
 1

A Data Mining based Full Ceramic Bearing Fault 
Diagnostic System using AE Sensors 

 
David He, Ruoyu Li, Junda Zhu, and Mikhail Zade 

 
 
 Abstract - Full ceramic bearings are considered the first step 
towards full ceramic, oil free engines in the future.  No research 
on full ceramic bearing fault diagnostics using acoustic emission 
(AE) sensors has been reported.  Unlike their steel counterparts, 
signal processing methods to extract effective AE fault 
characteristic features and fault diagnostic systems for full 
ceramic bearings have not been developed.  In this paper, a data 
mining based full ceramic bearing diagnostic system using AE 
based condition indicators (CIs) is presented.  The system utilizes 
a new signal processing method based on Hilbert Huang 
transform (HHT) to extract AE fault features for the 
computation of CIs.  These CIs are used to build a data mining 
based fault classifier using a k-nearest neighbor (KNN) 
algorithm.  Seeded fault tests on full ceramic bearing outer race, 
inner race, balls, and cage are conducted on a bearing diagnostic 
test rig and AE burst data are collected.  The effectiveness of the 
developed fault diagnostic system is validated using real full 
ceramic bearing seeded fault test data. *      
 

 Index Terms – Fault diagnosis, full ceramic bearings, data-
mining . 
 

I.  INTRODUCTION 

ERAMIC bearings are quickly replacing conventional 
steel ball bearings in various fields and applications 
because they exhibit a service life three times longer than 

that of steel bearings.  There are two types of ceramic 
bearings:  hybrid ceramic bearings and full ceramic bearings.  
Hybrid ceramic bearings have steel races and ceramic balls 
while full ceramic bearings have both ceramic balls and races.  
Different types of ceramics are used in ceramic bearings.  
Silicon nitride (Si3N4) and Zirconia (ZrO2) are perhaps the 
most common ceramics used in ceramic bearings.  However 
there are many other ceramics that would work well in bearing 
applications (Niizeki, 2000). 

Very few studies have been conducted on ceramic bearing 
fault diagnosis and remaining useful life prognosis of hybrid 
ceramic ball bearings.  Past research has focused on studying 
the characteristics and applications of ceramic bearings 
(Wereszczak et al., 2006; Takebayashi, 2001; Arulampalam 
and Ristic, 2000; Chao et al., 1995; Ohta and Kobayashi, 
1995; Rhoads and Bashyam, 1994; Ebert, 1990).   Recently, a 
number of papers have reported research on hybrid ceramic 
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bearing fault diagnosis and prognosis.  Dempsey et al. (2004, 
2005) summarized the currently known failure modes of 
hybrid ceramic bearings.  In their research, they used both 
magnetic and non-magnetic sensors to detect the silicon 
nitride debris.  A hybrid bearing test rig has been developed 
by National Aeronautics and Space Administration (NASA) at 
Glenn Research Center in order to evaluate the performance 
of the sensors and algorithms developed in predicting failures 
of rolling element bearings for aeronautic and space 
applications.  Different diagnostic tools, both oil based and 
vibration based systems, were used to indicate bearing 
failures.  The vibration data were recorded and analyzed in 
time domain and frequency domain and envelope analysis 
techniques developed to indicate the health condition of 
bearings in real-time.  In the meanwhile, several different oil 
debris sensors were installed to get the information of both 
metallic and non-metallic debris particles.  Using the magnetic 
properties of the oil debris to detect damage is not enough 
since the ceramic rolling elements of hybrid bearings have no 
metallic properties.   

Byington et al. (2006) presented a feature extraction and 
analysis driven system: ImpactEnergy.  This system recorded 
high frequency vibration/acoustic emission data and combined 
advanced diagnostic features derived from waveform analysis, 
high-frequency enveloping, and more traditional time domain 
processing like root mean square (RMS) and kurtosis with 
classification techniques to provide bearing health 
information.  However, the fault detection and diagnostic 
algorithms were the focus of the paper. The prediction 
algorithm of remaining useful life of hybrid ceramic bearings 
was not reported and verified in the paper.  He et al. (2010) 
presented a methodology for hybrid ceramic bearing 
prognostics using particle filtering.  The methodology was 
validated using real hybrid ceramic bearing run to failure test 
data collected on a bearing prognostics test rig.  The collected 
data were used to test the prognostic algorithm.  The results 
have shown that the presented prognostics methodology is 
effective for predicting the remaining useful life of the tested 
bearings.  Ma and He (2010) presented an integrated 
prognostics methodology and illustrated the method using real 
and simulated run-to-failure test data on hybrid ceramic 
bearings. The results show that when grease debris and 
vibration analysis are integrated within one framework, the 
trending of the fault features can be improved significantly.  
The prediction uncertainty can be reduced. This integrated 
methodology could enhance the machine condition monitoring 
performance and make remaining useful life prediction more 
reliable.    

