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Abstract 

To predict the effect of hydrogen gas tank explosion on a nearby pipeline, air pressure rise and 

velocity on a pipeline after a strong explosion is evaluated first. Then, bending of an initially 

straight pipe is calculated. This bending amplitude was further scrutinized at various exploded 

masses of hydrogen, distances measured from the explosion center to the pipeline, and 

thicknesses of steel pipeline walls. (R2) The proposed analytic approach provides a 

conservative estimate of the worst-case accident scenario of an instantaneous explosion of a 

large hydrogen mass leading to formation of a shock wave. It can be useful for plant engineers to 

evaluate risks associated with pipelines under the presumed explosion scenario of not only 

hydrogen, but also any other fuel types. 
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1. Introduction  

Any off- or on-shore plant of petrochemical and refinery type incorporates pipelines 

located in the vicinity of tanks containing flammable liquids or gases. Though these structures 

are regularly monitored and undergo safety maintenance, potential leakage of flammable 

substances is always possible because the plant structures are typically subjected to corrosive 

environment which causes structural damages and potential malfunction in equipment over time. 

A potential leakage can result in explosion which would jeopardize lives and inflict large 

economic losses. Therefore, an estimate of potential damage caused by such explosions is 

important.(Jo & Ahn, 2002; Sklavounos & Rigas, 2006; J. R. Taylor, 2003) In the case of 

explosions accompanying leakage of explosive substances from tanks located close to pipelines, 

the question to be addressed is whether these pipelines can survive an impact of shock wave 

generated by such explosions.  

The classical self-similar theory of the strong explosion can estimate the pressure, gas 

velocity, and density at the shock wave front for a given large mass of fuel which exploded (von 

Neumann, 1963; Sedov, 1946, 1993;  Taylor, 1950a, 1950b) ; see also the general fluid 

mechanical texts (Landau&Lifshitz 1987; Yarin 2007). These information can be used to 

evaluate loads applied on the surrounding pipelines and, in particular, predict their bending 

expected at the distances corresponding to their location from the explosion center (Rigas & 

Sebos, 1998). The outcome of such evaluations should affect design of petrochemical and 

refinery plants to avoid the worst-case scenarios.  

In addition, to the analytic tools, pressure rise resulting from explosions of different 

massed of fuel can also be predicted by computational codes, e.g. such as EXSIM(Explosion 
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SIMulator) and FLACS (Flame ACceleration Simulation) (Lea & Ledin, 2002). However, 

FLACS is limited only to deflagration cases and cannot be extended to model detonation or fast 

deflagration scenarios. (R2, R6) For this reason, here we discuss an analytical method which 

predicts the pressure rise as a result of strong instantaneous explosion and shock wave formation 

and propagation for an unconfined environment. The theory is inapplicable to highly-congested 

environments.  

 

2. The strong explosion theory 

(R2) The proposed analytic approach describes in this section considers the worst-case 

accident scenario of an instantaneous explosion of a large hydrogen mass leading to formation 

and propagation of a strong shock wave. The classical theory of strong explosions specifies, 

among other parameters, the pressure, Psh, gas velocity, Vsh, and density, ρsh, at the shock wave 

front as in Refs. (Landau &Lifshitz, 1987; von Neumann, 1963; Sedov, 1946; Sedov, 1993; 

Taylor, 1950a, 1950b; Yarin, 2007):  
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where 0E  denotes the total energy released in the explosion, aρ  is the air density before the 

shock wave, γ  is the ratio of the specific heat at constant pressure to the specific heat at 

constant volume (of air), and t  is time from the moment of explosion, which is considered to 

happen instantaneously and pointwise at 0t = . (R5) This theory implies an instantaneous 

pointwise explosion of such strength that the pressure created behind the shock wave 

propagating from the explosion center is so high, that the atmospheric pressure before the shock 

wave can be neglected. This theory was independently developed by J. von Neumann (von 

Neumann, 1963),  L.I. Sedov (L. I. Sedov, 1946; 1993) and G.I. Taylor (Taylor, 1950a, 1950b) 

(the work of von Neumann was published long after his original result), and is discussed in brief 

in general books on fluid and gas dynamics (Landau&Lifshitz, 1987; Yarin, 2007).   

Accordingly, the front of the shock wave, which is spherical when unaffected by 

obstacles, shr , is 

( )

1/5
2/502 .

