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ABSTRACT 

The parabolic leaf spring is widely used in modern vehicle suspension systems because it has 
many desirable features, such as weak interleaf friction and light weight. In this paper, the 
parabolic leaf spring is analyzed using automatic geometric data acquisition (AGDA) and the 
finite element (FE) absolute nodal coordinate formulation (ANCF). In order to account for 
manufacturing considerations in developing the virtual models, the relaxed uniform cubic 
B-Spline is used to represent the leaf spring profile curves and geometry. Three-dimensional 
scanning techniques based on structured light and multiple images are explored in this study 
to automatically extract the leaf spring complex geometric data. A new procedure is proposed 
to develop the ANCF/FE mesh from the physical object. Both double-leaf uniform-thickness 
and double-leaf parabolic spring models are developed and analyzed using different ANCF 
elements. Using ANCF geometry, piecewise linearly tapered parabolic leaf spring models are 
constructed, accounting for the leaf pre-stress. The interleaf contact is enforced using a 
penalty approach and a smoothed Coulomb friction model. It is shown that the 
fully-parameterized low-order beam and plate elements suffer from locking problems, while 
the thin plate element can lead to less accurate results. The use of the new strain-split method 
(SSM) as a locking alleviation technique is also examined in this investigation. It is shown 
that while the current SSM implementation can be effective in solving the locking problem in 
the case of symmetric bending-dominant loading, it may not produce accurate results in the 
case of torsional loading. The comparative study performed demonstrates that the higher 
order ANCF beam element is more suitable for developing the leaf spring models compared 
to other ANCF elements considered in this investigation. The numerical results obtained 
show that the friction effect in parabolic leaf springs is much weaker than that in the leaf 
spring with uniform-thickness. 
 

Keywords: Parabolic leaf spring; relaxed uniform cubic B-Spline; three-dimensional scanning; 
absolute nodal coordinate formulation; vehicle dynamics; strain-split method. 
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1. INTRODUCTION 

Leaf springs are commonly used in the suspension systems of cars, trucks, and railroad 

vehicles to connect the chassis or frame to the axles. They are designed with a stiffness rate 

sufficient to support the car body and transmit the load from the chassis to the axle, and long 

leaf springs can act as guide components in the longitudinal direction. As the suspension 

elastic elements, leaf springs serve as initial shock absorbers that reduce the impact and 

isolate the vehicle body from the imperfections of the road surface, thus improving the ride 

quality. The mechanical properties of the leaf spring can significantly influence the 

performance of the suspension and vehicle, including the ride comfort, the handling 

performance, and the vehicle stability. Therefore, it is important to study and evaluate the 

dynamic behavior of the leaf springs in order to improve the vehicle performance and ensure 

its safe operation. 

 The leaf spring was first applied to the horse-drawn carriage in full elliptic form, meaning 

two sets of leaf springs were assembled to approximate an ellipse [1]. However, the profile of 

leaf springs in modern vehicles is no longer elliptic. Additionally, the profile of the modern 

leaf spring is not a circular arc, despite the fact that leaf springs are usually designed based on 

a circular arc profile following the ideal uniform strength beam model. It should be noted that 

most modern leaf springs are not close to either the elliptic or the circular arc profile curves. 

Accurate description of the geometry of the leaf spring profile curve, however, is necessary in 

order to develop credible virtual prototyping models that capture accurately the spring 

deformations and forces.  

 Because the profile curve of the leaf spring, as shown in Fig. 1, can be complex, it is 

advantageous to use three-dimensional geometric data acquisition techniques to extract the 

spring geometric information. To this end, automatic geometric data acquisition (AGDA) 

techniques are discussed in this paper. The three-dimensional scanning technology has been 
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of particular interest due to its potential for rapid and accurate measurement of complex 

three-dimensional geometry. The technology has been applied in various engineering fields 

for uses such as surveying buildings [2], road surface condition evaluation [3], evaluation of 

production samples after manufacturing for quality control, as well as for reverse engineering 

applications [4]. Additionally, three-dimensional scanning could prove to be useful in 

industry for the development of more realistic FE meshes created from physical objects such 

as manufactured production samples. In doing so, reliance on geometric assumptions based 

on imported computer-aided design (CAD) system models or on data possibly provided by 

manufacturers of sub-systems or components could be reduced. Furthermore, eliminating 

additional steps by developing the analysis mesh directly by scanning the physical component 

has the potential to reduce the time required to develop complex flexible body models. 

Additionally, meshes created directly from production samples will provide an 

as-manufactured geometric data set, which does not rely on any geometric simplifications or 

assumptions made at the design/drawing state. This method also allows for obtaining the 

geometry of products which have no associated CAD files due to the age of the design, which 

could predate modern CAD software. Therefore, accounting for the complexity of the leaf 

spring geometry using an automatic procedure to extract the geometric information from the 

physical leaf spring can be advantageous in developing reliable virtual prototyping models. 

As shown in Fig. 2, several three-dimensional reconstruction techniques can be used [5]. Two 

methods based on the multiple images and structured light, which are classified as passive 

and active methods, are discussed in detail in this paper. 

 

2.  BACKGROUND 

Leaf springs have been the subject of many investigations focused on the study of their 

strength and durability as well as on their effect on the vehicle dynamics and stability. 
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Because of the lack of accurate computational multibody system (MBS) models, many 

researchers turned to experimental methods to study the behavior of leaf springs [6, 7]. 

Another widely used approach is to model the leaf spring based on the beam theory, which 

was first proposed by Timoshenko [8] to obtain the equivalent spring stiffness coefficient. 

Later, the beam theory was further developed by SAE [9]. Common curvature or 

concentrated loading assumptions were typically used in the conventional leaf spring design 

process [10]. However, all the traditional methods employ many assumptions aimed at 

simplifying the formulations and calculations, and in many cases the effect of the interleaf 

contact was neglected.  

With the development of computational mechanics, the FE method is often used for 

developing leaf spring computer models, taking into account the effect of the interleaf contact. 

Zahavi [11] studied the effect of the contact forces on the leaf spring deformation using the 

FE method. Shokrieh and Rezaei [12] studied a composite leaf spring using the 

general-purpose FE software ANSYS with the goal of optimizing the width and thickness of 

the leaves. Duan et al. [13] developed an MBS dynamic model of a tandem suspension with a 

tapered leaf spring, which was created using the ADAMS/CHASSIS leaf spring module. 

2.1  FE Models  

Commercial FE computer programs have been widely used in some recent leaf spring 

investigations. Many authors used the commercial FE software ANSYS to investigate 

parabolic leaf springs. The focus of some of these investigations has been on the mono-leaf 

parabolic leaf springs, which have no pre-stress as result of the assembly process [14 – 16]. A 

three-leaf parabolic spring was also the subject of an investigation by Kumar and Aggarwal 

[17]. However, the effect of the initial stress caused by the spring assembly was not 

considered. Considering the effect of the pre-stress can be a challenging problem, particularly 

when developing an approach that accurately accounts for the spring geometry. Therefore, in 
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this paper, a double-leaf parabolic spring will be analyzed, considering the effect of the 

pre-stress resulting from the spring assembly process, which can be systematically 

represented virtually using ANCF elements based on continuum mechanics theory. 

2.2  MBS Models 

Leaf spring models have also been developed based on the floating frame of reference (FFR) 

formulation [18, 19]. The FFR formulation allows for using a reduced-order model by 

employing component mode synthesis techniques. While FFR is a widely used method in the 

field of MBS dynamics, existing FFR elements are not suited for accurately representing the 

complex leaf spring geometry. Another alternative is to use ANCF elements, which employ 

absolute nodal coordinates, for modeling leaf springs [18]. Instead of using the FFR 

infinitesimal nodal rotations as nodal coordinates, absolute nodal slopes are used to represent 

the rotation and deformation of the body when ANCF elements are used [20]. Additionally, 

ANCF elements have desirable features including the constant mass matrix and zero 

centrifugal and Coriolis inertia forces. Yu et al. [21] developed a leaf spring model using 

ANCF fully-parameterized plate elements and the concept of the ANCF reference node. A 

double-leaf uniform-thickness spring model was developed to demonstrate that ANCF 

elements can be systematically used to predict the spring nonlinear dynamic behavior. 

2.3  Contributions of This Study 

This paper is focused on developing new FE models for the nonlinear dynamics and vibration 

analysis of parabolic leaf springs. The main contributions of this paper are: (1) demonstrate 

how automatic geometric data acquisition (AGDA) can be integrated with ANCF elements to 

develop accurate representation of the spring geometry; (2) demonstrate how the geometry 

mesh can be used as the analysis mesh without the need for any conversion that may lead to 

geometry distortion, thereby demonstrating the use of the integration of computer-aided 

design and analysis (I-CAD-A) in the simulation of leaf springs; (3) develop a procedure that 
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accounts for the complex geometry and the effect of the pre-stresses resulting from the 

assembly of the parabolic leaf spring; (4) conduct a comparative study based on different 

ANCF leaf spring models in order to evaluate the performance of different ANCF elements in 

modeling leaf springs; (5) demonstrate the use of the proposed approach by simulating the 

scenario of axle articulation when the vehicle passes a unilateral bump; and (6) examine the 

use of the new strain-split method (SSM) as a locking alleviation technique for leaf spring 

applications [22]. 

