
1

Efficient and robust implementation of the TLISMNI method

Ahmed K. Aboubakr
Ahmed A. Shabana

Department of Mechanical and Industrial Engineering,

 University of Illinois at Chicago, 842 West Taylor Street,
Chicago, Illinois 60607.

2

ABSTRACT

The dynamics of large scale and complex multibody systems (MBS) that include flexible bodies
and contact/impact pairs is governed by stiff equations. Because explicit integration methods can
be very inefficient and often fail in the case of stiff problems,the use of implicit numerical
integration methods is recommended in this case. This paper presents a new and efficient
implementation of the two-loop implicit sparse matrix numerical integration (TLISMNI) method
proposed for the solution of constrained rigid and flexible MBS differential and algebraic
equations. The TLISMNI method has desirable features that include avoiding numerical
differentiation of the forces, allowing for an efficient sparse matrix implementation, and ensuring
that the kinematic constraint equations are satisfied at the position, velocity and acceleration
levels. In this method, a sparse Lagrangian augmented form of the equations of motion that
ensures that the constraints are satisfied at the acceleration level is used to solve for all the
accelerations and Lagrange multipliers. The generalized coordinate partitioning or recursive
methods can be used to satisfy the constraint equations at the position and velocity levels. In
order to improve the efficiency and robustness of the TLISMNI method, the simple iteration and
the Jacobian-Free Newton-Krylov approaches are used in this investigation. The new
implementation is tested using several low order formulas that include Hilber–Hughes–Taylor
(HHT), L- stable Park, A-stable Trapezoidal, and A-stable BDF methods. The HHT method
allow for including numerical damping. Discussion on which method is more appropriate to use
for a certain application is provided. The paper also discusses TLISMNI implementation issues
including the step size selection, the convergence criteria, the error control, and the effect of the
numerical damping. The use of the computer algorithm described in this paper is demonstrated
by solving complex rigid and flexible tracked vehicle models, railroad vehicle models, and very
stiff structure problems. The results, obtained using these low order formulas, are compared with
the results obtained using the explicit Adams-Bashforth predictor-corrector method. Using the
TLISMNI method, which does not require numerical differentiation of the forces and allows for
an efficient sparse matrix implementation, for solving complex and stiff structure problems leads
to significant computational cost saving as demonstrated in this paper. In some problems, it was
found that the new TLISMNI implementation is 35 times faster than the explicit Adams-
Bashforth method.

Keywords: TLISMNI implicit numerical integration; multibody system differential /algebraic
equations; sparse matrix implementation; Jacobian-free Newton-Krylov, stiff equations.

3

1. Introduction

The numerical solution of constrained MBS problems requires the numerical integration of

differential and algebraic equation (DAE) systems. Potra [1] and Negrut [2] discussed several

techniques for the numerical solution of the DAE system in MBS dynamics. Large scale and

complex MBS applications that include flexible bodies and contact/impact elements lead to stiff

problems. Because explicit integration methods can be very inefficient and often fail in the case

of stiff problems, the use of implicit numerical integration methods is recommended. A good

understanding of the process of converting the DAE system to a second order ordinary

differential equations (ODE) system, along with the ability to efficiently generate the needed

derivative information for the implicit integration, allowed developing robust implicit numerical

methods [3, 4]. Nonetheless, existing implicit numerical integration methods used for the

solution of MBS applications have several drawbacks. First, most of these methods do not ensure

that the nonlinear algebraic constraint equations are satisfied at all levels (position, velocity, and

acceleration). Second, existing implicit methods require the use of numerical differentiation of

the force vectors in order to solve a nonlinear system of algebraic equations using a Newton–

Raphson algorithm; analytical differentiation cannot in general be used with general MBS

algorithms that allow for the use of tabulated and Spline data to define the forces and constraints.

Third, many of the existing implicit MBS integration methods are not suited for an efficient

sparse matrix implementation because they lead to dense matrices. In order to address these

limitations, the two-loop implicit sparse matrix numerical integration (TLISMNI) method was

proposed [5]. The TLISMNI method ensures that the constraint equations are satisfied at the

position, velocity, and acceleration levels, does not require the use of numerical or analytical

differentiation of the forces, and allows for efficient sparse matrix implementation.

4

In the case of constrained MBS dynamics, the algebraic kinematic constraint equations

are used to describe mechanical joints and specified motion trajectories that restrict relative and

absolute motion of the MBS components. Different techniques have been proposed in the

literature for the numerical integration of DAE systems. These techniques include the direct

integration method, the generalized coordinates partitioning method, and the constraint

stabilization method [3, 6]. The direct integration method employs a numerical integration

method of ordinary differential equations to integrate the differential algebraic equations without

any modification of the integration algorithm or dynamic equations. This integration method,

which integrates the second time derivative of the generalized coordinates without considering

their dependency, is simple, easy to implement, and computationally fast, but it suffers from a

lack of error control on the constraints and may lead to erroneous results [7]. In the generalized

coordinates partitioning method, proposed by Wehage and Haug [8], the system generalized

coordinates are partitioned into dependent and independent coordinates, and only the

independent accelerations are integrated to define the state of the system at the next time step.

Dependent coordinates are obtained by solving the nonlinear algebraic constraint equations using

a Newton-Raphson algorithm. This method has the advantage of ensuring that the constraint

equations are satisfied to within a user specified tolerance. A good prediction of the dependent

generalized coordinates can improve the efficiency of the method, since such a prediction can

satisfy the constraint equations without the need for using Newton-Raphson iterations.

Numerical experimentation has shown that, with a good prediction of the dependent variables,

Newton-Raphson iterations are needed only for a few time steps during the dynamic simulation.

Baumgarte [9] proposed a different approach based on a constraint stabilization method. In this

approach, the constraint equations and their derivatives are used with the second derivative of the

5

constraint equations to form a penalty term. Using this penalty term, the constraint stabilization

integration algorithm requires direct integration of all the accelerations. The disadvantage of this

method, however, is that there is no general and uniformly accepted method for selecting the

coefficients of the constraint equations and their derivatives in the penalty expression. An

improper selection of these coefficients can lead to wrong solutions and make the method less

robust.

As previously mentioned, the implicit integration methods can be more efficient than

explicit integration methods in solving stiff DAE systems [10]. Implicit methods require the

solution of a system of nonlinear algebraic equations at each time step. Newton’s method or

modified Newton’s method appears to be the most widely used approach for iteratively solving

the resulting implicit method nonlinear algebraic equations. For large problems, most of the

calculations required for the implicit integration are associated with the computation of the

Jacobian and the solution of the resulting large system of nonlinear equations. This is in addition

to the need for a relatively large core memory for the storage of the coefficient matrix and its

decomposition. Gear and Saad [11] proposed the use of Krylov-subspace projection method

known as the incomplete orthogonalization method (IOM) and Arnoldi’s algorithm, which are

iterative methods for the solution of linear systems [12]. Arnlodi’s algorithm and IOM do not

require the factorization of the coefficient matrix in any form, and therefore, less storage as

compared to the direct methods is needed. Brown and Hindmarsh [13] referred to the combined

stiff ODE method and Krylov method as a matrix-free method and discussed the theoretical and

computational aspects of the combined algorithm. Brown and Hindmarsh [13] viewed the

combined Newton-IOM and Newton-Arnoldi method as an inexact Newton method, which

belongs to a class of methods in which the linear system of Newton iteration is solved

6

approximately. The implementations of the Arnoldi’s algorithm and IOM for solving linear

system of equations are discussed in detail by Saad [12].

 This paper discusses TLISMNI implementation issues, including the step size selection,

the error control, and the effect of the numerical damping and proposes a new efficient and

robust TLISMNI-based solution procedure for constrained MBS equations. Furthermore, the

paper examines the use of the generalized coordinate partitioning and recursive methods in the

TLISMNI framework solution; both approaches are used in order to satisfy the constraint

equations at the position and velocity levels. In both cases, the constraints are also satisfied at the

acceleration level by using the augmented Lagrangian form to solve for the accelerations and

Lagrange multipliers. The use of the computer implementation described in this paper is

demonstrated by solving complex rigid and flexible body tracked vehicle models, railroad

vehicle models, and very stiff structural problems. Several second order formulas such as

Hilber–Hughes–Taylor (HHT) method, including numerical damping, L- stable Park formula, A-

stable Trapezoidal formula, and A-stable BDF formula are used in this investigation as the

integration formulas, and recommendations are made with regard to the appropriateness of each

of these integration formula for a particular MBS application. The efficient integration of the

Krylov subspace projection method with these integration formulas within the TLISMNI

framework solution procedure is one of the main contributions of this investigation. The results,

obtained using these integration methods, are compared with the results obtained using the

explicit Adams predictor-corrector method. The TLISMNI method does not require numerical

differentiation of the forces, allows for an efficient sparse matrix implementation for solving

complex and very stiff structure problems, and ensures that the constraint equations are satisfied

at the position, velocity, and acceleration levels. The use of this method significantly improves

7

the computational efficiency as demonstrated in this paper using several examples. In some stiff

problems, it was found that the new TLISMNI implementation is 35 times faster than the explicit

Adams-Bashforth method.