1sh
a

Er t
γ ρ

 
=  +  

                                                                                                   (4) 

The strong-explosion theory is based on the assumption that the explosion energy, E0, is 

released instantaneously at a point, and is much higher than the atmospheric pressure. This 

implies that fuel is instantaneously evaporated and mixed with the oxidizer, and the reacting 

mixture is stoichiometric. The theory also neglects energy losses due to thermal radiation- the 

entire released energy is converted into the energy of shock wave and the accompanying gas 

motion. These assumptions tend to overestimate the strength of the shock wave. In reality, liquid 

hydrogen spillage and evaporation, for example, will take some time and space, and are 

accompanied by liquid atomization (losses). Also, mixing with the oxidizer (oxygen in air) can 
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be far from complete when the explosion occurs, and nitrogen in air will act as a thermal ballast. 

Typically, a fuel-oxidizer mixture will be lean (not pre-mixed). These factors diminish the 

strength of a real shock wave compared to the idealized predictions of the theory of strong 

explosion. The strong-explosion theory is purely gasdynamical and does not consider turbulent 

eddy viscosity and the effect of turbulence on the energy-release rate or gas motion. With all the 

simplifying assumptions listed above, the first estimates of the strong explosion effects should be 

based on the strong-explosion theory outlined above. 

Based on Eq. (4), the time required for the shock wave to reach a pipe located a distance 

L from the center of explosion is: 
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Then, according to Eqs. (1), (2) and (5), pressure and velocity at the shock-wave front as 

it contacts the pipe are 
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Denoting the pipe diameter as 2a, with a being the cross-sectional radius, and using Eq. 

(2), we find the time ΔT required for the shock wave front to cross the pipe as 
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3. Calculation of pipe bending 

Equations of the pipeline dynamics are well-known (Svetlitskii, 1982; V.M. Entov, 

1987), and in the simplest case of planar bending of an initially straight pipe, they can be reduced 

in the first approximation to the following bar-bending-like equation  
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Here the pipe is assumed to be circular in cross-section; ρ1 and ρ2 are densities of the pipe wall 

and a gas or a liquid which can be inside; f1 and f2 are the cross-sectional areas occupied by the 

pipe material and the gas (or liquid) inside, respectively; H is the bending displacement, t is time 

(obviously different from t of section 2), E is Young’s modulus of the pipe wall; I1 is the moment 

of inertia of the pipe wall cross-section; x is the Cartesian coordinate reckoned along the axis of 

the unperturbed pipe; Δpdyn is the dynamic pressure difference across the pipe. 

The geometric parameters involved in Eq. (9) are found as 

2 3
1 2 12 , ,= = =f ah f a I a hπ π π                                                                                      (10) 

where a is the pipe radius (not including the wall), and h is the wall thickness. 

We search the solution of Eq. (9) in the following form 

( )sinH A t kx=                                                                                                     (11) 

where A(t) is the bending amplitude and k is the wavenumber (k=2π/λ, with  =λ/2 being the pipe 

length between two fixed sections). 

Then, Eq. (9) yields 
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where  
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The dynamic pressure drop acting on the pipe is associated with the shock wave front, as 

found in Eq. (6). It fades in time, as the shock wave passes the pipe cross-section, and has its 

maximum in the middle of the pipe length. Therefore, it is possible, in the first approximation to 

take 
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which is considered during the time period when 0 ≤ ωt ≤ π/2. 

Then, Eq. (12) is reduced to 

2
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with F being given by the following expression 
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The solution of Eq. (15) subjected by the initial conditions 
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yields the following result for the bending amplitude 
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At short times, when ωt<<1, the asymptotical behavior following from Eq. (18) is 

2
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(R8) The critical bending amplitude (or displacement) is normally determined by the 

design engineers who would consider different safety factors affecting the design. The 

engineers can utilize the model/theory provided herein to yield the most conservative estimate 

which would prevent the collapse of their pipe system in case of explosion. 

 

4. Calculation of pipe squeezing 

According to (Timoshenko, 1961), a pipeline will be squeezed by the outside pressure 

Psh,L if 

3
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−
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where ν is Poisson’s ratio of pipe wall. 