2.4  Organization of the Paper  

This paper is organized as follows: In Section 3, a brief description of the four ANCF 

elements used in this investigation to model the leaf spring is presented and their ability to 

capture complex geometries is demonstrated. In Section 4, two methods to extract geometric 

data automatically, the procedure to obtain the FE model from the extracted geometric data, 

and an alternative method to avoid scanning the assembled configuration are discussed. The 

discussion in Section 4 is necessary in order to explain how to develop the ANCF/FE 

geometry/analysis mesh from physical objects based on three-dimensional scanning 

techniques. Section 5 discusses the use of ANCF elements to represent the leaf spring 

geometry including the configuration of the spring, the profile curve representation, and the 

representation of the parabolic leaf spring geometry and pre-stress. In Section 6, the use of 

the ANCF reference node (ANCF-RN) to connect the leaf spring to the vehicle components 

and to model rigid elements is explained, and the fundamental differences between the 

ANCF-RN and the rigid body elements (RBE) used in the conventional FE literature are 

explained. In Section 7, the method used in this investigation for the simulation of the 

interleaf contact is described. In Section 8, the recently-introduced strain-split method (SSM) 

proposed as a locking alleviation technique is discussed. In Section 9, uniform-thickness, 

double-leaf spring models developed using different ANCF elements are compared. In 
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Section 10, a parabolic leaf spring model is developed using the ANCF higher order beam 

element in order to alleviate the locking problem. The effects of pre-stress and inter-leaf 

friction are shown and the SSM performance in alleviating locking problems is evaluated 

using parabolic leaf spring models. In Section 11, conclusions drawn from the investigation 

are provided.  

 

3.  ANCF ELEMENT GEOMETRY 

Four ANCF elements including the three-dimensional low order beam element with 24 nodal 

coordinates (LOBE24) [23], the high-order beam element with 42 nodal coordinates 

(HOBE42) [24, 25], the thick plate element [26], and the thin plate element [27] are used in 

this paper to develop the leaf spring models. Two nodes and four nodes are employed by the 

beam and plate elements, respectively. The four elements can be classified into 

fully-parameterized and gradient-deficient elements; the LOBE24, the HOBE42 and the thick 

plate element are fully-parameterized elements. All the fully-parameterized elements utilize 

all three gradient vectors as nodal coordinates and the corresponding elastic forces are 

derived based on the general continuum mechanics approach. In addition to the position and 

gradient vectors, three curvature vectors are used as vectors of nodal coordinates in the 

HOBE42. By contrast, the elastic forces of thin plate element, which is a gradient-deficient 

element since there is no gradient vector in the thickness direction, are developed based on 

the Kirchhoff plate theory that does not account for the shear deformation [27]. Both 

LOBE24 and HOBE42 are based on cubic interpolation in the longitudinal parameter. 

Similarly to the beam element, the interpolations of the plate elements in the two directions of 

the mid-surface are also cubic. While the interpolation in the thickness direction for the thick 

plate element is linear, the element has a full set of gradient vectors at the nodal points. For 

the thin plate element, no gradient vector is used in the thickness direction. It is important to 
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note that in the case of ANCF elements, curved structures can be modeled using plate 

elements by an appropriate choice of gradient vector coordinates, and that fully 

parameterized ANCF beam and plate elements retain the isoparametric property. 

3.1 Low-Order Beam Element (LOBE24) 

This element has two nodes and each node has 12 coordinates that define the nodal position 

vector r  and three position vector gradient vectors ,x yx y     r r r r , and z z  r r , 

where ,x y , and z  are the element parameters. The shape function matrix of LOBE24 used 

in this investigation is [23] 

 1 1 1 1
1 2 8...s s s   S I I I   (1) 

where the shape functions 1 , 1,2,...8ks k  , are defined as 
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 

1 2 3 1 2 3 1 1
1 2 3 4

1 2 3 1 2 3 1 1
5 6 7 8

1 3 2 , 2 , ,

3 2 , , ,

s s l s l s l

s s l s l s l

        

     

          


       
  (2) 

In these equations, l  is the length of the element, and ,x l y l   , and z l  . 

3.2 High-Order Beam Element (HOBE42) 

This high-order beam element has 42 nodal coordinates. In addition to the positon vector and 

the full set of gradient vectors, three curvature vectors 2 /yz y z   r r , 2 2/yy y  r r , and 

2 2/zz z  r r  are used as nodal coordinate vectors. The HOBE42 shape function matrix is 

defined as [24, 25] 

 2 2 2 2
1 2 14...s s s   S I I I   (3) 

The shape functions 2 , 1,2,...14ks k  , are defined as 
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 (4) 

The dimensionless parameters that appear in this equation are the same as the ones used for 

the LOBE24 element. 

3.3 Thick Plate Element 

The ANCF thick plate element has four nodes, each of which has 12 coordinates that 

represent the nodal position vector r , and three position vector gradient vectors ,x yr r , and 

zr , where ,x y , and z  are the element parameters. The element, therefore, has 48 

coordinates. The shape function matrix of this element is defined as [26] 

 3 3 3 3
1 2 16...s s s   S I I I   (5) 

The thick plate element shape functions 3, 1,2,...16ks k  , are defined as 
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 (6) 

In these equations, ,a b , and t  are, respectively, the length, width, and thickness of the 

element, and ,x a y b   , and z t  . 

3.4 Thin Plate Element 

The ANCF thin plate element is a gradient-deficient element since only two parameters are 

used in the element interpolation. The element has four nodes, each of which has 9 



 

11 

coordinates that represent the nodal position vector r , and two position vector gradient 

vectors xr  and yr , where x  and y  are the element parameters. The shape function 

matrix of thin plate element is defined as [27] 

 4 4 4 4
1 2 12...s s s   S I I I   (7) 

The plate element shape functions 4 , 1,2,...12ks k  , are 
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 (8) 

The element dimensions and dimensionless parameters that appear in these shape functions 

are the same as the ones defined for the thick plate element. 

3.5 Element Geometry  

The ANCF elements described in this section will be used to develop leaf spring models in 

this investigation. Table 1 shows a comparison between these elements, which can be used to 

describe curved and tapered geometry that characterizes leaf spring designs. Table 2 shows 

some of the possible shapes that can be obtained using these elements. In this table, only one 

element is used to produce the shape based on the element nodal coordinates reported in the 

table. By using position vector gradients instead of rotations, no assumptions are made with 

regard to the magnitude of the rotations within the element. This allows complex shapes to be 

represented using a small number of ANCF elements. To explicitly show the ability of ANCF 

elements to describe complex geometry, the single element model is used in the table to 

describe significantly curved and tapered configurations using the four types of the ANCF 

elements employed in this investigation. 
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4. PHYSICAL LEAF SPRING GEOMETRIC DATA 

As previously discussed in this paper, the geometry of the parabolic leaf spring is complex 

and difficult to measure. However, because of the importance of accurate geometric 

representation for credible virtual durability analysis, the development of an efficient 

automatic procedure for extracting the geometric information from the physical leaf spring is 

necessary. The approach can be generalized to create the geometry and the FE analysis mesh 

from the physical product. In this section, methods that can be used to reconstruct the 

three-dimensional CAD/FE meshes from the physical leaf spring are discussed. The main 

steps used in these methods are schematically shown in Fig. 3. 

4.1  Geometric Data Acquisition Using Structured Light Scanning 

A simple and widely used type of three-dimensional scanning techniques is the structured 

light scanning. Structured light scanners project a two-dimensional banded pattern, such as 

narrow linear stripes, on the three-dimensional target surface in a specific frequency of light 

[28]. One or more cameras are then used to view the surface at an oblique angle. A bandpass 

filter can be used in the camera to only detect the frequency of light projected on the surface 

of the object [29]. When the pattern is projected on an irregular surface and viewed from the 

oblique angle, the linear banded pattern becomes distorted. The distortion of the projected 

pattern present in the viewing angle of the camera due to the contours of the surface are then 

used to determine the variation in surface geometry [30].  