2. Background

In this section, the constrained MBS equations of motion and the solution procedures used to

solve these equations are briefly discussed. The definitions provided in this section will be used

repeatedly in this paper.

2.1 MBS equations of motion

In MBS dynamics, the constraint relationships are used with the differential equations of motion

to solve for the unknown accelerations and constraint forces. While this approach leads to a

sparse matrix structure, it has the drawback of increasing the problem dimensionality and

requiring more sophisticated numerical algorithms to solve the resulting DAE system. Using the

generalized absolute Cartesian coordinates, the equations of motion of a body i can be written as

[7,14]

 i i i i i
e c   M q Q Q Q (1)

where iM is the mass matrix of the body,
Ti iT iT   q R θ is the vector of the accelerations of

the body, iR defines the body translation and iθ is a set of parameters that define the body

orientation, i
eQ is the vector of external forces, i

cQ is the vector of the constraint forces, which

can be written in terms of Lagrange multipliers λ as i

i T
c   q

Q C λ , iq
C is the constraint Jacobian

8

matrix associated with the coordinates of body i , and i
Q is the vector of the inertia forces that

absorb terms that are quadratic in the velocities. The constraint equations at the acceleration level

can be written as i

i i
d

q
C q Q , where i

dQ is a vector that absorbs first derivatives of the

coordinates. Using Eq. (1) with the constraint equations at the acceleration level, one obtains the

system equations of motion written in the augmented form as

T

e

d

    
    

      

q

q

Q QM C q

QC 0 λ


 (2)

The symbols that appear in this equation (without the superscript i) refer to system vectors and

matrices obtained by standard MBS assembly of body vector and matrices. The preceding matrix

equation, which ensures that the constraint equations are satisfied at the acceleration level, can be

solved for the accelerations and Lagrange multipliers. Lagrange multipliers, on the other hand,

can be used to determine the constraint forces. For a given joint k , the generalized constraint

forces acting on body i , connected by this joint, can be obtained from the equation

     i

TTi iT iT
c k k k kk

     q
Q C λ F T (3)

As previously mentioned, i
kF and i

kT are the generalized joint forces associated, respectively,

with the translation and orientation coordinates of body i . Using the results of Eq. (3), the

reaction forces at the joint definition points can be determined using the concept of the

equipollent systems of forces.

2.2 Generalized coordinate partitioning

9

In order to ensure that the algebraic kinematic constraint equations are satisfied at the position

and velocity levels, the independent accelerations iq are identified and integrated forward in

time in order to determine the independent velocities iq and independent coordinates iq .

Knowing the independent coordinates from the numerical integration, the dependent coordinates

dq can be determined from the nonlinear constraint equations using an iterative Newton-

Raphson algorithm that requires the solution of the system
d d  qC q C , where dq is the

vector of Newton differences, and
dqC is the constraint Jacobian matrix associated with the

dependent coordinates. Knowing the system coordinates and the independent velocities, the

dependent velocities dq can be determined by solving a linear system of algebraic equations that

represents the constraint equations at the velocity level. This linear system of equations in the

velocities can be written as
d id i t  q qC q C q C  ; where

iqC is the constraint Jacobian matrix

associated with the independent coordinates, and t t  C C is the partial derivative of the

constraint functions with respect to time. The selection of the set of independent coordinates is

an important step in the numerical solution using the generalized coordinate partitioning. This

selection can have a significant effect on the stability of the solution and also on reducing the

accumulation of the numerical errors when the algebraic constraint equations are solved for the

dependent variables. Furthermore, numerical problems can be encountered when using implicit

integrations with the generalized coordinate partitioning, particularly when a large time step is

selected by the integrator. In this case, the iterative Newton-Raphson algorithm may fail to

converge. On the other hand, the generalized coordinate partitioning technique is suited for the

10

sparse matrix implementation and can be used for MBS applications that include rigid and

flexible bodies and systems that suffer from singularity problems, such as closed chains.

2.3 Algorithm and sparse matrix implementation

In order to ensure that the constraint equations are satisfied at the position level, the dependent

coordinates are determined by solving the nonlinear algebraic constraint equations using the

iterative Newton-Raphson procedure. In the sparse matrix implementation one can use the

following system of algebraic equations in Newton iterations [7, 8]:

d

   
   

  

qC -C
Δq =

0I
 (4)

In this equation, qC is the constraint Jacobian matrix, q is the vector of Newton differences,

and dI is a Boolean matrix that has zeroes and ones only; with the ones in the locations

corresponding to the independent coordinates in order to ensure that i Δq 0 . The square

coefficient matrix in Eq. (4) is sparse, and therefore, sparse matrix techniques can be used to

efficiently solve the preceding system of equations for the dependent coordinates. Once the

dependent coordinates are determined, the dependent velocities can be obtained using the

following linear sparse system that defines the constraint equations at the velocity level:

   
   

  

q t

id

C -C
q =

qI



 (5)

The right hand side of Eq. (5) is assumed to be known since iq is determined from the numerical

integration, and tC depends on time and the coordinates that are assumed to be known from the

11

position analysis. One advantage of the structure of Eqs. 4 and 5 is that if the set of independent

coordinates change during the simulation time one has only to change the locations of the

nonzero entries of the matrix dI , while the structure of the Jacobian matrix qC remains the

same. Once the generalized coordinates and velocities are determined, the augmented form of

Eq. (2) can be constructed and solved for the acceleration q , and Lagrange multipliers λ as

previously mentioned. The main steps for a numerical algorithm using the generalized coordinate

partitioning can then be summarized as follows:

1. An estimate of the initial conditions that define the MBS initial configuration is made.

The initial conditions that represent the initial coordinate and velocities must be a good

approximation of the initial configuration of the system.

2. Using the coordinates, the constraint Jacobian matrix qC can be constructed, and an LU

factorization algorithm can be used to identify a set of independent coordinates.

3. Using the values of the independent coordinates, the constraint equations  , t C q 0 can

be considered as a nonlinear system of algebraic equations in the dependent coordinates.

This system can be solved iteratively using Eq. (4) and a Newton-Raphson algorithm that

employs sparse matrix techniques.

4. Assuming that the independent coordinates and velocities are known from the numerical

integration and the dependent coordinates are determined from the previous step, one can

construct the constraint equations at the velocity level as shown in Eq. (5). This linear

system of algebraic equations can be solved for the dependent velocities.

12

5. Having determined the generalized coordinates and velocities, Eq. (2) can be constructed

and solved for the accelerations and Lagrange multipliers. The vector of Lagrange

multipliers can be used to determine the generalized reaction forces.

6. The independent accelerations can be identified and used to define the state space

equations which can be integrated forward in time. The numerical solution of the state

equations defines the independent coordinates and velocities.

7. If the end of the simulation is not reached, the algorithm returns to Step 2.

In the following section, it is shown how the steps of this generalized coordinate partitioning

solution procedure can be modified for the TLISMNI implementation discussed in this paper.

3. TLISMNI algorithm

 The TLISMNI method was recently proposed for the solution of the MBS differential/algebraic

equations [15, 16]. As mentioned before, this method ensures that the algebraic constraint

equations are satisfied at the position, velocity, and acceleration levels; does not require

numerical or analytical differentiation of the forces, and allows for efficient sparse matrix

implementation. In this section, the solution steps for a modified TLISMNI algorithm that allows

for the implementation of different low order integration formulas are presented. The

performance of this algorithm will be tested in a later section of the paper using complex flexible

and rigid body vehicle models. The two-loop implicit procedure proposed in this study can be

designed to have an iterative outer loop that involves equations which are linear in the

accelerations and Lagrange multipliers and nonlinear in the coordinates and velocities. The use

of the generalized coordinate partitioning leads to another iterative inner Newton–Raphson loop

13

that involves the kinematic constraint equations which are nonlinear functions in the dependent

coordinates, in addition to a system of linear equations that can be solved for the dependent

velocity. In the case of using the recursive approach instead of the generalized coordinates

partitioning, the inner Newton–Raphson loop is avoided and the procedure has only the iterative

outer loop that involves equations which are nonlinear in the independent coordinates and

velocities and linear in accelerations and Lagrange multipliers. The TLISMNI computational

algorithm that employs the generalized coordinate partitioning can be summarized as follows:

1. Assuming that the state of the system is known at time nt , the constraint Jacobian matrix

qC can be constructed, and used with Gaussian elimination procedure to determine a set

of system independent coordinates iq . Therefore, the vector of system generalized

coordinates q can be partitioned to dependent and independent coordinates as

TT T
i d   q q q , where dq is the set of system dependent coordinates.