(R7) The inequality Eq. (20) implies an empty pipeline, or the one with pressure inside 

being relatively low compared to Psh,L. It should be emphasized that a high internal pressure 

would just diminish the effect of Psh,L, and the inequality Eq. (20) would be re-written for the 

pressure difference.  

 

5. Results and discussion 

Heat release in hydrogen explosion is associated with the reaction of hydrogen oxidation 

in air. The hydrogen specific heat release is Q = 120 MJ/kg at the LHV (Lower Heating Value) 

(Baker, Cox, Kulesz, Strehlow, & Westine, 2012). Then, the total energy released in hydrogen 

explosion is E0 = Q m, where m is the hydrogen mass which has exploded. The other parameters 
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of interest have the following values: the adiabatic index γ = 1.4, the air density ρa = 1.21×10-3 

g/cm3, the density of the pipe material ρ1 = 7.8 g/cm3 (steel), its Young’s modulus E = 200 GPa 

(steel) and Poisson’s ratio ν = 0.303 (steel). We assume that the pipeline is empty, and thus take 

ρ2 = 0. 

First, the effect of hydrogen mass (m) on the bending amplitude (A) was studied, for 

which the distance between the point source and the pipe was L = 10 m; the pipe wall thickness 

was h = 1 cm; the pipe length was l = 10 m; and pipe cross-sectional radius was a = 0.24 m. 

Second, the effect of L on A was also studied under the fixed values of m = 1000 kg, h = 1 cm, l 

= 10 m, and a = 0.24 m. Last, the effect of wall thickness (h) was studied while using L = 10 m, 

m = 1000 kg, l = 10 m, and a = 0.24 m. (R3) Note, that it is assumed that while traveling the 

distance L, the shock wave have not impinges on any other obstacles, and the first such 

encounter is with the pipe under consideration. In a highly-congested environment this 

assumption might be inapplicable and the shock wave could lose its strength on the wave to a 

pipe.  

Notably, it should be emphasized that the pipe length was taken as a half of the 

wavelength (  =λ/2). Because the wavenumber is k=2π/λ, the effect of the pipe length is 

incorporated in the argument of sine in Eq. (11).  However, the sine function is at the end 

cancelled and does not appear in the F expression in Eq. (16) and thus l will not affect the 

bending amplitude, A.  The bending amplitude is finally expressed in terms of F, as in Eq. (19), 

which is a function of the shock pressure (Psh,L) and velocity (Vsh,L) from Eq. (16). One may also 

see that F depends on pipe geometry, namely, on a and h.  

Figure 1 shows how the shock wave pressure depends on the distance (L) between the 

explosion center and the pipe location. When the shock wave propagates away from the 
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explosion center (and L is increasing), pressure at the shock wave front reduces dramatically. 

Larger exploded mass of hydrogen, result in much larger pressures at the shock wave front as is 

seen in Figure 1. For example, if a pipeline is located beyond the distance of L = 60 m from the 

explosion center, the  shock wave weakens and the pressure at its front is below Psh,L ~ 0.1 bar 

for exploded masses less than m = 200 kg.  

Figure 2 shows how the bending amplitude increases in time when a pipeline is affected 

by the compressed gas in the wake of the shock wave resulting from explosions of different 

masses of hydrogen at a distance of L = 10 m from the pipeline.  

Table 1 illustrates how the shock wave enhances as the exploded mass of hydrogen 

increases.  In Case 7 in the table, the shock wave pressure increased up to 92.6 bar when the 

mass of hydrogen of 1000 kg exploded at the distance of L = 10 m. Then, the ratio of the 

squeezing gas pressure to the critical pressure for a pipeline with h=1 cm, a = 0.24 m, L=10 m, 

and l = 10 m is Psh,L/Pcrit = 2.325. This ratio is well over unity, and thus an absolute destruction 

of the steel pipelines is guaranteed within 0.19 ms. In Case 5 in Table 1, the ration Psh,L/Pcrit < 1, 

which means that the steel pipelines would not fail. However, the shock wave pressure would 

increase up to 18.52 bar, which is high enough to destroy any concrete structure.  