 While a single scan using a few two-dimensional images can map the surface of a portion 

of an object, the means of determining the geometry relies on line-of-sight and 

two-dimensional images to acquire the volume of the object. Thus, to obtain the surface 

geometry of a three-dimensional object, a number of these scans must be taken and integrated 

to form a data set which can describe the surface and volume of an object. It is important to 

note that the grid of data points for a given surface geometry is distributed uniformly on a 
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plane normal to the direction of the scanner, so oblique angles will have lower point cloud 

density than surfaces normal to the scan direction. Thus, deep wells or features such as bolt 

holes, or in the case considered in this paper, the gap between two leaves of a leaf spring 

assembly will not be captured accurately. 

In order to develop the full surface geometry, the data sets from each scan must be 

processed to form a single set. This data set includes a number of points obtained from the 

grid of surface points obtained during the scanning process and is referred to as a point cloud. 

The process of aligning three-dimensional point clouds into a single complete data set is 

referred to as registration [31]. Algorithms designed for integrating the multiple scans into a 

single set of points are often based on a pairwise registration scheme. In this scheme, pairs of 

point clouds are condensed into a single point cloud based on distinguishing geometric 

features common to both point clouds. For this method to work properly, distinguishing 

geometric features common to both point clouds are required to allow the registration to be 

completed [30].  

A point in the cloud, referred to as a key point, is first selected on each of these geometric 

features. It is important that these points are located on a feature containing sufficient point 

density and uniqueness; that is, it should not be part of any repeated geometry that would be 

indistinguishable from other features in the data set. Figure 4 shows an example of points on 

unique features of the leaf spring that could be used as key points. Once the key points have 

been estimated, they are used to define a larger set of points called a feature descriptor. The 

feature descriptor is composed of the key points as well as several adjacent points. Local 

position vectors can be used to define the location of the adjacent points in the cloud with 

respect to the key point. These sets of points and position vecctors are used to determine the 

proper position and orientation of one point cloud with respect to another such that they can 

be combined into a single data set [29]. 
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 It is important to note that there is a certain amount of noise present in the data that will 

prevent exact matching of feature descriptors in the pair of data sets. Thus, the assembly of 

the data sets into a single cloud requires estimates to be made to determine potential matches 

between the point clouds. This step is referred to as the correspondence estimate. In this step, 

the similarity and position of the given feature are compared. If the correspondence is found 

to not be a good match, then the correspondence estimate is rejected. Once a correspondence 

estimate is successfully found, a transformation is determined to translate and rotate the 

bodies such that the common feature on each point cloud is coincident. [29]. Figure 5 shows 

the process of registration. It is important to note that geometries which are smooth or have 

only repetitive patterns will have many possible ways in which the registration algorithm will 

attempt to assemble the two grids into a single point cloud, which can lead to improperly 

combined point clouds. 

4.2  Geometric Data Acquisition Using Multiple Images  

The geometric data acquisition based on the multiple images technique is another important 

three-dimensional reconstruction approach. The required tool, the camera, is relatively 

inexpensive and portable when compared with the device used for structured light scanning. 

Additionally, many modern cameras are high-resolution with several megapixels. The 

procedure to convert multi-view two-dimensional images to three-dimensional geometric 

data points consists of four steps: camera calibration, depth determination, registration, and 

material application. To accurately determine the depth, camera calibration is usually 

required [32]. This is followed by the determination of the depth, which is the 

three-dimensional component missing from the planar image. The registration that follows is 

performed to combine the obtained multiple depth maps to create a final mesh. As an optional 

step, the material application may need to be implemented to obtain the texture and color of 

the reconstructed object. The steps of the three-dimensional reconstruction approach based on 
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the multiple images used in this study is outlined in Fig. 3. The reconstructed 

three-dimensional mesh and the corresponding point cloud are shown in Figs. 3b and 3c. 

4.3  FE Mesh Based on the Acquired Geometric Data 

Using either of the methods described above, a point cloud that describes a grid of points on 

the scanned surface can be obtained. Many problems can occur during the process of 

converting the point cloud to a surface, such as an inherent amount of noise present in the 

scanning process as a result of variation in the depth reading from the scanning device as well 

as the holes and missing data. Additionally, it should be noted that the point cloud describing 

the surface can have a large data set, which can be computationally expensive to process. 

Therefore, rather than processing the entire point cloud and converting the cloud to a surface 

with an existing algorithm, only some of the points are selected and used to interpolate the 

profile curve of the leaf spring based on the representation method of the spring profile curve 

introduced in Section 5.2. The procedure to obtain the FE mesh from acquired geometric data 

is also shown in Fig. 3. 

In this paper, the multiple-image-based reconstruction technique is used to acquire the 

three-dimensional geometric data from a set of two-dimensional photos taken at different 

angles. A Nikon D200 digital single lens reflex camera is used and the leaf spring surface is 

marked slightly with chalk to create black and white points, in order to produce a high quality 

mesh from scanned surface. The obtained meshed surface is shown in Fig. 3b. Following the 

scanning, one can obtain the three-dimensional model and extract the point cloud, from 

which appropriate sample points are selected to interpolate the profile curve of the surface 

shown in Fig. 3c. However, to develop the FE mesh with beam or plate elements, the points 

on the mid-surface rather than the surface points are used. To determine the points on the 

mid-surface from the points on the two surfaces, the plane cross-section assumption is used. 

In other words, the cross-section is assumed to remain plane after deformation. Because the 
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dimension of the cross-section is uniform and the initial curvature is small, the mid-surface is 

assumed to coincide with the geometric central plane. Thus, the points in the middle of the 

fiber lines connecting two corresponding points on the upper and lower surfaces, which share 

the same material coordinates in the two directions of the mid-surface, can be assumed to be 

the points on the mid-surface. For convenience, points which are evenly distributed along the 

length of the leaf on the upper and lower surfaces are chosen as point pairs. In this 

implementation, the surface curve of the leaf is interpolated based on the relaxed uniform 

cubic B-Spline, which will be introduced in the following section, using the selected points 

on the surface. Subsequently, the equally-spaced points along the surfaces are determined and 

the corresponding point pairs are obtained, as shown in Fig. 3d. Then, according to the plane 

cross-section assumption, the points on the mid-surface are obtained at the centers of the fiber 

lines connecting the point pairs. Based on the obtained points on the mid-surface, the 

mid-surface curve is then interpolated to determine the gradients. The length of the fiber line 

connecting the two points on the surfaces is used as the thickness of the leaf spring at the 

point on the mid-surface. The interpolated curves including the surface and mid-surface 

curves are shown in Fig. 3e and the final ANCF FE model is shown in Fig. 3f. 

4.4  Pre-Stressed Reference Configuration 

Both the stress-free and pre-stressed assembled reference configurations are required in order 

to determine the pre-stress in the leaf spring. Acquiring the geometric data of the assembled 

leaf spring is much more difficult and time-consuming as compared to acquiring the data of 

the separate leaves due to the small varying gaps between the two leaves when they are 

assembled. These gaps lead to the problems of inaccurate point cloud meshes as previously 

mentioned. Instead of scanning the assembled leaf spring using the existing scanning 

technology, two alternate approaches can be used. The first is manual measurements of 
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points on the assembled leaf spring and the second is an iterative numerical procedure. Both 

methods have shown to produce similar results in this investigation.  

 The iterative numerical procedure can be used to obtain the pre-stressed reference 

configuration (assembled spring) shown in Fig. 6c from the stress-free configuration of the 

leaves before assembly, shown in Fig. 6a, by simulating the quasi-static process of assembly 

numerically. As shown in Fig. 6b, the initial leaf spring assembly configuration is acquired 

by clamping the two leaves together at the center clamped segment. The initial penalty 0δ  at 

the two end contact elements can be obtained to start the iteration to determine the final 

equilibrium leaf spring assembly configuration as shown in Fig. 6c. The normal contact force 

,
n
j iF  at contact point i  of element j can be expressed in terms of the penetration ,j i  

between the contact surfaces as  , 0 , ,
n
j i j i j iK F n , where 0K  is the current penalty contact 

stiffness coefficient and ,j in  is the corresponding normal vector. As shown in the flow chart 

of Fig. 7, the iterative algorithm consists of two loops; the outer and inner loops. The purpose 

of the outer loop is to adjust the current contact stiffness coefficient 0K  according to the 

obtained equilibrium configuration ie  to ensure convergence to the desired value of the 

penetration tol . The inner loop is used to calculate the static solution under the current 

unbalanced force u e e F F Q , where , ,
1 1

en p
T n

e j i j i
j i

F
 

F S n  is the generalized force 

associated with the normal contact force calculated using the current stiffness coefficient 0K  

and configuration 0e , p  is the number of contact points, en  is the number of contact 

elements, S  is the associated shape function matrix, and eQ   is the elastic force calculated 

using the current configuration 0e . Convergence is assumed when the maximum penetration 
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is smaller than a certain user-specified tolerance tol ,  that is,  0<max < tolδ , and the 

obtained equilibrium configuration ie  is considered as the final assembly configuration. 

