Length (m) 6.25 

Element Cross Section Area (mm2) 144 
Total Number of Spans 20 

Catenary System Material Properties 
Contact Wire Density (kg/m3) 8960 

Contact Wire Modulus of Elasticity (Pa) 1.2E+11 
Messenger Wire Modulus of Elasticity (Pa) 1.2E+11 

Other General Catenary Properties 
Tension in Contact Wire (N) 20000 

Tension in Messenger Wire (N) 14000 
Dropper Stiffness kd (N/m) 200000 
Dropper Damping Cd (N/m) 10000 

 

 

Body Mass (kg) 
Inertia (kg·m2) 
 (Ixxi, Iyyi, Izzi) 

Initial Position (m) 
(xi

0, y
i
0, z

i
0) 

Rail --- --- --- 

Wheelsets 2091 1098, 191, 1098 

0, 0, 0.4570488 
2.5908, 0, 0.4570488 
12.573, 0, 0.4570488 
15.1638, 0, 0.4570488 

Equalizers 469 6.46, 255, 252 

1.2954, 1.0287, 
0.3049427 

1.2954, -1.0287, 
0.3049427 

13.8684, 1.0287, 
0.3049427 

13.8684, -1.0287, 
0.3049427 

Frame 3214 1030, 1054, 2003 
1.2954, 0, 0.5081427 
13.8684, 0, 0.5081427 

Bolster 1107 498, 20.4, 458 
1.2954, 0, 0.7088 
13.8684, 0, 0.7088 

Car Body 24170 
30000, 687231, 

687231 
1.8289, 0, 1.8289 
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Table 5. Controller results comparison with low lift 
Controller 

Type 
r1

 

(Ns/m) 
r2

 

(Ns/m) 
ct

(s) 
c  

(s) 
Mean 

Force (N) 
Std. Dev 

(N) 
∆ Mean 
Force 

∆ Force 
Std. Dev 

Uncontrolled / / / / -110.427 37.3033 / / 
Derivative 3500 / / / -110.241 22.709 -0.169 % -39.123 % 
Bang-Bang 1123 6000 0.5 / -110.304 21.214 -0.111% -43.129% 
Exponential  7500 / / 0.5 -110.330 20.800 -0.088% -44.238% 

 

 

 

Table 6. Controller results comparison with high lift 
Controller 

Type 
r1

 

(Ns/m) 
r2

 

(Ns/m) 
ct  

(s) 
c  

(s) 
Mean 

Force (N) 
Std. 

Dev (N) 
∆ Mean 
Force 

∆ Force 
Std. Dev 

Uncontrolled / / / / -468.145 41.688 / / 
Derivative 3500 / / / -468.466 31.478 +0.685 % -24.490 % 
Bang-Bang 1123 6000 0.5 / -468.653 30.522 -0.108% -26.783% 
Exponential  7500 / / 0.5 -468.715 30.336 +0.122% -27.230% 
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Figure 1. Pantograph and catenary system 

 

 

Figure 2. Rail vehicle model 
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Figure 3. Catenary system 
 

 
Figure 4. Catenary computational model 
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Figure 5. Pan-head/plunger subsystem 
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Figure 6. Contact force with low lift ( no control) 
 

 
Figure 7. Zoomed window of the contact force with low lift ( no control) 
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Figure 8. Contact force with low lift ( no control, derivative control) 
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Figure 9. Contact force with low lift ( no control, derivative/bang-bang control) 
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Figure 10. Contact force with low lift ( no control, derivative/exponential control) 
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Figure 11. Contact force with high lift ( no control) 
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Figure 12. Zoomed window of the contact force with high lift ( no control) 

 

 

 



58 
 

 
Figure 13. Contact force with high lift ( no control, derivative control) 
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Figure 14. Contact force with high lift ( no control, derivative/bang-bang control) 
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Figure 15. Contact force with high lift ( no control, derivative/exponential 
Control)  
 

 