C
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Recently, acoustic emission (AE) based techniques have 
attracted researchers’ attention to machine health monitoring 
and fault diagnostics (Eftekharnejad and Mba, 2009; Hamzah 
and Mba, 2009; Samuel and Pines, 2005; Toutountzakis et al., 
2005; Choudhury and Tandon, 2000).  Tandon and Nakra 
(1990) used AE counts and peak amplitudes of continuous AE 
signals as the fault features for steel bearing outer race fault 
diagnostics.  Tan et al. (2007) compared fault diagnostic and 
prognostic capabilities of AE and vibration based techniques, 
and spectrometric oil analysis (SOA).  They used RMS values 
as the features for both the AE and vibration signals.  Their 
results showed that the AE based techniques were more 
sensitive in detecting and monitoring pitting than either the 
vibration or SOA techniques.  In (Mba, 2008), the duration of 
the AE bursts were used to estimate the defect size of the steel 
roller bearing outer race.   

Up to today, no research on full ceramic bearing fault 
diagnosis using AE sensors has been reported.  Unlike their 
steel counterparts, effective signal processing methods to 
extract AE fault characteristic features and fault diagnostic 
systems for full ceramic bearings have not been developed.  
The applications of full ceramic bearings can be limited due to 
the lack of fault diagnostic technology, especially in the fields 
of aeronautics and aerospace applications.  Reliable 
diagnostics tools and algorithms should be developed.   

In general, there are two popular approaches for bearing 
fault diagnostics.  One is physics based or model based 
approach.  This approach establishes a mathematical model of 
the bearings and then by monitoring the residual signals 
between the model and the collected signals it classifies the 
bearing faults.  Some model based bearing fault detection and 
diagnosis applications have been reported in (Jalan and 
Mohanty, 2009; Blodt et al., 2008; Stack et al., 2004; Loparo 
et al., 2000).  However for a brand new or complex bearing 
system, it is infeasible to obtain an accurate model.  Therefore, 
the model-based approach is limited.  Another drawback of 

the model-based approach is that different models need to be 
established for different applications.  Another popular 
approach is data mining based method.  Some data mining 
based bearing fault detection and diagnosis applications have 
been reported in (Abbasion et al., 2007; Samanta et al., 2003; 
Jack and Nandi, 2002; Li, et al., 2000).  Unlike model-based 
approach, the data mining based approach does not 
necessarily need to understand the physics of the monitored 
applications.  Thus the complexity of designing the 
methodology is greatly reduced, especially for the new and 
complex systems.  Data mining based methods can be easily 
applied to complex systems and adapted to applications with 
different system parameters.  Among the data mining 
approaches, neural networks based methods as an effective 
learning tool have been reported (Ho et al., 2010; Sun and 
Kabán, 2010; Talebi et al., 2009).      

In this paper, a data mining based full ceramic bearing 
diagnostic system using AE based condition indicators (CIs) is 
presented.  The system utilizes a new signal processing 
method based on Hilbert Huang transform (HHT) to extract 
AE fault features for the computation of CIs.  These CIs are 
used to build a data mining based fault classifier using a k-
nearest neighbor (KNN) algorithm.  Seeded fault tests on full 
ceramic bearing outer race, inner race, balls, and cage are 
conducted on a bearing diagnostic test rig and AE burst data 
are collected.  The effectiveness of the developed fault 
diagnostic system is validated using real full ceramic bearing 
seeded fault test data.     
 

II.  DATA MINING BASED FAULT DIAGNOSTIC SYSTEM USING AE 
SENSORS 

The framework of the data mining based full ceramic 
bearing fault diagnostic system using AE sensors is provided 
in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Data mining based full ceramic bearing fault diagnostic system using AE sensors. 
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As shown in Figure 1, AE bursts from both healthy and 

faulty bearings are collected and then decomposed into 
intrinsic mode functions (IMF) components by a technique 
called empirical mode decomposition (EMD) method.  As 
pointed out by Everson and Cheraghi (1999), the AE signals 
could be generated as two types: burst type and continuous 
type.  Burst type signals contain pulses over a period of time 
above background signals and can be separated with limited 
overlap.  Continuous type signals do not have any significant 
resolutions between individual pulses.  The AE signals 
generated by a rotating component with localized faults such 
as cracks belong to the burst type signals (Dolinek and Kopa, 
1999).  One major advantage of using burst type AE signals 
for bearing fault diagnosis is that shorter sampling periods 
will be needed.  Therefore fewer storage spaces and less 
computational burden will be added to the real monitoring 
systems.  In general, bearing faults such as those damages on 
inner race, outer race, and balls can be treated as localized 
faults.  The localized faults not only affect the transmission 
accuracy but also cause catastrophic failure of the 
transmission system.  In this paper, the diagnosis of bearing 
localized faults on ceramic inner race, outer race and balls are 
emphasized.   