 

5. ANCF LEAF SPRING GEOMETRY 

While the leaf spring profile curve is often assumed a circular arc in the conventional design 

process, the actual profile curve is quite different from either a circular arc or an elliptic arc, 

as previously mentioned. Therefore, a simple assumed functional description does not capture 

correctly the spring profile geometry. In this section, the representation of the leaf spring 

geometry using ANCF elements is discussed. Based on the geometric features of the leaf 

spring, the relaxed uniform cubic B-Spline is proposed to represent the spring profile curve 

using the scanning point cloud. A discussion on the conventional piecewise-tapered modeling 

approach used for parabolic leaf springs is also provided in this section. It is shown that, by 

using ANCF elements, the tapered geometry of the leaf spring can be systematically and 

accurately described. 

5.1  Leaf Spring Configuration 

The general leaf spring configuration is shown in Fig. 1. The leaves are clamped together by 

the center bolt and the leaf spring assembly is fixed to the spring seat by a set of U-bolts, 

while the spring seat is rigidly attached to the axle. The leaf spring is connected to the chassis 

using the shackle at one end and a pin joint at the other end. The shackle can have a small 

rotation to allow for small longitudinal translation of the spring with respect to the chassis. 

Leaf springs are designed to have pre-stress in order to reduce the stress of the master leaf 

when the spring is mounted on the vehicle. This pre-stress can be achieved by changing the 

leaf curvature during the assembly process, as shown in Fig. 8a. Specifically, nips between 

the adjacent leaves, below the master leaf, are formed by successively reducing the radius of 

curvature of the leaves, as shown in Fig. 8a [1]. Therefore, when the leaves are clamped 
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together, as shown in Fig. 8b, the master leaf is subjected to a bending preload opposite in 

direction to that caused by the vehicle load, resulting in overall reduction of the spring 

bending stress during the vehicle operation.  

To extend the life cycle of the leaf springs, they are usually designed based on the 

concept of the uniform strength beam. Depending on if the thickness or width of the leaf is 

kept constant in the ideal model, the designed leaf spring can be classified as a 

uniform-thickness leaf spring or a parabolic leaf spring, respectively. The uniform-thickness 

leaf spring is shown in Fig. 9a. In the multi-leaf spring, the leaves with different curvatures 

are clamped together and the adjacent leaves contact along the full longitudinal length due to 

the assembly pre-stress. By contrast, the other method is to vary the thickness of the leaf 

spring, rather than the width, with respect to the length of the leaf in order to obtain uniform 

stress throughout the leaf spring. This spring type is called the parabolic leaf spring and is 

shown in Fig. 9b. In practice, the thickness of the center clamped segment, which is rigidly 

connected to the spring seat, is constant. Unlike the uniform-thickness multi-leaf spring, the 

parabolic leaf spring normally has only one or two leaves because even one single parabolic 

leaf can function as a uniform strength beam. The weight of the parabolic leaf spring is 

therefore less than that of the uniform-thickness multi-leaf spring for the same stiffness. In 

practice, to increase the stiffness of the leaf spring, parabolic leaf springs with two leaves are 

commonly used, and a rubber or plastic spacer is often inserted between adjacent leaves at the 

ends to separate them and reduce the interleaf friction. As shown in Fig. 9b, there are gaps 

between leaves in the assembly and the leaves initially contact only at the two edges, unlike 

the uniform-thickness multi-leaf spring in which the leaves can have distributed contact along 

the length of the leaves. As a result, the friction between the parabolic spring leaves is much 

less than that in the uniform-thickness leaf spring, improving stability and ride comfort. 
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Because the parabolic leaf spring has advantages of light weight and weak interleaf friction, it 

is widely used in modern suspension systems. 

5.2  Relaxed Uniform Cubic B-Spline 

In previous publications, a polynomial has been used to interpolate the leaf spring profile 

curve. A piecewise cubic B-Spline curve with a continuous second derivative is used in this 

investigation to describe the leaf spring profile curve. In order to represent accurately the 

spring geometry, the steps of the manufacturing and assembly process should be considered 

when constructing the profile curve. The leaf spring is formed by applying a distributed force 

on a heated semi-finished product along the longitudinal direction gradually with a finger 

press mold with no concentrated moments at the end points, and therefore, the curvature at 

the edges is zero. Consequently, the relaxed uniform cubic B-Spline, which ensures zero 

second derivatives at the endpoints, can be used to represent the profile of the spring. The 

relaxed uniform cubic B-Spline is constructed by connecting Bezier curves , 1, 2,...,i i nC  

with 2C  continuity at the internal breakpoints and zero second derivatives at the first and 

last breakpoints [33]. Therefore, the relaxed uniform cubic B-Spline  uP  for 0 u n   

can be defined using the given data points , 0,...,i i nD . Based on the properties of the 

relaxed uniform cubic B-Spline, the B-Spline control points , 0,...,i i nB  can be obtained 

by solving the following system of linear equations: 

 1 1

0 0

1 2 1
1,..., 1

6 3 6i i i i

n n

i n 
     

  

D B B B

D B D B
  (9) 

Equivalently, the equations can be written in a more general matrix form for the convenience 

of calculation as 
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The B-Spline is constructed with n Bezier curves with the ith Bezier curve defined by the 

four control points    0 1 1 1 2 1, 2 3, 2 3i i i i i        P B P B B P B B  and 3 iP B . With 

the four control points, the ith Bezier curve can be obtained as 

       3 2 2 3
0 1 2 31 3 1 3 1u u u u u u u      P P P P P , where u  in this equation is the 

parameter of the Bezier curve, and 0 1u   . Using the relaxed B-Spline representation, the 

leaf spring profile curve can be systematically constructed using the scanned data points 

obtained using one of the procedures described in the preceding section. 

5.3  ANCF Parabolic Leaf Spring Representation 

The development of the geometry/analysis mesh of the parabolic leaf spring can be 

challenging due to its non-uniform thickness, which is function of the square root of the 

longitudinal distance (arc length). While ANCF elements can be used to represent nonlinear 

geometry, linearly tapered elements are used in this investigation in order to provide simple 

and clear demonstration of how the ANCF position vector gradients can be used to obtain the 

desired shapes. Stretch and shrinkage of the element cross section can be conveniently 

realized by changing the norm of the gradient vectors [34, 35]. For example, tapering an 

ANCF element in the z direction can be achieved by simply multiplying the gradient vector 

zr  by scaling factors   and   at the first and second element node, respectively, as 

shown in Fig. 10. For an arbitrary point with dimensionless coordinates in the longitudinal 

and lateral directions   and  , the position vectors of the corresponding points on the top 
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and bottom surfaces defined, respectively, by tr , br , and the cross-sectional thickness h  

are   

 
   

 0

, , , , , ,

1

t t b b

h h

     

  

  


      

r S e r S e
  (11) 

where 0h  is the nominal thickness before altering the element shape, and t  and b  refer 

to the non-dimensional thickness parameter whose definition varies with the type of element. 

It is clear that the thickness of the element changes linearly with respect to the length, thus 

the parabolic leaf spring can be approximated with linearly tapered ANCF elements. Table 2 

shows examples of geometries that can be obtained using a single element of the types of 

elements used in this study.  

5.4  ANCF Modeling of the Spring Pre-Stress 

In order to develop accurate representation of the leaf spring pre-stress, the three different 

configurations shown in Fig. 11 must be considered. These configurations are the straight 

configuration, the initial stress-free configuration, and the assembled pre-stress 

configuration. The initial stress-free configuration is a curved configuration as shown in Fig. 

11. A line element dx in the straight configuration corresponds to a line element idr  in the 

initial configuration and to a line element dr  in the current configuration. The relationship 

between dr  and idr  is defined using the matrix of position vector gradients J, the 

relationship between dr and dx is defined using the matrix of position vector gradients eJ , 

and the relationship between idr  and dx is given by the matrix iJ . One has the following 

relationships: 

 1

, , ,i e i i

e i
i i

d d d d d d



   
               

r J r r J x r J x

r r x
J J J

r x r

  (12) 
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The Green-Lagrange strain tensor is defined in terms of the position vector gradient matrices 

as 

    1 11 1

2 2
T T T

i e e i
      ε J J I J J J J I   (13) 

where   /e   J Se x , S  is the shape function matrix, and e  is the vector of nodal 

coordinates of the leaf spring in the current configuration. Two initial configurations of the 

leaf spring can be used depending on whether or not the pre-stress is considered in the 

analysis, which are the configurations before and after assembly, as shown in Fig. 8a and 8b. 