2. A prediction of the independent coordinates ()
, 1
k

i nq at time 1nt  , using an explicit

integration formula can be made and used to predict the independent velocity ()
, 1
k

i nq using

an implicit integration formula such as HHT, BDF, Park, or Trapezoidal method.

3. Knowing the independent coordinates ()
, 1
k

i nq , the constraint equations  , t C q 0 can be

considered as a nonlinear system of algebraic equations in the dependent coordinates

()
, 1

k
d nq . This system can be solved iteratively for the dependent coordinates ()

, 1
k

d nq , using

Eq. (4) and a Newton-Raphson algorithm that employs sparse matrix techniques,.

14

4. Using the predicted independent coordinates ()
, 1
k

i nq and velocities ()
, 1
k

i nq from Step 2 and

the dependent coordinates ()
, 1

k
d nq determined from the previous step, one can construct the

constraint equations at the velocity level (Eq. (5)). The solution of this system of linear

equations defines the dependent velocities ()
, 1

k
d nq .

5. Having determined all the coordinates and velocities at time 1nt  , Eq. (2) can be

constructed and solved using sparse matrix techniques for the accelerations ()
1

k
nq and

Lagrange multipliers ()
1

k
nλ .

6. The independent accelerations can be identified and used to define the state space

equations which can be integrated forward in time using lower order formulas such as the

HHT, BDF, Park, or the Trapezoidal method to obtain (1)
, 1
k

i n

q , and (1)

, 1
k

i n

q .

7. Using the convergence and error criteria introduced in a later section of this paper, one

can judge whether or not the integration is successful. If the solution satisfies the

convergence and error criteria, the coordinates, velocities, accelerations, and Lagrange

multipliers are accepted. In this case, one needs to calculate the new step size in order to

advance the integration. If, on the other hand, convergence is not achieved or the error

exceeds the specified error tolerance, then more iterations are required using a time step

size that achieves convergence. In this case, the algorithm returns to Step 2 and the

process continues until the convergence and error criteria are satisfied.

8. This process continues until the desired end of the simulation time is reached.

It is clear from the computational algorithms presented in this section that the TLISMNI method

uses sparse coefficient matrices that require minimum storage. Furthermore, no numerical

15

differentiation of the external or inertia forces with respect to the coordinates and velocities is

required. The algorithm outlined above is equivalent to performing fixed point iteration for the

solution of nonlinear system of equations for 1nq , and 1nq using an implicit integration formula

[17, 18]. The TLISMNI algorithm employs the implicit integration formulas which can be more

efficient than the explicit formulas in many applications, particularly in the case of stiff

problems.

4. Krylov subspace and inexact Newton method

One of the main contributions of this paper is to implement the Krylov subspace projection

method in the TLISMNI algorithm. In the TLISMNI algorithm described in this paper, one can

consider the outer loop as a set of ODE initial value problem that can be written as

(,) ty f y where 0 0()t y y , and
TT T

i i   y q q . Assuming these ODE’s are stiff and there is a

need to use an implicit integration formula to obtain a solution, one can write the general formula

for implicit integration methods as

  1 1 1, , 0n n nh t h     y ψ f y (6)

where ψ is a vector that has variables previously computed, h is the time step size,  is a

constant that depends on the implicit formula used, and 1 1(,)n nt f y is the right hand side of the

system of differential equations. In this paper, an equivalent form of Eq. (6) will be used. This

form can be written in terms of

 1 1 1 1(,) () /n n n nh t      x y y y ψ (7)

16

Typically, Newton and modified Newton algorithms are employed to solve Eq. (7) for 1nx , and

this generates a set of linear systems to be solved at each time step, where Eq. (7) can be written

as 1()n F x 0 . There are standard methods to solve Eq. (7), one method is to approximate the

Jacobian matrix 1/k k
n  J F y at time 1nt  and then solve the following iterative equation:

    1 1 1,k
n n nh t      I J x F y (8)

If we consider J 0 , the iterative procedure will be simple and is referred to in this case as

simple iterations, and it will be equivalent to performing fixed point iteration for the solution of

the nonlinear equations for 1ny as follows:

  1
1 1 1,k k

n n nh t
   y ψ f y (9)

Equation (9) represents the outer loop for the algorithm described in Section 3. In case J 0

expensive computations are required for the numerical calculations or approximations of J .

Furthermore, matrix decomposition, and large storage space will be required, especially when

solving large scale problems. In addition, the numerical differentiation required for a general

MBS implementation can be a source of numerical errors that may lead to non-accurate solutions

as the problem dimensionality increases. Therefore, for such complex and large scale problems,

the use of a method that can approximately solve Eq. (8) at reasonable cost and also reduces the

core memory required is desirable. The Incomplete orthogonalization method (IOM) and

Arnoldi’s algorithm are examples of such methods that will be discussed in a following

subsection. IOM and Arnoldi’s algorithm are methods for the approximate solution of a linear

system Ax = b in NR [12]. The use of such methods in the solution of the nonlinear system

17

1()n F x 0 by Newton’s method gives rise to what is called the inexact Newton method. An

inexact Newton method has the following form [13]:

__
Set (0)x as an initial guess

For 0,1,2.......m  until convergence
Find in some unspecific manner a vector ()ms satisfying

(()) () (()) ()m m m m  F x s = F x r
Set (1) () ()m m m  x x s

__

where the residual ()mr represents the amount by which the vector ()ms fails to satisfy the

Newton equation (Eq. (8)). The theoretical foundation and convergence of the inexact Newton

method is discussed by Brown and Hindmarsh [13].

4.1 Krylov subspace projection method

In this subsection, the iterative Arnoldi’s algorithm for the solution of linear system Ax = b is

briefly reviewed [12]. For the nonlinear problem given in Eq. (7), which can be written as

 m F x 0 , the vector b represents  mF x , the matrix A represents  ' mF x , and the vector

x represents the increment 1 1m m m  s x x .Given the initial value 0x to the original linear

system, one considers an orthogonal projection method which takes 0(,)mκ κ A r with

  2 1
0 0 0 0 0(,) span , , ,....., m

m
κ A r r Ar A r A r (10)

where 0 0 r b Ax . The objective of this method is to obtain an approximate solution mx from

the affine subspace 0 mx κ of dimension m by imposing the Galerkin condition that mb Ax is

orthogonal to mκ . More details about the method can be found in [12, 13]. The Arnoldi’s

algorithm can be described as follows [12]:

18

1. Compute 0 0 r b Ax , 0 2

:  r , and 1 0: v r

2. Define  
, 1,...,m ij i j m

h


H , set m H 0

3. for 1,..., ,j m Do

4. Compute :j jw Av

5. for 1,..., ,i j Do

6. (,)ij j ih  w v

7. j j ij ih w w v

8. End Do

9. Compute 1, 2j j jh   w , if 1, 0j jh   set :m j and go to 12

10. Compute 1 1,j j j jh v w

11. End Do
12. Compute 1

1()m m y H e , and set 0m m m x x V y

__

Here m is the dimension of the Krylov subspace as previously mentioned, (.,.) is the Euclidean

inner product,
2

. is the Euclidean norm, and 1 [1,0,0,....,0]T mR e . 1,...., mv v is an

orthonormal basis for mκ and the matrix T
m mV AV is the upper Hessenberg matrix mH whose

nonzero elements are the ijh defined in the above algorithm. In the previous algorithm as m

becomes large, a considerable amount of the work involved is in making the vector 1mv

orthogonal to all the previous vectors, 1.......... mv v . Gear and Saad [11] proposed a modification

of Arnoldi’s algorithm in which the vector 1mv is only required to be orthogonal to the

p vectors 1..........m p m v v . This leads to an algorithm called incomplete orthogonalizaton method

(IOM). IOM differs from Arnoldi’s algorithm in the modified Gram-Schmidt orthogonalization

process in Step 5; instead of starting with 1i  , one starts with 0i i where 0 max(1, 1)i m p   .

All the features and properties of Alrnoldi’s algorithm still hold for IOM [12].