After the EMD decomposition, the AE based CIs are then 
computed from the obtained IMF components.  These AE 
based CIs are used to train a data mining based bearing fault 
classifier using a k-nearest neighbor (KNN) algorithm.   

 
A. HHT based AE Feature Extraction and CI Development 

HHT was first proposed by Huang (Huang et al., 1998) 
and has been recently applied to rotational machinery fault 
detection (Liu et al., 2006; Yan and Gao, 2006) and short 
circuit fault detection in a permanent-magnet synchronous 
motor (Rosero et al., 2009).  It has been proven to be an 
effective method in analyzing non-stationary signals for 
rotational machinery fault detection.  When HHT is applied to 
analyze the signals, the signals are first decomposed into 
several IMF components by EMD method.  The steps of the 
EMD method are provided as follows: 
Step 1.  Find the local maxima and local minima of the 
signals. 
Step 2. Construct the lower and upper envelopes of the signals 

by the cubic spline respectively based on the local 
maxima and local minima. 

Step 3. Calculate the mean values ( )m t  by averaging the 
lower envelope and the upper envelope. 

Step 4. Subtract the mean values from the original signals to 
produce the IMF candidate component 

1 ( ) ( ) ( )h t f t m t= − .  If it is the true intrinsic mode 
function, go to the next step and the IMF component 

( ) ( )C t h ti m=  is saved.  If it is not the intrinsic mode 

function, go back to Step 1.  The stop condition for the 
iteration is given by Eq. (1):   

2
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where: ( )1h tm−
  and ( )mh t   denote the IMF candidates 

of the m-1 and m iterations, respectively and usually 
SD is set between 0.2 and 0.3.  

Step 5. Calculate the residual component by subtracting IMF 
component obtained in Step 4 from the original 
signals ( ) ( ) ( )i ires t f t C t= − .  This residual component 
is treated as new data and is subjected to the same 
processes described above to calculate the next IMF 
component. 

Step 6. Repeat Steps 1-5 until the final residual component 
becomes a monotonic function and no more IMF 
component can be extracted or the envelopes becomes 
smaller than a pre-determined value. 

Through the EMD, the original signals f(t) can be 
decomposed into N IMF components: C1, ..., Ci, …, CN.  From 
these IMF components, AE features can be extracted.  In this 
paper, three AE features are investigated: rms, kurtosis, and 
peak value.  Let x = (x1, …, xi, …, xn) be a set of data,  x the 
average, and s the standard deviation.  Then from dataset x, 
the three AE features can be computed as: 
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peak value = { } { }, 1,..., , 1,...,max mini i

ii
x i n x i n= − =           (4) 

 
The AE feature rms captures the energy level of the AE 

bursts.  A faulty bearing normally has a higher energy level 
than a normal bearing under the same operating conditions.  
The AE feature kurtosis indicates the flatness or the spikiness 
of the AE bursts. Its value is very low for normal condition of 
the bearing and high for faulty condition of the bearing due to 
the spiky nature of the burst.  The AE feature peak value 
captures the relative flatness or the spikiness of the AE bursts. 

Once the AE features are extracted from the IMF 
components of the AE bursts, CIs can be generated from these 
AE features.  CIs have been widely used in machinery health 
monitoring and fault diagnosis applications.  A large number 
of vibration based CIs are used in health and usage monitoring 
systems (HUMS) currently installed in military and civil 
service helicopters for health monitoring and fault diagnosis 
of flight critical components such as bearings, gears, and 
engines.  For example, some vibration based CIs for bearing 
health monitoring and fault diagnosis are defined using the 
fundamental bearing fault frequencies: outer race ball-pass 
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frequency (BPFO), inner race ball-pass frequency (BPFI), ball 
spin frequency (BSF), and cage fault frequency (CFF) or 
fundamental train frequency (FTF).  These CIs are used to 
detect bearing faults in bearing health monitoring and fault 
diagnosis applications.   