Denoting the vector of nodal coordinates of the leaf spring before and after the assembly as 

ue  and 0e , respectively, the corresponding matrices of position vector gradients are denoted 

as uJ  and 0J . If the leaf spring assembly is used as the initially stress-free configuration, 

shown as the dashed line in Fig. 11, there will be no initial stresses. In order to account for 

the pre-stress caused by the assembly process, the configuration before assembly shown in 

Fig. 8a should be used as the initial stress-free configuration, the mapping relation is shown 

as the solid line arrows in Fig. 11, and thus i uJ J . Therefore, there exists initial stress in 

the configuration of the leaf spring assembly since 1 1
0e u u

  J J J J J  and the initial strain 

  1 1
0 0 0 2T T

u u
  ε J J J J I . The difference between the assembly configuration and the 

un-deformed configuration 0 0d u e e e  is used to determine the desired pre-stress value.  

 

6.  CONNECTION TO VEHICLE COMPONENTS 

As shown in Fig. 1, the leaf spring is connected to the chassis at one end using the shackle 

and at the other end using a pin joint. It is also rigidly connected to the axle at the spring seat 

by a set of U-bolts at the center section. In this investigation, it is assumed that the chassis, 

shackle, and leaf spring eye can be modeled as rigid bodies since they are relatively stiff 
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compared to the flexible leaf spring. The chassis, axles, and leaf springs can all be considered 

as one ANCF/FE mesh in which the constraint equations and connectivity conditions, 

including the pin joint constraints, can be formulated using linear algebraic equations. This 

allows for eliminating the dependent variables at a preprocessing stage, thereby significantly 

reducing the number of coordinates and constraint forces that need to be determined during 

the dynamic simulation. 

The development of such an ANCF geometry/analysis mesh can be achieved using the 

concept of the ANCF reference node (ANCF-RN) which allows for including rigid 

components in the FE mesh. It is important to point out that the ANCF-RN concept is 

fundamentally different from the rigid body element (RBE) used in the commercial FE 

computer programs. The RBE approach is often used with elements that employ infinitesimal 

rotations as nodal coordinates and an incremental co-rotational procedure. The ANCF-RN 

approach does not impose any restriction on the amount of displacement, including rotation, 

and can be used with a non-incremental solution procedure. In the RBE approach, 

infinitesimal rotations are used, while in the ANCF-RN approach, gradient vectors are used. 

The constraint equations used in these two different approaches to formulate the rigidity 

conditions and other joint and connectivity conditions are fundamentally different. 

In order to develop a geometry/analysis mesh that includes the chassis, axles, and leaf 

springs, the ANCF-RN approach is used to represent the rigid chassis, rigid axle, shackle end, 

and leaf spring eyes.  In the case of a rigid body, six nonlinear ANCF-RN constraint 

equations, 1x r , 1y r , 1z r ,  0T
x y r r , 0T

x z r r , and 0T
y z r r , are applied for each 

reference node during the dynamic simulation to ensure that the ANCF-RN position vector 

gradient matrix is an orthogonal matrix [36]. Since the constraints between the ANCF-RN 

and other leaf spring mesh nodes are linear in the ANCF coordinates, the dependent degrees 

of freedom associated with these linear constraint equations can be eliminated at a 



 

25 

preprocessing stage before starting the dynamic simulation through the use of a velocity 

transformation matrix. The number of ANCF reference nodes can also be minimized by using 

the appropriate gradient constraint equations at the preprocessing stage; this will allow for the 

elimination of the largest number of dependent variables and constraint equations before the 

start of the simulation. The use of the new ANCF geometry approach is not only necessary 

for the development of new efficient and accurate leaf spring models, but is also necessary 

for the successful integration of computer-aided design and analysis (I-CAD-A) that will 

eventually eliminate reliance on three different software (CAD, FE, and MBS) which suffer 

from serious incompatibility problems.  

 

7.  INTERLEAF CONTACT FORCES 

In this study, the contact force between the spring leaves is formulated using a penalty 

approach. In this approach, the bottom surface of the upper leaf is considered as the master 

surface on which the contact points are pre-specified, and the upper surface of the adjacent 

lower leaf is considered as the slave surface. The minimal distance criterion is adopted to 

efficiently find the closest point on the upper surface of the adjacent lower leaf [37]. The 

contact detection method used in this study is shown in Fig. 12a. Let P  be one of the 

specified points on the master surface, and Q  be a potential contact point on the slave 

surface. After determining the nearest point Q , it is necessary to check the penetration   

by projecting the vector PQ P Q r r r  along the unit normal vector , , , ,P x P y P x P y  n r r r r , 

where Pr  and Qr  are the position vectors of points P and Q, ,xPr  and , yPr  are the position 

gradient vectors defined by differentiating Pr  with respect to x and y, respectively. If 

 T

Q P  r r n  is smaller than a specified tolerance, points P  and Q  are assumed to be 

in contact. It should be noted that the contact between leaves predominantly occurs at the 
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edge of the shorter leaf [21]. This fact can be utilized in developing an efficient contact 

search algorithm. Depending on the type of the leaf spring, the distribution of the contact 

points may vary. For the uniform-thickness leaf spring, contact points on the element internal 

surface are employed as shown in Fig. 12b, while for the parabolic leaf springs, edge contact 

points are employed as shown in Fig. 12c.  

 The normal force applied to the contact points based on a penalty approach is defined as  

 n K c  F n , where K  is the penalty stiffness coefficient, c is the damping coefficient, 

  is the penetration,   is the contact point penetration rate, and n  is the normal vector to 

the contact surface. Using the normal force vector, the tangential friction force fF  can be 

calculated. In order to avoid discontinuity and improve the computational efficiency of the 

model, the following smoothed tangential friction force model is used [38]:  
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2

n r tr s

f

n r tr s

v

v




  
 
 

F t v
F

F t v
  (14) 

where   is the friction coefficient, rt  is the unit vector along the relative tangential 

velocity trv , and  tr r r  v v v n n , rv  is the relative velocity, sv  is an assumed slip 

velocity, and /tr sv  v . 

 

8.  MBS EQUATIONS AND LOCKING ALLEVIATION 

The ANCF geometry/analysis meshes of the leaf spring, developed using different ANCF 

elements, can be simulated using general computational MBS algorithms designed for 

solving a system of differential/algebraic equations (DAE’s). The MBS equations of motion 

can be derived using the principle of virtual work in dynamics. The number of constraint 

equations can be significantly reduced by using the ANCF-RN approach previously discussed 

in this paper. This approach allows for eliminating the system dependent variables at a 
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pre-processing stage. The remaining nonlinear constraint equations, which cannot be 

eliminated at a pre-processing stage, are combined with the system differential equations 

using the technique of Lagrange multipliers.  

The strain split method (SSM) that was recently proposed for the ANCF 

fully-parameterized beam and plate/shell (structural) elements is applied to the leaf spring 

example considered in this paper [22]. The basic idea of the strain split method is to use two 

different constitutive models with an additive split of the Green-Lagrange strain tensor, such 

that the high-order strain terms that arise from the ANCF coupled displacement interpolation 

functions are decoupled from the lower order terms. In case of the low-order ANCF beam 

element [23], the position field and the gradient vectors can be written as  

 

,      

c
y z

c
x x y x z x

y y z z

y z

y z

  
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  (15) 

and the matrix of position vector gradients can be written and additively split into two parts 

as  

 

c c k
x yx zx y z

c
x y z yx zx

y z

y z

      
       

J r r r r r J J

r r r r r 0 0
  (16) 

where cJ  includes the terms associated with the beam centerline, and kJ  includes any 

remaining higher order terms. The Green-Lagrange strain tensor can be written similarly into 

two parts as c k ε ε ε  such that  

    1 1
,

2 2
c cT c k cT k kT c kT k    ε J J I ε J J J J J J   (17) 

Using the two terms of the additive Green-Lagrange strain split, the second Piola-Kirchhoff 

stress can be written in Voigt form as c c k k
v v v σ E ε E ε , where  
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  (18) 

and E is the Young’s modulus,   and   are the Lamé’s parameters, and 2sk  and 3sk  

are the shear correction factors. Using the definition of the second Piola-Kirchhoff stress 

shown above and the Green-Lagrange strain, the virtual work of the elastic forces can be 

written in the general continuum mechanics approach as 
0

0:s V
W dV   σ ε , where σ  is 

the second Piola-Kirchhoff stress tensor. The SSM details for handling initially curved 

geometry can be found in the work of Patel and Shabana [22]. 

 The SSM implementation details discussed above are based on the procedure that 

follows the general continuum mechanics approach. An alternate implementation of the strain 

split method is based on handling the two stress matrices that arise from the strain split 

separately while formulating the vector of elastic forces. Starting from a potential function 

defined as 

 
1 1

2 2
cT c c kT k kU  ε E ε ε E ε ,  (19) 

the elastic forces can be formulated as k U  Q e , where e  is the vector of nodal 

coordinates. Another implementation that is based on the continuum mechanics approach and 

a slightly modified constitutive interpretation is that of the element local frame. It was noted 

that in the case of structures with a small radius of curvature, SSM leads to slight 

overprediction of the element deformation. A local frame based interpretation of the 

constitutive model yields accurate results in the case of structures with large curvature. Since 

the transformation of the constitutive coefficients is rather cumbersome, the strains can be 
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transformed into the element local frame, the local stress can be evaluated using the SSM 

constitutive model and the global stress can be evaluated by using the element local frame to 

global frame transformation applied to the local stress matrix [39]. In this paper, since the 

curvature of the leaf spring is quite small, the deviation of the SSM solution is quite small. 