Figure 3 shows how the bending amplitude increases in time at various pipeline 

locations (L) after explosion of m = 1000 kg. As evident, the pipelines would definitely be bent 

and squeezed when they are close the explosion center. On the other hand, in cases of L > 100 m, 

the pipelines would not undergo severe bending. In petrochemical plants, the range of L of 

structures from potential explosion centers is within a few to tens of meters. Thus, according to 

Figure 3,  pipelines in such plants will be endangered, i.e. severely bent and squeezed, in the 
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case of explosion of m = 1000 kg.  The present analysis allows an estimate of a safe interspace 

distance between structures when designing a petrochemical plant.  

Figure 4 illustrates the effect of the wall thickness of a pipeline on its bending amplitude 

following an explosion of m = 1000 kg  at a distance of L=10 m. It is seen that bending of about 

40 cm is possible even for pipes with the wall thickness of 5 cm under such conditions. 

 

6. Conclusion 

(R6) The most conservative estimate for pipe bending is established by employing the 

strong explosion theory. This conservative estimate is important for petrochemical plant 

engineers who need to provide the design parameters for their pipe location and characteristics 

for cases of unexpected explosion. These analytical equations are simple to use, unlike fully 3D 

direct numerical simulations, and therefore quick parametric studies can be conducted to yield 

design parameters with intended safety factors. 

The explosion of m = 1000 kg of hydrogen resulting from a leakage from a tank, will be 

absolutely catastrophic for a pipeline located at a distance of L = 10 m from the explosion center: 

it will be bent and squeezed, and most probably completely destroyed. The pipeline will be also 

significantly bent due to the explosion of m = 100 kg of hydrogen. These results probably 

overestimate the explosion strength, since the explosion was considered to be instantaneous and 

pointwise, and all the factors leading to losses (atomization, radiation, turbulence, etc.) were 

neglected. Still, they provide a pretty realistic pattern of the effect of hydrogen explosion on a 

pipeline located L = 10 m apart. An increase in the distance between the hydrogen tank and the 
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pipeline will diminish dramatically the effect of the explosion, since, the latter decreases as L-3, 

i.e. doubling the distance diminishes the explosion effect 8 times. 

12 
 



References  

Baker, W.E., Cox, P.A., Kulesz, J.J., Strehlow, R.A., & Westine, P.S. (2012). Explosion Hazards and 

Evaluation: Elsevier Science. 

Jo, Y.-D., & Jong, A.B.. (2002). Analysis of hazard areas associated with high-pressure natural-gas 

pipelines. Journal of Loss Prevention in the Process Industries, 15(3), 179-188.  

Landau, L.D., Lifshitz, E.M. (1987). Fluid Mechanics: volume 6 (Course of Theoretical Physics) 

Publisher: Bu: Butterworth-Heinemann. 

Lea, C.J., & Ledin, H.S. (2002). A review of the state-of-the-art in gas explosion modelling: Health and 

Safety Laboratory. 

von Neumann, J.  (1963). The point source solution (Collected Works, vol. VI): Pergamon Press. 

Rigas, F., & Sebos, I.. (1998). Shortcut estimation of safety distances of pipelines from explosives. 

Journal of transportation engineering, 124(2), 200-204.  

Sedov, L. I. (1946). Propagation of strong blast waves. Journal of Applied Mathematics and Mechanics, 

10, 241 - 250.  

Sedov, L. I. (1993). Similarity and Dimensional Methods in Mechanics: CRC press. 

Sklavounos, S., & Rigas, F. (2006). Estimation of safety distances in the vicinity of fuel gas pipelines. 

Journal of Loss Prevention in the Process Industries, 19(1), 24-31.  

Svetlitskii, VA. (1982). Mechanics of pipelines and hoses. Mashinostroenie, Moscow.  

Taylor, G. (1950a). The formation of a blast wave by a very intense explosion. I. Theoretical discussion. 

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 159-

174.  

Taylor, G. (1950b). The formation of a blast wave by a very intense explosion. II. The atomic explosion 

of 1945. Proceedings of the Royal Society of London. Series A, Mathematical and Physical 

Sciences, 175-186.  

Taylor, J. R. (2003). Risk analysis for process plant, pipelines and transport: Routledge. 

Timoshenko, S. (1961). Theory of elastic stability: McGraw-Hill. 

Entov, V.M., Ty, F.K., & Yarin, A.L. (1987). On the equations of the off-shore pipeline.  

Yarin, A.L. (2007). Self-similarity, Chapter 2.3 in Springer Handbook of Experimental Fluid Mechanics: 

Springer. 

 

 

13 
 