19

 The Hessenberg matrix obtained in the above algorithm has a band structure with a

bandwidth 1m  . Due to the structure of the upper Hessenberg matrix mH , there is a convenient

way to obtain the LU factorization of mH by using the LU factors of 1mH (1m ). Therefore

the approximate solution can be given as

 1 1
0 1()m m m m   x x V U L e (11)

where m m mH L U , and mL is a unit lower bidiagonal matrix, and mU is an upper triangular

matrix. Defining 1
m m m

P V U , and 1
1()m m z L e , Eq. (11) can be written as

 0m m m x x P z (12)

Due to the structure of mU , the vector mp can be calculated using the previous ip ’s and mv as

follows:

1

1

1 m

m m im i
imm

u
u





 
  

 
p v p (13)

Similarly, because of the structure of mL , the vector mz can be updated using 1mz as

 1m
m

m
 

  
 

z
z (14)

where , 1m m m ml    . The approximate solution can be updated, at each iteration, as

 1m m m m x x p (15)

One of the important practical considerations of the previous algorithm is the choice of m ,

which amounts to a stopping criterion. An interesting feature of the algorithm is that one does

not have to obtain mx in order to compute
2mb Ax and it is easy to show that [12]

20

 1,2
m

m m m
mm

h
u


 b Ax (16)

The Arnoldi algorithm with stopping criteria can be efficiently implemented as follows:

1. Choose 0x , and compute 0 0 r b Ax , 0 2

:  r , and 1 0: v r

2. For 1,.....,m  until convergence

 Compute , 1....imh i m , and 1mv as previously described.

3. Update LU factorization of mH , and compute m (m  for 1m ) otherwise , 1m m m ml   

4. Update mp using Eq. (13), and mx using Eq. (15)

5. Compute 1,2
m

m m m m
mm

h
u

   b Ax , if m  go to 6 .Otherwise go to 2

6. End Do
__

Jacobian-Free Newton-Krylov methods

An extensive literature about the Jacobian-free Newton-Krylov method can be found in [19]. It

can be shown for the algorithms described in the preceding subsection that the matrix A is not

needed explicitly. One needs to compute the matrix-vector product Av only. Since for the stiff

ODE, it is assumed that () h  A F x I J , where x is an approximation to the root of

() F x 0 , then the matrix-vector product Av in the above algorithm can be replaced by different

quotients of the form

  () () ()    F x v F x v F x (17)

where  is a scalar. The resulting algorithm can be referred to as a finite- difference projection

method or Jacobian-free Newton Krylov Method. The choice of  is important, if  is too

large the derivatives are poorly approximated, and if it is too small the results of the finite

difference are contaminated by floating point round off error. Approaches for choosing  are

21

discussed by Knoll, and Keyes [19]. Brown and Hindmarsh [13] presented the convergence

theory for the combined inexact-Newton/finite-difference projection methods. The Arnoldi’s or

IOM algorithm using the finite difference method (Jacobian-free) is presented as follows:

1. Choose 0x , and compute  0 0 0 0

() ()   q F x x F x

2. Set 0 0 r b q , 0 2
:  r , and 1 0: v r , and 1 1:q v

3. For 1,.....,m  until convergence

 Compute  () ()m m m m m
    Av q F x v F x

 Compute , 1....imh i m , and 1mv as previously described.

4. Update LU factorization of mH , and compute m (m  for 1m ) otherwise , 1m m m ml   

5. Update mp using Eq. (13), and mx using Eq. (15)

6. Compute 1,2
m

m m m m
mm

h
u

   b Ax , if m  go to 6 .Otherwise go to 3

7. End Do

4.2 TLISMNI Newton-Krylov algorithm implementation

In this section, the use of Jacobian-free Newton-Krylov approach for solving stiff DAE is

presented. The proposed algorithm will employ the scaled Arnoldi’s or IOM method [13], where

the weight associated with component iy of y during the iteration is

 1n
i iw RTOL y ATOL  (18)

where RTOL and ATOL are the relative and absolute error tolerances, respectively. In order to

avoid a bias when dealing with similar ODE systems of different sizes, we use the root mean

square (RMS) norm instead of the Euclidean norm. Given a diagonal matrix

1(,.....,)Ndiag d dD , where i id w N , and N is the length of a vector y , the weighted RMS

of a vector y approximating ny can be written as 1

2RMS

y D y . Based on the scaling in the

22

Arnoldi’s algorithm or IOM algorithm, the TLISMNI-Newton-Krylov algorithm can be

described as follows:

1. Assuming that the state of the system is known at time nt , the constraint Jacobian matrix

qC can be constructed, and used with Gaussian elimination procedure to determine the

set of system independent coordinates iq . Therefore, the vector of system generalized

coordinates q can be partitioned to dependent and independent coordinates as

TT T
i d   q q q , where dq is the set of dependent coordinates.

2. A prediction of the independent coordinates ()
, 1
k

i nq at time 1nt  , using an explicit

integration formula can be obtained. Using an implicit integration formula such as HHT,

BDF, Park, or Trapezoidal formula, one can predict the independent velocity ()
, 1
k

i nq .

3. Using the known independent coordinates ()
, 1
k

i nq , the constraint equations  , t C q 0 can

be considered as a nonlinear system of algebraic equations in the dependent coordinates

()
, 1

k
d nq . This system can be solved iteratively for the dependent coordinates ()

, 1
k

d nq using

Eq. (4), sparse matrix techniques, and a Newton-Raphson algorithm .

4. Using the predicted independent coordinates ()
, 1
k

i nq and velocities ()
, 1
k

i nq from step 2 and

the dependent coordinates ()
, 1

k
d nq determined from the previous step, one can construct the

constraint equations at the velocity level (Eq. (5)). The solution of this system of linear

equations defines the dependent velocities ()
, 1

k
d nq .

23

5. Knowing all the coordinates and velocities at time 1nt  , Eq. (2) can be constructed and

solved using sparse matrix techniques for the accelerations ()
1

k
nq and Lagrange multipliers

()
1

k
nλ .

6. The independent accelerations can be identified and used to define the state space

equations which can be integrated forward in time using the Jacobian-free Newton-

Krylov algorithm described before. If convergence is achieved, go to Step 7, otherwise

update to obtain (1)
, 1
k

i n

q , and (1)

, 1
k

i n

q and go to Step 3. In case the convergence is not

achieved within a specific number of iterations, the time step is reduced and the

algorithm is restarted.

7. If the convergence criteria proposed in the following section is satisfied and the error is

less than the user specified tolerance, the coordinates, velocities, and the solution for the

acceleration and Lagrange multipliers are accepted. In this case, one needs to update the

history, and calculate the new step size in order to advance the integration. If

convergence is not achieved or the error exceeds the specified error tolerance, then the

time step should be reduced and the algorithm is restarted. In this case, the algorithm

goes to step 2 again until the convergence and error criteria are satisfied.

8. This process continues until the desired end of the simulation time is reached.

The proposed algorithm takes advantage of the Jacobian-Free Newton-Krylov algorithm, and

still exploits the sparse matrix structure to achieve minimum storage. Furthermore, the

constraints are satisfied at the position, velocity, and acceleration levels, and no numerical

differentiation of the external or inertia forces with respect to the coordinates and velocities is

required to obtain the Jacobian matrix.

24

5. Convergence criteria

The TLISMNI method can be designed to have an iterative outer loop to solve for the

coordinates, velocities, accelerations, and Lagrange multipliers. The steps of the TLISMNI outer

loop can be summarized as follows:

1- Define the system coordinates 0
1nq , and velocities 0

1nq .

2- Knowing 0
1nq , and 0

1nq , one can construct the augmented form in Eq. (2) and solve for

accelerations 0
1nq , and Lagrange multipliers 0

1nλ .

3- Using simple iteration algorithm(TLSMNI), or the Jacobian-Free Newton-Krylov an

implicit integration formula can be used to obtain 1
1nq , and 1

1nq .

4- Check if the solution converges, for example, one can check if
1
1 1

1
1

k k
n n

k
n


 




q q

q
 less than the

specified tolerance.

5- If the convergence is achieved, then go to the next step otherwise go to step 3 for more

iterations 1,2,.....k n .

The algorithm outlined above is equivalent to performing fixed point iteration for the solution of

nonlinear equations for 1nq , and 1nq using an implicit integration formula [17, 18]. It follows

that the condition 1h J ,where J is the maximum norm of the Jacobian must hold for

successive convergence. Fulfilling this condition guarantees the convergence of the solution. In

other words, the TLISMNI’s outer loop has a linear convergence rate and to guarantee the

convergence of iteration mx to the exact solution *x of the equations ()m F x 0 , one must have

* *
1m m C   x x x x , where 0 1C  , and . denotes an NR norm. Because *x is

25

unknown, one can assume a linear convergence with a convergence rate estimated as

1 1m m m m mC    x x x x . Therefore, one can assume convergence is achieved for mx

satisfying *
m  x x , which is approximately satisfied if 1m mC  x x , where

 / 1 CC C  . More details on the linear convergence analysis can be found in [13]. The

condition used in this section implies that the iteration converges in a sufficient small ball around

the root. It can be shown that TLISMNI’s iteration is much less expensive than the Newton

iterations and allows for much more rapid variation of the step size in order to achieve

convergence. In order to ensure rapid convergence in a practical implementation, the

convergence rate C is selected to be much smaller than 1, for example 0.3. The goal is to have

an algorithm that takes less than four iterations to converge, particularly in the case of large scale

problems. On the other hand, this restriction can slow TLISMNI simple iteration method and the

implicit formula can lose its properties, such as numerical damping in case of HHT [15]. In such

a case, it is recommended to use the Jacobian-Free Newton-Krylov method [18] instead of the

TLISMNI simple iteration method. The convergence procedure for both the TLISMNI simple

iteration method and the TLISMNI Newton-Krylov method can be described as [13]:

__

1. At the beginning of the iterations (time step nt) set 0.5C 

2. After number of iterations 1m  , compute 1 1m m m m mC    x x x x

3. Update max(0.2 ,)mC C C

4. Check if 1 min(1,1.5C) constantm m  x x , then convergence achieved. Otherwise reduce the

time step and restart the iterations.
__

 The constant in Step 4 depends only on the order of the implicit integration formula used.