Accordingly, the SSM implementation for the leaf spring analysis does not include the local 

frame transformation. 

 

9. FE COMPARATIVE STUDY 

Before developing new parabolic leaf spring models, it is important to examine the behavior 

of different ANCF elements discussed in this investigation. To this end, a simple transient 

dynamic analysis, in which the leaf spring is subjected to the sudden application of a constant 

vertical force without damping, is performed. In order to focus on the behavior of the element, 

the pre-stress is neglected in this preliminary analysis. Furthermore, because constructing 

tapered leaf springs using the thin plate element is not straightforward, a uniform-thickness 

double-leaf spring with the same profile obtained from scanning the parabolic leaf spring, 

shown in Fig. 13b, is used in this preliminary FE comparative study instead of the parabolic 

leaf spring. It should be noted that the tested leaf spring is not strictly a standard laminated 

leaf spring because the lengths of the two leaves are the same and laminated leaf springs 

generally include more than two leaves of varying length. The uniform-thickness double-leaf 

spring is employed for the convenience of comparison with the corresponding parabolic leaf 

spring. 

 Both beam and plate elements can be used to model the leaf springs [18], and therefore, 

two different ANCF beam elements and two different ANCF plate elements are tested in this 

numerical investigation. These elements are the thin plate element [27], the thick plate 

element [26], the three-dimensional low-order beam element with 24 nodal coordinates 
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(LOBE24) [23], and the three-dimensional high-order beam element with 42 nodal 

coordinates (HOBE42) [24, 25], which were discussed previously in this paper.  

 The leaf spring geometry shown in Fig. 13b is symmetric and has two full length leaves 

with uniform-thickness 0.02667tt   m  and width 0.1016b   m. The spring has the 

following dimensions, as indicated in Fig. 13a: 0.7357A B   m, 0.09429C   m, and 

the pack thickness 0.05484D   m. As previously discussed in this paper, the leaf spring 

profile curve is interpolated using the relaxed uniform cubic B-Spline based on the geometric 

information directly extracted from the three-dimensional scanning data.  

 The results presented in this section are based on a 28-element mesh of the spring 

assembly, in which each leaf is modeled with 14 elements, and the end elements on the two 

leaves are assumed to be in contact. The Young’s modulus of the leaves is assumed to be 

112.06 10 PaE   , the coefficient of friction is 0.6, and a force 31121 NP    equal to half 

the weight of the chassis is applied on the leaf spring-chassis reference node. The vertical 

displacements of the chassis reference node predicted using different element models are 

compared.  

9.1  ANCF Beam Element Models 

Both the LOBE24 and HOBE42 elements are used to analyze the leaf spring. The results 

obtained for the vertical displacement of the chassis reference node are compared and shown 

in Fig. 14. In this figure, the simulation results are obtained for two values of the Poisson 

ratio, 0.27   and 0  , in order to examine the effect of locking on the two elements. As 

shown in Fig. 14a, the LOBE24 results do not agree with the HOBE42 results in the case of 

0.27  . Specifically, the LOBE24 mesh exhibits smaller vertical displacement, which 

implies that the LOBE24 element model is stiffer. On the other hand, the results obtained 

using the two elements coincide when the Poisson ratio is zero, as shown in Fig. 14b. This is 

attributed to the fact that the LOBE24 element suffers from the Poisson locking, which is 
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caused by the coupling of the longitudinal and transverse beam strains due to the Poisson 

effect and the varying orders of interpolation used in those directions [40]. The use of the 

HOBE42 element, on the other hand, eliminates the Poisson locking as the result of using the 

quadratic interpolation in the transverse directions [24, 25].  

9.2  Two ANCF Plate Element Models 

The leaf spring is also modeled using both thin and thick plate elements. A comparison 

between the results of the vertical displacement of the chassis reference node predicted using 

the two element models is shown in Fig. 15, where the simulation is performed with two 

different values of Poisson ratio, 0.27   and 0  , in order to examine the effect of 

locking on the two elements. As expected, the thick plate model results in smaller vertical 

displacement compared to the thin plate model in the case of 0.27  , as shown in Fig. 15a. 

The thick plate model exhibits stiffer behavior because this element also suffers from the 

locking problem [41]. As shown in Fig. 15b, the vertical displacements obtained by the thin 

plate and thick plate elements match more closely but are still slightly different in the case of 

0  . Two effects contribute to the slight differences in this case of zero Poisson ratio. First, 

the stress forces of the thin plate element are formulated using the Kirchhoff plate theory, 

which neglects the shear deformation in the thickness direction, while a general continuum 

mechanics approach is used to formulate the stress forces of the thick plate element. This 

contributes to the difference in the results despite the fact that the ratio between the thickness 

and the length of the leaf spring is small and the shear effect is not significant. Second, in the 

case of the gradient deficient element, contact points and forces are distributed on the 

mid-surface instead of the upper and lower surfaces of the plate.  

9.3  Comparison between the Beam and Plate Models 

The results of the vertical displacement of the chassis reference node obtained using the beam 

and plate element models are also compared. As the thick plate element and the LOBE24 
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element suffer from the locking problem, the Poisson ratio is set to zero when comparing all 

the elements to eliminate the effect of locking. The results are shown in Fig. 16. While the 

results obtained using the thick plate, the LOBE24, and the HOBE42 elements agree well, the 

solution obtained using the thin plate model is slightly different for the reasons previously 

explained. Based on these results, it can be concluded that the thick plate and the LOBE24 

elements suffer from the Poisson locking problem. Additionally, the thin plate is not suitable 

for modeling the leaf spring contact. Therefore, based on the comparative study presented in 

this section, the high-order beam element, HOBE42, which does not suffer from the Poisson 

locking, will be used to obtain the reference solutions for the dynamic simulation results 

presented in the following section. 

 

10.  PARABOLIC LEAF SPRING SIMULATION RESULTS 

Based on the simple transient analysis of the preceding section, the parabolic leaf spring is 

modeled using the high-order beam element and is approximated by piecewise linearly 

tapered elements. The geometry extracted from the scanning data is used to develop the 

parabolic leaf spring model, taking into account the effect of the pre-stress. The focus in this 

section will be on demonstrating the advantage of using the parabolic leaf spring in reducing 

the interleaf friction and on examining the use of the SSM locking alleviation technique when 

applied to leaf spring modeling.  

10.1 Interleaf Friction and Pre-stress 

The boundary and loading conditions of the leaf spring model used in the simulation are 

shown in Fig. 17. In the test performed in this section, the configuration shown in Fig. 17 is 

used, and the vertical load is suddenly applied on the center clamped segment of the leaf 

spring. As shown in the figure, the leaf spring is pinned to two horizontal sliding hinged 

supports at the two eyes. The procedure to account for the effect of the pre-stress is 
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previously described in this paper. The pre-stress in the longitudinal and thickness directions 

introduced by the assembly process are shown in Fig. 18. It is clear that desirable initial 

pre-stress, which is opposite to the stress caused by the vehicle load, is introduced in the 

master leaf. To explicitly show the advantage of the parabolic leaf spring in reducing the 

interleaf friction, a uniform-thickness double-leaf spring model with the same profile curve 

was also developed. The vertical displacement of the center clamped node of the leaf spring 

is shown in Fig. 19. It is clear that the amplitude of vibration decreases due to the interleaf 

friction for both the uniform-thickness and tapered leaf springs. After 10 periods of vibration, 

the amplitude decreases by about 30% and 61% of the initial amplitude for the tapered and 

uniform-thickness leaf springs, respectively. It is clear that the effect of friction in the tapered 

leaf spring is smaller than that in the uniform-thickness leaf spring. This is expected since the 

tapered leaves contact only near the two edges, whereas the uniform-thickness leaves may 

contact along the entire leaf. This contributes to decreasing noise and improving ride quality. 

10.2 SSM Locking Alleviation  

Three different leaf spring models are developed in this section to check the ability of the 

SSM locking alleviation technique when applied to leaf spring modeling. In these models, 

Young’s modulus is selected to be 11=2.06 10 PaE   and the Poisson ratio is 0.3  ; the 

Poisson ratio was slightly increased in order to increase the locking effect. As in the case of 

the previous simulations, the spring geometry is obtained from the scanning data. Both the 

single spring and dual-spring models are considered in this section. In the case of the 

dual-spring model, the two leaf springs are assumed to be connected by a rigid axle. The front 

axle suspension full load is used as the steady load. The load for a dual-double-leaf spring 

suspension is 14,000 lbs and the corresponding force is 62242.5Q   N. 