26

6. Low order integration formulas

As previously mentioned, implicit integration methods transform the MBS differential equations

of motion into a set of nonlinear algebraic equations. These nonlinear algebraic equations can be

solved iteratively for the required solution. Explicit methods can be very inefficient or fail to

solve stiff problems which are characterized by widely separated eigenvalues because of high

frequency contents. Higher order integration formulas cannot be used effectively for the solution

of such stiff problems. For these problems, low order A-stable integration formulas can be more

efficient. Using A-stable low order integration formula, the restriction on the size of the time step

to maintain absolute stability is no longer required. In this section, different low order

integration formulas will be discussed and recommendations are made on the appropriateness of

each method for a particular problem.

6.1 Park method

The first integration formula considered in this section is the Park method, which has order 2 and

was proposed by Park [20] as an improved stiffly stable method for direct integration of

nonlinear structural dynamic equations. By combining the Gear’s two-step and three-step

method, a superior stiffly stable method was developed [20, 21]. Park method can be applied to

both stiff and non-stiff problems. The results indicate that Park method is second best after the

trapezoidal rule for non-stiff problems and appears to be stable for stiff problems that include

frictional contact/impact phenomena, as will be demonstrated in the numerical results section.

Pogorelov [22] proposed the use of Park method for the solution of stiff constrained MBS

applications. Park method does not require any history derivative information, which can cause

numerical instability in nonlinear dynamics problems even though the methods are

27

unconditionally stable. The equations that define the generalized coordinates and velocities at

time 1nt  in Park method are given, respectively, by

 1 1 2 1

15 6 1 6

10 10 10 10n n n n nh      q q q q q (19)

and

 1 1 2 1

15 6 1 6

10 10 10 10n n n n nh      q q q q q     (20)

 where h is the time step, and subscript n refers to vectors at time nt . The local truncation

error of Park method in terms of the accelerations is

  2
1 1

1

10n n nh  δ q q  (21)

BDF method

The second integration method considered in this investigation is the second order backward

differentiation formula (BDF2) method. This method was proposed by Gear [23]. The BDF2

method is a stiffly A-stable method that has been widely used for the solution of stiff problems

due to their good stability properties for such problems. The BDF2 equations for the generalized

coordinates and velocities are

 1 1 1

4 1 2

3 3 3n n n nh    q q q q (22)

and

 1 1 1

4 1 2

3 3 3n n n nh    q q q q    (23)

28

As is clear from these equations, the BDF2 method does not require any history derivative

information; therefore, it will be stable with stiff problems as is the case with Park method [20].

The local truncation error for the BDF2 method is

  2
1 1

2

9n n nh  δ q q  (24)

Comparing the BDF2 method’s truncation error and the Park method’s truncation error, one can

see that Park method can achieve the same accuracy as the BDF2 method for a larger time step

size by a factor of approximately 1.5.

Trapezoidal method

The third integration method that will be considered in this investigation is the trapezoidal

method, which is considered the most accurate second order A-stable methods. The method does

not damp out any frequency content from the system and it is unconditionally stable for linear

problems, and conditionally stable for nonlinear systems [17, 24]. More details about the stability

and the accuracy of the trapezoidal method can be found in [25]. The trapezoidal method

equations do require history derivative information; therefore the method suffers from stability

problems with stiff problems. The trapezoidal algebraic equations that represent the generalized

coordinates and velocities are given, respectively, as

 1 1

1
()

2 2n n n n

h
   q q q q  (25)

and

 1 1

1
()

2 2n n n n

h
   q q q q    (26)

The truncation error using the trapezoidal method can be estimated as

29

  2
1 1

1

10n n nh  δ q q  (27)

HHT/Newmark method

Solving numerically stiff ODE obtained using finite element discretization, requires the use of

numerical methods with good stability properties and controlled numerical dissipation such as

Hilber–Hughes–Taylor (HHT) method. The foundation of the HHT method is the Newmark

method which was proposed by Newmark [26]. The Newmark equations can be used to define,

respectively, the generalized coordinates 1nq and the generalized velocities 1nq as follows:

   
2

1 11 2 2
2n n n n n

h
h       q q q q q   (28)

and

   1 11n n n nh      q q q q    (29)

where  and  are constants. The differential equations of motion and the constraint equations

can be written in the form

    T , ,t qM q q C λ Q q q  (30)

The Nemark method is a first order method that produces a second order accurate method when

1 2  , and 1 4  only, this choice leads to the trapezoidal method. The Nemark method is

unconditionally stable when 0.5 2   , where the high frequency dissipation is obtained

when  2
0.5 4   [26].

30

 The HHT method introduces a numerical damping parameter  to the equations of motion

in order to allow for energy dissipation and retain the order and stability condition of the method.

The modified equations of motion can be written as

      T T

1 1

1

1 1n n n


  

    
 q qMq C λ Q C λ Q 0 (31)

 In order to obtain a stable solution using the implicit HHT method, the following relations

should be satisfied 0.3 0   , 0.5   and  2
1 4   .The local truncation error

using HHT method is

  2
1 1

1

6(1)n n nh
 

 
    

δ q q  (32)

7. Error control and time step selection

 The error criteria and the time step-size selection for the proposed TLISMNI algorithm

are discussed in this section. Using the estimate of the truncation errors 1nδ given in the

preceding section for each integration formula, the following maximum norm for the vector of

truncation error can be used as an estimate of the error at the current time step 1nt  :

 1ne 
δ

Y
 (33)

where Y is a weighted vector such that  Y max 1,i iq . In order to accept the solution at the

time step 1nt  the error must be less than the user specified tolerance  , such that e  .

31

 The time step-size selection is an important issue in the implementation of efficient

numerical integration algorithms. A very small time step-size leads to unnecessary calculations

that may exceed the user required accuracy and at the same time negatively impact the

computational efficiency. On the other hand, a large time step leads to large number of iterations

for the iterative method to achieve convergence and at the same time can have a negative impact

on the accuracy. The new time step size is selected such that the truncation error associated with

each integration method is within the user specified tolerance. This selection is made according

to

0.5

0.55

 e
0.5

 e
0.5

new

e
sh

h
e

sh














 
 

 (34)

where s is a safety factor and h is the current time step size. In case the time step size does not

satisfy the user specified error, e  , then the time step size is reduced and the iteration step is

restarted.

8. Explicit Adams method

 Adams method is an explicit predictor-corrector method for the numerical solution of

first order ordinary differential equations. This method cannot be used to directly solve a system

of differential and algebraic equations. The algebraic equations must be first eliminated using the

generalized coordinate partitioning technique, which is in principle equivalent to the embedding

technique [7, 14, 27]. The embedding technique, that eliminates the reaction forces and the

dependent coordinates, leads to a minimum set of differential equations expressed in terms of the

32

independent coordinates (degrees of freedom) only. Using the generalized coordinate

partitioning, one can write the system coordinates as
TT T

i d   q q q where iq is the vector of

independent coordinates or degrees of freedom, and dq is the vector of dependent coordinates.

One can rewrite the equations of motions in terms of the independent coordinates as follows [7,

14]:

 T T T
di di i di d di B MB q B MQ B Q (35)

In this equation,  -1

d i

TT

di
    q qB I C C is the velocity transformation matrix, and

 -1

d

TT

d d
    qQ 0 C Q , where  2d tt t   q q q

Q C C C q q  . Note that the augmented

formulation previously discussed in this paper can be used to determine all the accelerations. The

independent accelerations can then be identified and integrated forward in time. Therefore, the

explicit Adams method can be used with both the augmented formulation and the embedding

technique.

 In order to use the explicit Adams method, one has to transform the second order ordinary

differential equations to a system of first order ordinary differential equations (ODE). This is

accomplished by introducing the state vector
TT T

i i   y q q .Taking the time derivative of this

vector and substituting the value of iq from the solution of Eq. (30) yields

   1

i

T T T
di di di di d



 
 

  

q
y

B MB B Q B MQ


 (36)

The right hand side of this equation is a function of iq , iq and t . Therefore, the original

problem is reformulated as  , ty f y , which is the standard form of a first order ODE that can

33

be solved by Adams method. The explicit Adams method used in this study is the Adams

predictor-corrector method documented in the book by Shampine and Gordon [26]. In this

method, a predicted value 1
p
ny at the time step 1nt  based on the solution at time step nt and

several previous values of f is obtained by using the Adams-Bashforth formula:

  
1

1 ,

n

n

t
p
n n m n

t

t dt


   y y P (37)

where  ,m n tP is a Lagrange interpolating polynomial that interpolates previous m values of

 , tf y , that is,

   1
, 1

1 1 1 1

mm
n k

m n n j
j k n j n k

k j

t t
t

t t
 

 
     



 
    

 
 P f (38)

with 1
p
ny available, one can then find the value of  1 1 1,p p

n n nt  f y . The corrector Adams-Moulton

formula is then used to find a corrected value of 1
p
ny , which is denoted by 1ny and is defined as

  
1

*
1 ,

n

n

t

n n m n

t

t dt


   y y P . (39)

where  *
,m n tP is an interpolating polynomial that interpolates the previous m points in addition

to the predicted value 1
p

nf , that is

  * 1 1
, 1 1

11 01 1 1 1

m mm
p n k n k

m n n n j
jk kn n k n j n k

k j

t t t t
t

t t t t
   

  
       



 
           

 
 P f f (40)

One can then use the corrected value 1ny to evaluate the function 1nf which is used in the next

time step. A full documentation of the procedures used in this explicit method for error control

and selection of the order and time step can be found in the literature [27].

34

9. Numerical examples

 In this section, numerical results obtained using a simple pendulum, a tracked vehicle

model, and railroad vehicle models, are used to demonstrate the use of the TLISMNI algorithm

proposed in this investigation for solving large and complex stiff systems that include flexible

bodies and contact/impact forces. The results obtained using the TLISMNI algorithm and the

explicit Adams predictor-corrector method, are compared in terms of efficiency and accuracy. In

addition, recommendations are made on the appropriateness of each integration formula for a

particular problem.

9.1 Pendulum example

The pendulum used in this example is assumed to be initially horizontal and fall under the effect

of the gravity forces. The pendulum model is developed using the finite element absolute nodal

coordinate formulation (ANCF). The beam in this pendulum is discretized using two-

dimensional finite beam elements along its length as shown in Fig. 1 [28]. The pendulum is

assumed to have undeformed length 0.4 m, cross sectional area 0.04 0.04 2m , the mass

density 7200 kg/m3, modulus of elasticity 11 22 10 N/m , and Poison’s ratio 0.3. In order to

compare the performance of the TLISMNI algorithm and the explicit Adams method, a dynamic

simulation of the stiff flexible pendulum is performed by using the two integration methods.

Figure 2 shows that the implicit TLISMNI method damped out some high frequency oscillations

and this integration method produces a smoother solution than the one obtained using the explicit

Adams method. With regard to the efficiency, the TLISMNI method is 35 times faster than the

Adams method for this example. Also it is important to mention that there is no significant

difference between the two reference motion solutions, and therefore, the numerical damping of

35

the TLISMNI method does not have a significant effect on the rigid body motion of the beam, as

will be demonstrated using more complex examples.

9.2 Rigid tracked vehicle model

The tracked vehicle model shown in Fig. 3 is a challenging model that represents an armored

personnel carrier consisting of a chassis, 2 idlers, 2 sprockets, 10 road-wheels, and 128 track

links (64 for each track). Figure 5 shows the engagement of the track links with some of the

vehicle components. The vehicle has a suspension system that consists of road arms placed

between the road wheels and the chassis as well as shock absorbers connected to each road arm,

as shown in Fig. 4. Table 1 shows the stiffness and the damping coefficients of the contact

models and the suspension system used for this model. The road arms and the sprockets are

connected to the chassis by revolute joints, and the road arms are connected to the road-wheels

by revolute joints. The track links are connected to each other using revolute joints. Tensioners

are added to the system, each idler is connected to a tensioner with a revolute joint and the

tensioner is connected to the chassis with a prismatic joint to ensure only relative translation. The

model in this example is subjected to prescribed sprocket angular velocity that increases linearly

until it reaches a constant value after 8 seconds. Both the generalized coordinate partitioning

approach and the recursive approach are used for the solution of this tracked vehicle model. The

number of equations used in the two formulations is 2184 and 648, respectively. Park integration

method was found to be more efficient for this example compared to the BDF2, HHT, and the

Trapezoidal integration methods. The simulation is carried out for 10 seconds with error

tolerance 61 10 for the explicit Adams method and 71 10 for Park Integration method.

36

Figures 5-10 show the results of the model using the recursive approach with the explicit Adams

method, and TLISMNI Park method. The results show very good agreement with maximum

error difference less than 2% in the acceleration/force results and less than 1% in both the

position and velocity results. For this example, the total simulation using the TLISMNI

algorithm with Park method was at least five times faster than Adams method. All the

simulations were performed on Windows 7, 3.40 GHZ CPU computer. It is important to mention

that as the simulation time increases and the sprocket angular velocity increases, the TLISMNI

algorithm with Park integration method becomes more efficient compared to the Adams explicit

method. In the case of 10 rad/sec sprocket angular velocity, the TLISMNI algorithm with Park

was found to be more than 10 time faster than the Adams explicit method. The chassis forward

position and velocity are shown in Figs. 5 and 6, respectively. The results presented in these

figures show a very good agreement between TLISMNI Park integration method and Adams

explicit method. Euler parameter and vertical acceleration of one of the road-wheels are shown

in Figs. 7 and 8, respectively, while the vertical position and velocity for one of the track links

are shown in Figs. 9 and 10, respectively. Figures 11 and 12 show the forward position and

velocity of the tracked vehicle model with 25 rad/s sprocket angular velocity using the

generalized coordinate partitioning approach with error tolerance 51 10 for the explicit Adams,

Park, and BDF2 Integration methods, while Fig. 13 shows the angular velocity of one of the

road-wheels. The results show a good agreement for the position, velocity, and acceleration with

maximum difference less than 3% in the acceleration results. The results obtained also show that

the TLISMNIN BDF2 results have a better agreement with Adams results as compared to the

TLISMNIN Park results. The CPU time using TLISMNI Park and BDF2 methods was found to

be at least six times faster than the explicit Adams method on the same machine. It is also

37

important to mention that the recursive approach was found to be more efficient than the

augmented formulation for such a complex chain problem.

9.3 Flexible tracked vehicle model

In this model, the vehicle model shown in Fig. 3 is used, where a new compliant continuum-

based joint formulation is used for the joint formulation between the track links. In the numerical

investigation presented in this paper, a three-dimensional cable element is used to model the

flexibility of the chain links [29, 30]. The use of the new ANCF finite element mesh makes the

CPU times of the augmented formulation and the recursive approach approximately the same

because the chain revolute joint constraints are eliminated at a preprocessing stage. The most

efficient integration method to be used with this model was found to be the HHT integration

method that allows filtering out high frequencies. The number of equations for that model is

2192, and the length of the simulation time is 10 sec with error tolerance 41 10 with Adams

method and 71 10 with TLISMNI HHT method. It was observed that in order to capture

correctly the rotational coordinates using the TLISMNI HHT integration method, the HHT error

tolerance should be three orders of magnitude tighter than the Adams error tolerance. The results

show good agreement with maximum difference less than 0.1% in the acceleration results, while

the simulation time significantly reduced using the TLISMNI HHT method. The simulation time

using TLISMNI HHT method was at least 8 times faster than that of the explicit Adams. It is

important to mention that as the simulation time and the angular velocity of the sprocket

increases, the TLISMNI HHT method becomes more efficient. Figures 14 and 15 show the

chassis forward position and velocity, while Fig. 16 shows the chassis vertical acceleration. The

angular velocity and acceleration of one of the road-wheels are shown in Figs. 17 and 18,

38

respectively, while Figures 19-22 show the global nodal position and velocity for a certain node

in the ANCF finite element mesh. It can be shown from these results that although the TLISMNI

HHT algorithm employs numerical damping to filter out the high frequencies, such a method

does not damp out any of the frequencies associated with the rigid body modes or any important

deformation modes in this particular example. Numerical experimentations show that decreasing

the numerical dissipation parameter  increases the numerical dissipation, while at the same

time reduces the time step as can be demonstrated from Eq. (32). Therefore, it is important to

select the proper value for the numerical dissipation  in order to be able to increase the time

step.