10.3 SSM Static Analysis  
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A static analysis of a single mono-leaf spring is first performed to check the SSM 

performance in static analysis and element convergence in the case of leaf spring modeling. 

Due to the symmetry, the half mono-leaf spring is used for the analysis presented in this 

section and one end of the leaf spring is assumed to be fully clamped, as shown in Fig. 20. 

The tip vertical load applied to the half mono-leaf spring is / 8 7780.3 NP Q  . Different 

elements/methods are used to analyze the leaf spring and the abbreviations of all the 

elements/methods are shown in Table 3; the solution obtained using the commercial FE 

computer program ANSYS is used as reference. The Timoshenko beam BEAM188 is used in 

ANSYS and the results converge at 20 elements. The obtained corresponding tip vertical 

displacements f  are shown in Table 4. As expected, it is found that the SSM solution 

converges with mesh refinement. From the view of practical engineering accuracy, the 

solution obtained with 12 ANCF beam elements can be considered as a converged solution. 

Accordingly, the 12 element mesh for the half leaf will be used in the following dynamic 

analysis. From the comparison between the GCM, SSM, HOBE42 and ANSYS, it is clear 

that the SSM method can successfully alleviate the locking phenomenon and leads to a 

solution that is in a good agreement with the commercial FE code ANSYS.  

10.4  Dynamic Analysis of the Mono-leaf Spring 

The dynamic analysis of the mono-leaf spring is also conducted. The comparison of the GCM, 

SSM and HOBE42 solutions for the tip vertical displacement is shown in Fig. 21. This 

comparison clearly shows that the SSM solution agrees well with the HOBE42 solution for 

the tip vertical displacement. By contrast, the GCM solution gives smaller values because of 

the locking phenomenon. Accordingly, it can be concluded that the SSM locking alleviation 

works well even for the dynamic analysis of the initially curved and tapered structure, which 

is consistent with the conclusion drawn from the static analysis. 

10.5  Unilateral Bump Negotiation 
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Using the ANCF-RN concept, a simplified suspension assembly is built as shown in Fig. 22. 

The central elements of the leaf spring are rigidly clamped to the axle reference node. The 

mounting shackle reference nodes and the other mounting end of the leaf spring are fixed. To 

clearly show the orientation of the reference nodes, the gradient vectors at the reference 

nodes xr , yr  and zr  are plotted as red, green, and blue arrows, respectively. Since the road 

in general is not perfectly flat, a bump on the road surface usually incurs larger impact load 

dF  than the steady load stF  during stable driving. Traffic calming measures are usually 

installed on the road such as the speed bump to slow the vehicle, especially in the residential 

areas. Therefore, it is important to perform dynamic simulation of the leaf spring 

corresponding to the vehicle driving on a rugged road or passing a bump. For example, when 

only one wheel passes over a bump, the loading condition of the leaf spring can be more 

severe compared to both wheels of the axle simultaneously passing over the bump. Therefore, 

the leaf spring is analyzed when only one wheel passes over the bump. There are no national 

standards on speed bump size and passing speed; however, according to some street design 

manuals [42, 43], the length of the bump is shorter than 1 foot, the height is normally 3-4 

inches, and 20 miles per hour is a reasonable passing speed. While an actual speed bump can 

be smoothed with a gradual slope, for simplicity, it is assumed to be rectangular in this 

numerical investigation, with dimensions shown in Fig. 23, and the passing velocity is 

assumed to be 8.94 m/s. To determine the value of the impact force, the simple 

spring-damper quarter vehicle model shown in Fig. 23 is used. According to the static or 

damped dynamic analysis of the double-leaf spring, the stiffness of the spring is obtained as 

61.030 10 N / mK    and the damping coefficient is set as 45 10 N s / mC    . The mass of 

the quarter-car body is 3172.4 kgm  . The quarter vehicle model is accelerated to 8.94 m/s 

to pass the bump. Then, the maximum amplitude of the force applied on the leaf spring 
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d l lF K C     is obtained as the impact force, where l  and l  are the relative vertical 

position and velocity, respectively, between the car body and the wheel. The vertical position 

of the car body versus its horizontal position is shown in Fig. 24a, and the corresponding 

vertical force is shown in Fig. 24b. From Fig. 24b, it is clear that the load on the leaf spring 

significantly increases from the steady value to an extremum when the vehicle passes over 

the bump before the sudden impact is damped. The obtained maximum impact force is 

84166.6 NdF  , which is more than twice the steady load / 2 31121.25NstF Q  . 

The vertical upward impact load dF  associated with the unilateral bump is applied on 

the corresponding central segment of the leaf spring and the other side is applied with stF  to 

simulate the case of axle articulation when the vehicle passes a bump on one side of the 

vehicle. The vertical displacement of the center node of the impacted leaf spring is shown in 

Fig. 25. It can be noted that the largest deformation appears at around 0.086st   and the 

corresponding configuration of the leaf spring is shown in Fig. 26a, while the axle 

articulation is shown in Fig. 26b. Obvious rotation of the shackle can be seen in Fig. 26c. Due 

to the twisting of the leaf spring, different penalties at the contact points on the edges can be 

seen in Fig. 26d. It can be seen from Fig. 25 that while the SSM implementation can still 

alleviate the locking in the case of the dynamic analysis of axle articulation and produces 

larger displacement than GCM implementation, it cannot give a solution close to the 

HOBE42 solution. This is due to the large twisting distortion of the leaf spring associated 

with the axle articulation loading condition. Because of the linear interpolation in the beam 

cross-sectional direction, the low-order beam cannot capture the nonlinear distribution of the 

torsional deformation. Furthermore, the SSM implementation is not currently designed to 

tackle the locking associated with torsional deformation. Thus, neither GCM nor SSM 

approach can give the correct solution in the case of torsional deformation. This can also be 

proved by the fact that the SSM solution is correctly predicted in the case of symmetric 
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steady loading, where no torsion can be observed. The distribution of strain xx  obtained 

from the HOBE42 simulation is shown in Fig. 27. The obvious twisting effect can be seen 

through the strain distribution shown in this figure. 

 

11.  CONCLUSION 

Leaf springs are widely used in vehicle suspension systems to connect the chassis and axles 

[44]. They serve to absorb the vibration and improve the ride quality and have been the 

subject of many numerical as well as experimental studies [7, 10 - 19, 21, 45]. Compared 

with the uniform-thickness leaf spring, the parabolic leaf spring is much lighter for the same 

stiffness and has the advantage of reduced interleaf friction, making it less noisy and more 

effective in improving the ride quality. In this investigation, the parabolic leaf spring was 

analyzed using ANCF elements. Three-dimensional scanning techniques were used to extract 

the complex geometric information from the physical product and ANCF/FE models were 

created from the data acquired from the scanned geometry. An automated procedure for 

developing the ANCF geometry/analysis mesh from the physical object was proposed. The 

relaxed uniform cubic B-Spline was first used to represent the leaf spring profile curve, and 

the parabolic leaf spring was approximated with piecewise linearly tapered ANCF elements. 

To select the appropriate ANCF element type for modeling the leaf spring, two ANCF beam 

elements and two ANCF plate elements were considered in this investigation to develop the 

uniform-thickness double-leaf spring, accounting for the interleaf contact. It was shown that 

the low order fully-parameterized beam element and the thick plate element suffer from the 

locking problem. Additionally, the thin plate element can lead to less accurate results because 

it neglects the shear and because the contact points and forces are distributed on the element 

mid-surface. Therefore, the high-order beam element was chosen in this investigation to 

perform the dynamic simulations of the parabolic leaf spring model developed with piecewise 
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linearly tapered elements. The numerical results obtained demonstrated that the tapered leaf 

spring is more effective in reducing the interleaf friction as compared to the 

uniform-thickness leaf spring. Furthermore, the use of an SSM implementation is examined 

as a locking alleviation technique. The results obtained, however, showed that while the 

current SSM implementation can be effective in reducing Poisson locking, it may not correct 

the beam element kinematic deficiencies when subjected to torsional loading. Future work 

will include the development of high-fidelity vehicle models that include the parabolic leaf 

springs based on the new ANCF geometry/analysis meshes proposed in this investigation as 

well as further developing the SSM technique in order to improve its performance in the case 

of torsional loading of ANCF beam elements. 
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Table 1. Comparison of different ANCF elements  

Property Fully-Parameterized Elements 
Gradient-Deficient 

Element 

Element Type Low-Order Beam High-Order Beam Thick Plate Thin Plate 

Number of 
Nodes/Degrees  

of Ffreedom 
2/24 2/42 4/48 4/36 

Interpolation 
Order 

Cubic in axial 
direction and 

linear in lateral 
directions 

Cubic in axial 
direction and 

quadratic in lateral 
directions 

Cubic in two 
mid-surface 

directions and 
linear in 
thickness 
direction 

Cubic in two 
mid-surface 
directions  

Elastic Force 
Model 

General continuum mechanics 
Kirchhoff plate 

theory 
Vector of Nodal 

Coordinates 
, , ,x y zr r r r  , , , , , ,x y z yz yy zzr r r r r r r , , ,x y zr r r r  , ,x yr r r  
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Table 2. Complex configurations represented by single ANCF element 

Element Type Configuration 

LOBE24 

       

       




1 1 1 1

2 2 2 2

0 0 0 1 0 0 0 1 0 0 0 1 0

0.5 0 0.1340 0.8660 0  0.5

0.25 0 0.4330 0 -0.5 0

T T T T

x y z

TT T T T

x y z

T

 








e r r r r

r r r r

 

 
 

HOBE42 

         

         

       




1 1 1 1 1

1 1 2 2 2

2 2 2 2

0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0.5 0 0.1340

0.8660 0  0.5 0.25 0 0.4330

0 -0.5 0 4 0 0 1.5 0 0 0 0 0

T T T T T

x y z yz

T T T T T

yy zz x y

TT T T T

z yz yy zz

T

 








e r r r r r

r r r r r

r r r r

 

 

Thick plate element 

           

           

       


1 1 1 1 2 2

2 2 3 3 3 3

4 4 4 4

0 0 0 0.7001 0.14 0.7001 0.1925

0.1925 0.9623 0.1925 0.1925

0.9623  1 0 0 0.7001 0.14 0.7001
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Thin plate element 
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Table 3. Abbreviations of different methods/elements 

Abbreviations Type 

GCM General continuum mechanics approach 

HOBE42 Higher order beam element with general continuum mechanics approach 

LOBE24 Lower order beam element 

SSM Strain split method 

 

 

  Table 4. Tip Vertical Displacement of the 3D clamped half leaf spring (m) 

TYPE 8 Elements 12 Elements 16 Elements 20 Elements 

GCM -0.0571394097 -0.0587980182 -0.0588185701 -0.0589328942 

SSM -0.0778976325 -0.0801572155 -0.0801873628 -0.0803438135 

HOBE42 -0.0759684076 -0.0784770976 -0.0786402225 -0.0788795513 

ANSYS -0.080198 (converged) 
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Figure Caption List 

 

Figure 1. Leaf spring mounting  

Figure 2. Three-dimensional geometric data acquisition methods 

Figure 3. Automatic procedure to create ANCF-FE model from physical leaf spring 

Figure 4 Examples of key points of unique features 

Figure 5. Process to combine different point cloud sets into a single set 

Figure 6. Quasi-static simulation of the leaf spring assembly process 

(a) Stress-free configuration 

(b) Initial configuration 0e  before inner loop of static analysis 

(c) Final equilibrium configuration ie  after inner loop of static analysis 

Figure 7. Flow chart for analysis of quasi-static assembly process 

Figure 8. The leaf spring before and after assembly 

(a) Leaves before assembly  

(b) Assembled leaf spring  

Figure 9. Two types of leaf spring based on two uniform strength beam concepts 

(a) Uniform-thickness multi-leaf spring 

(b) Parabolic leaf spring 

Figure 10. Physical interpretation of the slope coordinates in ANCF element 

Figure 11. Mapping between three configurations in the continuum mechanics approach 
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Figure 12. Contact detection and distributions of contact points 

(a) Contact detection  

(b) Contact points inside the element surface   

(c) Contact points at edges 

Figure 13. ANCF uniform-thickness leaf spring model 

(a) Dimensions of the leaf spring 

(b) ANCF uniform-thickness double-leaf leaf spring  

Figure 14. Vertical displacement of the chassis RN of two ANCF beam element leaf spring 

models 

(a) ν=0.27  LOBE24  HOBE42 

(b) ν=0  LOBE24  HOBE42 

Figure 15. Vertical displacement of the chassis RN of two ANCF plate element leaf spring 

model 

(a) ν=0.27 Thick Plate Thin Plate 

(b) ν=0 Thick Plate Thin Plate 

Figure 16. Vertical displacement of the chassis RN in the case of ν=0  

  LOBE24  HOBE42  Thick Plate  Thin Plate 

Figure 17. Loading scenario for testing stiffness and fatigue of leaf spring 

Figure 18. Initial pre-stress introduced by assembly process 
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(a) xx   

(b) zz  

Figure 19. Vertical displacement of center clamped node 

(a) Tapered leaf 

(b) Uniform-thickness leaf 

Figure 20. Static analysis of the clamped half mono-leaf leaf spring 

Figure 21. Tip vertical displacement of the clamped half mono-leaf leaf spring  

 GCM,  SSM,  HOBE 

Figure 22. Simplified suspension system with two double-leaf springs and one axle 

Figure 23. Simplified spring-damper quarter vehicle model 

Figure 24. Quarter vehicle spring-damper dynamic solution 

(a) Car body position 

(b) Vertical force applied on the leaf spring 

Figure 25. Vertical displacement of the center clamped segment of the 2-double-leaf  

leaf spring suspension system  

 GCM,  SSM,  HOBE 

Figure 26. Configuration of the suspension system at the time point of largest deformation 

(a) Leaf spring configuration 
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(b) Axle articulation 

(c) Shackle RN coordinate frame  

(d) Different penetrations at the edges 

Figure 27. Strain distribution xx  of the leaf spring in the simplified suspension system 
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Figure 1. Leaf spring mounting 

 

Figure 2. Three-dimensional geometric data acquisition methods 
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Figure 3. Automatic procedure to create ANCF-FE model from physical leaf spring 

 

Figure 4. Examples of key points of unique features  
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Figure 5. Process to combine different point cloud sets into a single set 

 

(a) Stress-free configuration 

 

(b) Initial configuration 0e  before inner loop of static analysis 

 

(c) Final equilibrium configuration ie  after inner loop of static analysis 

Figure 6. Quasi-static simulation of the leaf spring assembly process 
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Figure 7. Flow chart for the analysis of quasi-static assembly process 
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(a) Leaves before assembly (b) Assembled leaf spring 

Figure 8. The leaf spring before and after assembly 

 

 

 

(a) Uniform-thickness multi-leaf spring (b) Parabolic leaf spring 

Figure 9. Two types of leaf spring based on two uniform strength beam concepts 

 

 

Figure 10. Physical interpretation of the slope coordinates in ANCF  
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Figure 11. Mapping between three configurations in the continuum mechanics approach 

 

(a) Contact detection 

 

(b) Contact points inside the element surface 

 

(c) Contact points at edges 

Figure 12. Contact detection and distribution of contact points 
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(a) Dimensions of the leaf spring 

 

(b) ANCF uniform-thickness double-leaf spring 
Figure 13. ANCF uniform-thickness leaf spring model   

 

(a) ν=0.27  LOBE24  HOBE42 
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(b) ν=0  LOBE24  HOBE42 

Figure 14. Vertical displacement of the chassis RN of two ANCF beam element leaf spring 

models 

 

(a) ν=0.27 Thick Plate Thin Plate 
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(b) ν=0 Thick Plate Thin Plate 

Figure 15. Vertical displacement of the chassis RN of two ANCF plate element leaf spring 

models 
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Figure 16. Vertical displacement of the chassis RN in the case of ν=0  

 LOBE24  HOBE42  Thick Plate  Thin Plate 

   

Figure 17. Loading scenario for testing stiffness and fatigue of leaf spring 

 

(a) xx    
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(b) zz   

Figure 18. Initial pre-stress introduced by assembly process 

 

(a) Tapered leaf 
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(b) Uniform-thickness leaf  
Figure 19. Vertical displacement of center clamped node 

 

Figure 20. Static analysis of the clamped half mono-leaf spring 
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Figure 21. Tip vertical displacement of the clamped half mono-leaf spring  

 GCM,  SSM,  HOBE 

 

Figure 22. Simplified suspension system with two double-leaf springs and one axle 
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Figure 23. Simplified spring-damper quarter vehicle model 

 

(a) Car body position 
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(b) Vertical force applied on the leaf spring 
Figure 24. Quarter vehicle spring-damper dynamic solution 
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Figure 25. Vertical displacement of the center clamped segment of the 2-double-leaf  

spring suspension system  GCM,  SSM,  HOBE 

 

(a) Leaf spring configuration 

 
(b) Axle articulation 
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(c) Shackle RN coordinate frame (d) Different penetrations at the 
edges 

Figure 26. Configuration of the suspension system at the time point of largest deformation 

 

Figure 27. Strain distribution xx  of the leaf spring in the simplified suspension system 

 