In the flexible tracked vehicle example discussed in this section, the ANCF three-

dimensional cable element was used to model the flexibility of the chain links. This element,

however, does not capture the cross section and sheer deformations. Several simulations were

carried out using the fully parameterized three-dimensional beam element to model the flexibility

of the chain links. The general continuum mechanics approach and the elastic line approach are

used to formulate the structural element elastic forces. The use of the general continuum

mechanics approach leads to the ANCF coupled deformation modes including the Poisson

modes. These modes couple the cross section deformation, bending, and extension of the

structural elements. On the other hand, in the elastic line approach, all the deformation modes are

defined along the beam centerline, and the curvature expression is used to define the bending

strains. Using the elastic line approach to formulate the elastic forces for the three-dimensional

fully parameterized beam element used in modeling the chain of the tracked vehicle example, the

HHT TLISMNI method was found to be at least 18 times faster than the explicit Adams method

with very good agreement in the results. Using the continuum mechanics approach, it was

39

difficult to obtain the solution using the explicit Adams method due to the stiffness of the

equations, while using the HHT TLISMNI method, the results are obtained efficiently and

accurately compared to the elastic line approach.

9.4 Pantograph/ Catenary railroad vehicle example

The pantograph/catenary model, shown in Fig. 23, is integrated with a railroad vehicle model

that consists of 14 rigid bodies including the track, four wheelsets, two frames, four equalizers,

two bolsters, and the car body. The model has two revolute joints connecting the frames and

bolsters, 48 bushing elements connecting the bodies, and eight bearing elements between the

wheelsets and the equalizers. The pantograph is modeled after the CX pantograph and is

composed of six rigid bodies: a lower arm, upper arm, lower link, upper link, plunger, and a pan-

head as shown in Fig. 24. The pantograph system has three revolute joints and four spherical

joints connecting its bodies to each other and to the railroad vehicle. More details on the model,

including the inertia properties as well as the initial global positions and orientations of the

bodies for the pantograph model are reported by Patel et al. [31]. The catenary contact wire is

supported by dropper (spring/damper) elements from a fully constrained messenger wire as

shown in Fig. 25. The contact wire is modeled using 16 fully parameterized three-dimensional

ANCF beam elements with the following properties; density 8960 kg/m3, modulus of elasticity

11 21.17 10 N/m , and modulus of rigidity 10 24.5 10 N/m .The number of equations of that

system is 744, while the length of the simulation time is 3.87 seconds. The car body is

constrained to move with 20 m / s over a tangent track, the error tolerance used with Adams

method is 51 10 and with TLISMNI-HHT method is 71 10 . The results obtained using both

Adams and TLISMNI-HHT method show very good agreement with maximum difference 1%

40

as shown in Figs. 26-28. The angular velocity of one of the wheelsets is shown in Fig. 26, while

Figs. 27 and 28 show the forward global position and velocity of one of the nodes on the

catenary, respectively. The time required for TLISMNI HHT simulation was found to be about 8

times faster than the time required by Adams method.

10. Summary and conclusions

The objective of this paper is to integrate the Newton-Krylov projection method in a MBS

solution algorithm based on two-loop implicit sparse matrix numerical integration (TLISMNI)

procedure, with the goal of improving the efficiency and robustness of the TLISMNI method

when used for the numerical solution of constrained complex rigid and flexible MBS differential

and algebraic equations. The simple iterations and Jacobian-Free Newton-Krylov approaches are

used in the TLISMNI implementation. The TLISMNI method does not require numerical

differentiation of the forces, allows for an efficient sparse matrix implementation, and ensures

that the algebraic constraint equations are satisfied at the position, velocity, and acceleration

levels. In the augmented formulation and recursive method used in this investigation, the

constraint equations were satisfied at all levels. Different low order integration formulas such as

HHT, which includes numerical damping, Park, Trapezoidal, and BDF2 methods were used and

recommendations on the appropriateness of each method for a particular problem are made.

TLISMNI implementation issues including step size selection, convergence criteria, error

control, and the effect of the numerical damping were discussed. Simple pendulum, complex

rigid and flexible tracked vehicle, and railroad vehicle models were used to demonstrate the use

of the proposed TLISMNI implementation. A comparison between the results obtained using the

41

TLISMNI algorithm and the explicit Adams predictor-corrector method showed good agreement.

On the other hand, using TLISMNI method, which does not require numerical differentiation of

the forces and allows for an efficient sparse matrix implementation for solving complex and very

stiff structure problems, significantly improves the simulation time. For the rigid body model

considered in this investigation, the TLISMNI is at least five times faster than the explicit Adams

method. Using the TLISMNI algorithm with integration formulas that employ numerical

damping such as HHT in the simulation of flexible body models considered in this study can

achieve up to thirty five times faster simulation compared to Adams method. Nonetheless, it is

important to mention that there are cases of non-stiff problems in which the use of explicit

Adams method can be more efficient than the TLISMNI methods. The use of the Jacobian-Free

Newton-Krylov approach instead of the simple iteration approach improves the convergence and

accuracy of the TLSMNI method. Preconditioning and parallelization techniques need to be

explored in a computational framework based on the TLISMNI Newton-Krylov approach, which

improves the convergence for the stiff equations. Also the use of the generalized coordinate

partitioning proved to be efficient in the case of differential/algebraic equation problems. More

investigations are required in order to develop better criteria for the selection of the best set of

independent coordinates and the time to change these coordinates. This is necessary in order to

improve the performance of the TLISMNI method and avoid singularity problems arising in

applications that include closed chains.

42

References

1. Porta,F. A., Numerical Methods for Differential-Algebraic Equations with Application to

Real-Time Simulation of Mechanical Systems. ZAMM 74(94) (1994) 177-187.

2. Negrut, D., On the Implicit Integration of Differential-Algebraic Equations of Multibody

Dynamics, PhD thesis, Departement of Mechanical Engineering, University of Iowa, 1998.

3. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A., On the Use of HHT Method in the

Context of Index 3 Differential Algebraic Equations of Multibody Dynamics. Journal of

Computational and Nonlinear Dynamics 2(1) (2002) 73-85.

4. Pogorelov, D., Differential-algebraic Equations in Multibody System Modeling. Numerical

Algorithms 19 (2002) 183-194.

5. Shabana, A. A., Computational Dynamics. Third Edition ,John Wiley and Sons, New York,

2010.

6. Haug, E. J., Computer-Aided Kinematics and Dynamics of Mechanical Systems. Boston,

MA, Allyn and Bacon, 1989.

7. Shabana, A.A., Hussein, B.A., A two-loop sparse matrix numerical integration procedure for

the solution of differential/ algebraic equations: Application to multibody systems. Journal of

Sound and Vibration 327 (2009) 557–563.

8. Wehage, R.A., Haug E. J., Generalized Coordinate Partitioning for Dimension Reduction in

Analysis of Constrained Dynamic Systems. J. Mech. Design 104 (1982) 247-255.

9. Baumgarte, J., Stabilization of constraints and integrals of motion in dynamical

 Systems. Comp. Meth. In Appl. Mech. and Eng. 1 (1972) 1-16.

10. Petzold, L. R., Differential/Algebraic Equations are not ODE’s. SIAM J. Sci., Stat. Comput. 3

(1982) 367-384.

43

11. Gear, W., Saad, Y., Iterative Solution of Linear Equations in ODE Codes. SIAM J. SCI.

STAT. COMPUT. 4 (1983) 583-601

12. Saad, Y., Iterative Methods for Sparse Linear Systems. Second Edition, SIAM, Philadelphia,

2003 .

13. Brown, P.N, Hindmarsh A.C., Matrix-Free Methods for Stiff Systems of ODE’s. SIAM

NUMER. ANAL. 23 (1986) 610-638.

14. Roberson, R.E., and Schwertassek, R., Dynamics of Multibody Systems. Springer Verlag,

Berlin, 1988.

15. Hussein, B.A., Shabana, A.A., Sparse Matrix Implict Numerical Integration of Stiff

Differential/Algebraic Equations: Implementaion. Nonlinear Dyn. 65 (2010) 369–382.

16. Shabana, A.A., Hussein, B.A., A two-loop Sparse matrix numerical integration procedure for

the solution of Differential/algebraic equations: Application to multibody systems. Journal of

Sound and Vibration, 327(2009) 557-563.

17. Gracia, J., Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems. Springer-

Verlag, New York, 1994.

18. Shampine, L.F., Type-Insensitive ODE Codes Based on Implicit A-Stable formulas.

Mathematics of Computation, 36(154) (1981) 499-510.

19. Knoll, D.A., Keyes, D.E., Jacobine-free Newton-Krylov methods: a survey of approaches

and applications. Journal of Computational Physics 193(2004) 357-397.

20. Park, K.C., An improved Stiffly stable Method for Direct Integration of Nonlinear Structural

Dynamics Equations. Journal of Applied Mechanics, (1975) 464-470.

21. Park, K.C., Practical Aspects of Numerical Time Integration. Computers and structures

7(1975) 343-353.

44

22. Pogorelov, D., Differential–Algebraic Equations in Multibody System Modeling. Numerical

Algorithms 19 (1998) 183–194.

23. Gear, C.W., The Simultaneous Numerical Solution of Differential-Algebraic Equations.

IEEE Trans. Circuit Theory CT-18 (1971) 89-95.

24. Gourley, A.R., A Note on Trapezoidal Methods for the Solution of Initial Value Problems.

Mechanica of Computation, 24 (1970) 629-633.

25. Hughes, T.J.R., The Finite Element Method: Linear Static and Dynamic Analysis. prentice-

Hall, 1987.

26. Newmark, N.M., A Method of Computation for Structural Dynamics. Journal of Engineering

Mechanics Division ASCE (1959) 67-94.

27. Shampine, L., Gordon, M., Computer Solution of ODE: The Initial Value Problem. Freeman,

San Francisco, 1975.

28. Hussein, B.A., Negrut, D., Shabana, A.A., Implicit and Explicit Intgeration in the Solution of

Absolute Nodal Coordinate Differential/Algebraic Equations. Nonlinear Dyn. 54 (2008)

283–296.

29. Shabana, A. A., Hamed, A. M., Mohamed, A. A., Jayakumar, P., and Letherwood, M. D. Use

of B-Spline in the Finite Element Analysis: Comparison with ANCF Geometry. Journal of

Computational and Nonlinear Dynamics 7 (2012) 81-88.

30. Wallin, M., Aboubakr, A.K., Jayakumar, P., Letherwood,M.D., Gorsich,D. J., Hamed, A.M.,

Shabana A.A., A Comparative Study of Joint Formulations: Application to Multibody

System Tracked Vehicles ”, Journal of Nonlinear Dynamics. 74 (2013) 783–800.

45

31. Pappalardo1, C.M., Patel M.D., Tinsley B., Shabana A.A., Control of the

Pantograph/Catenary Contact Forces. Technical Report # MBS2014-8-UIC, Department of

Mechanical and Industrial Engineering, University of Illinois at Chicago . 2014.

46

Table 1: Contact Parameters
Parameters Sprocket-Track Contact Roller-Track Contact Ground-Track Contact

k 2.00×106 N/m 2.00×106 N/m 1.00×106 N/m
c 5.00×103 N·s/m 5.00×103 N·s/m 1.50×104 N·s/m
 0.150 0.100 0.300

47

List of figures

Figure 1: Flexible pendulum initial configuration

Figure 2: Nodal deformation of the mid-node

Figure 3: Tracked vehicle model

Figure 4: Suspension system layout of the tracked vehicle

Figure 5: Chassis forward position

Figure 6: Chassis forward velocity

Figure 7: Road-wheel Euler parameter

Figure 8: Road-wheel vertical acceleration

Figure 9: Track link vertical position

Figure 10: Track link vertical velocity

Figure 11: Chassis forward position

Figure 12: Chassis forward velocity

Figure 13: Road-wheel angular velocity

Figure 14: Chassis forward position

Figure 15: Chassis forward velocity

Figure 16: Chassis vertical acceleration

Figure 17: Road-wheel angular velocity

Figure 18: Road-wheel angular acceleration

Figure 19: Vertical global nodal position

Figure 20: Longitudinal global nodal position

Figure 21: Vertical global nodal velocity

Figure 22: Longitudinal global nodal velocity

Figure 23: Pantograph/catenary railroad vehicle model

Figure 24: Articulated pantograph System

Figure 25: Catenary model

Figure 26: Wheelset angular velocity

Figure 27: Longitudinal global nodal position

Figure 28: Longitudinal global nodal velocity

48

Figure 1. Flexible pendulum initial configuration

0.0 0.4 0.8 1.2 1.6 2.0

-4.0x10-7

-2.0x10-7

0.0

2.0x10-7

4.0x10-7

Y
-n

od
al

 d
ef

or
m

at
io

n
(m

)

Time (s)

Figure 2: Nodal deformation of the mid-node
(Adams, HHT)

 Y Gravity force

Cross section
X

49

Figure 3: Tracked vehicle model

Figure 4: Suspension system layout of the tracked vehicle

50

0 2 4 6 8 10
-3

0

3

6

9

12

F
or

w
ar

d
po

si
tio

n
(m

)

Time (s)

Figure 5: Chassis forward position
(Adams, Park)

0 2 4 6 8 10
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
or

w
ar

d
ve

lo
ci

ty
 (

m
/s

)

Time (s)

Figure 6: Chassis forward velocity
(Adams, Park)

51

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

E
ul

er
 P

ar
am

et
er

Time (s)

Figure 7: Road-wheel Euler parameter
(Adams, Park)

0 2 4 6 8 10
-30

-20

-10

0

10

20

30

V
er

tic
al

 a
cc

el
er

at
io

n
(m

/s
)

Time (s)

Figure 8: Road-wheel vertical acceleration
(Adams, Park)

52

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

V
er

tic
al

 p
os

iti
on

 (
m

)

Time (s)

Figure 9: Track link vertical position
(Adams, Park)

0 2 4 6 8 10
-3

-2

-1

0

1

2

3

V
er

tic
al

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 10: Track link vertical velocity
(Adams, Park)

53

0 2 4 6 8 10
-5

0

5

10

15

20

25

30

35

F
or

w
ar

d
po

si
tio

n
(m

/s
)

Time (s)

Figure 11: Chassis forward position

(Adams, Park, BDF2)

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

7

F
or

w
ar

d
ve

lo
ci

ty
 (

m
/s

)

Time (s)

Figure 12: Chassis forward velocity

(Adams, Park, BDF2)

54

0 2 4 6 8 10
-20

-15

-10

-5

0

5

A
ng

ul
ar

 v
el

oc
it

y
(r

ad
/s

)

Time (s)
Figure 13: Road-wheel angular velocity

(Adams, Park, BDF2)

0 2 4 6 8 10
-5

0

5

10

15

20

25

30

35

F
or

w
ar

d
po

si
tio

n
(m

)

Time (s)

Figure 14: Chassis forward position
(Adams, HHT)

55

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

7

F
or

w
ar

d
ve

lo
ci

ty
 (

m
/s

)

Time (s)

Figure 15: Chassis forward velocity
(Adams, HHT)

0 2 4 6 8 10

-39

-26

-13

0

13

26

V
er

tic
al

 a
cc

el
er

at
io

n
(m

/s
2)

Time (s)

Figure 16: Chassis vertical acceleration
(Adams, HHT)

56

0 2 4 6 8 10
-20

-15

-10

-5

0

5

F
or

w
ar

d
ve

lo
ci

ty
 (

m
/s

)

Time (s)

Figure 17: Road-wheel angular velocity
(Adams, HHT)

0 2 4 6 8 10
-150

-100

-50

0

50

100

150

A
ng

ul
ar

 a
cc

el
er

at
io

n
(r

ad
/s

2)

Time (s)

Figure 18: Road-wheel angular acceleration
(Adams, HHT)

57

0 2 4 6 8 10
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

V
er

ti
ca

l p
os

it
io

n
(m

)

Time (s)

Figure 19: Vertical global nodal position
(Adams, HHT)

0 2 4 6 8 10
-5

0

5

10

15

20

25

30

35

L
on

gi
tu

di
na

l p
os

iti
on

(m
)

Time (s)

Figure 20: Longitudinal global nodal position
(Adams, HHT)

58

0 2 4 6 8 10
-10

-5

0

5

10

V
er

tic
al

 v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 21: Vertical global nodal velocity
(Adams, HHT)

0 2 4 6 8 10
-3

0

3

6

9

12

15

L
on

gi
tu

di
na

l v
el

oc
ity

 (
m

/s
)

Time (s)

Figure 22: Longitudinal global nodal velocity
(Adams, HHT)

59

Figure 23: Pantograph/catenary railroad vehicle model

Figure 24: Articulated pantograph System

Figure 25: Catenary model

60

0.0 0.6 1.2 1.8 2.4 3.0 3.6
43.73

43.74

43.75

43.76

43.77

43.78

43.79

A
ng

ul
ar

 v
el

oc
ity

 (
ra

d/
s)

Time (s)
Figure 26: Wheelset angular velocity

(Adams, HHT)

0.0 0.6 1.2 1.8 2.4 3.0 3.6
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

Po
si

ti
on

 (
m

)

Time (s)
Figure 27: Longitudinal global nodal position

(Adams, HHT)

61

0.0 0.6 1.2 1.8 2.4 3.0 3.6
-2

-1

0

1

2

V
el

oc
it

y
(m

/s
)

Time (s)
Figure 28: Longitudinal global nodal velocity

(Adams, HHT)