Unlike vibration analysis, AE based bearing fault features 
and CIs have not been well established yet, especially for full 
ceramic bearings.  Since the collection of each AE burst data 
is triggered by AE impulses, the bearing fundamental 
frequencies used in vibration analysis cannot be computed 
using AE burst data.  In this paper, simple and effective CIs 
computed from AE burst data are developed.  Assume that the 
AE features can be arbitrarily divided into finite number of 
groups of size M.  Let fi be the value of AE feature i.  Then the 
following CIs can be computed for each AE features as 
follows: 
 

group average of AE feature 1

M

i
i

ii f
M

f
== =
∑

         (5) 
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( )2

1

1

M

i
i i

i
M

f f
==

−

−∑
     (6) 

 
        

The CI in Eq. (5) is basically computed as the group 
average of an AE feature.  It will indicate the magnitude of the 
AE impulses caused by the bearing faults.  The CI in Eq. (6) is 
basically computed as the group standard deviation of an AE 
feature.  It will indicate the randomness of the AE impulses 
caused by the bearing faults.  It is expected that this CI should 
have lower values for healthy bearing and bearing with faults 
on non-rotating components such as outer race.  Once the CIs 
of the AE bursts for each type of bearing faults are generated, 
they will be used to train the bearing fault classifier using a 
KNN algorithm. 
 
B. The KNN Algorithm 

KNN is a supervised learning algorithm.  KNN assumes 
all observations correspond to points in a p-dimensional 
space.  The nearest neighbors of an observation are defined in 
terms of the standard Euclidean distance.  An observation is 
classified by a majority vote of its neighbors, with the 
observation being assigned the class most common amongst 
its k nearest neighbors.  Consider a database consisting of a 
total of n observations ( ix ; iy ), for i = 1, 2, …, n, where ix  

could be any point in the p-dimensional Euclidean space, pℜ , 
denoted as { }1 2, , ...,i i i ipx x x=x  and iy  is an outcome from m 
class { }1 2, , ..., mω ω ω ω= .  The database is called the training 
set for the KNN algorithm.  Given any two observations, ix  
and jx , let ( ),i js x x  be a measure of their similarity based on 
the p variates and be derived as:  

 

( ) ( )2

1

,
p

i j ik jk
k

s x x
=

= −∑x x                                   (7)                  

To classify the response for a new observation ux with the 
KNN algorithm, one first identifies k observations in the 
training set that are most similar to ux .  They form the set of 
k-nearest neighbors of ux , denoted by ( ),uN kx .  These 
similarities can be ordered.  Denote the ordered similarities 
with ( )is , i.e., (1) (2) ( )... ns s s≥ ≥ ≥ .  In other words, if 

( )j ks s= , it means jx  is the kth most similar observation in the 

training set to ux .  The set of the k-nearest neighbors of ux , 

( ),N kux , can then be defined as all observations whose 

similarities to ux  are at least ( )ks , i.e., 

( ) ( ){ }, :u i i kN k x s s= ≥x .  The KNN algorithm then estimates 

the probability that u iy ω=  by the average responses of these 
k-nearest neighbors and classifies the response to be iω  if the 
estimated probability exceeds a certain threshold c: 
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( )
,ˆ
,

x N Ki u

u

yiP
N K

∈
∑

= x

x
                                           (8) 

where: ( ),uN kx  is the number of items contained in the set 

( ),uN kx .  This is usually equal to k exactly, but may exceed 
k depending on how ties are treated.  The response is then 
predicted to be iω  if P̂ c≥ , where c is a pre-specified 
threshold parameter. 
 

III.  EXPERIMENTAL SETUP 

In order to validate the AE based full ceramic bearing 
fault diagnosis method, bearing seeded fault tests were 
conducted on a specially designed bearing test rig (see Figure 
2) and AE burst data were collected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The bearing test rig. 



 5

The bearings used during the testing were the 6205 full 
ceramic bearings purchased from Boca Bearings.  The bearing 
balls, outer race, and inner race are made of Silicon Nitride 
(Si3N4).  The bearing cage (retainer) and seals are made of 
Teflon.  The lube for the full ceramic bearing is LD lube dry.  
The dimension of the bearing is shown in Figure 3. 

 
 
 
 
 
 

 
 
 
 
 

 
Fig. 3  The dimension of the 6205 full ceramic bearing. 

 
To simulate the early faults developed on a bearing, 4 

different types of full ceramic bearing faults were created: 
damaged inner race surface, damaged outer race surface, 
damaged ball, and broken cage (see Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4 The four bearing seeded faults. 

 
 The surface damages on the bearing inner race and outer 

race were created by scratching the race surface using a 
grinding tool with a diamond tip.  The diameter of the 
damaged surface area was about a quarter of the ball diameter.   
The surface damage on one bearing ball was created by 
scratching the ball surface using the grinding tool.  Roughly 
10% of ball surface were scratched.  The broken cage was 
created by cutting the Teflon retainer using a sharp knife.   

Two wide band (WD) type AE sensors and a 2-channel 
data acquisition card with 18-bit resolution and a maximum 

sampling rate up to 40 MHz were used to collect the AE burst 
data.  The AE sensors were attached to the bearing housing by 
instant glues.  The locations of the AE sensors on the bearing 
housing are shown in Figure 5.                   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The locations of the AE sensors. 
 

During the testing, the speed of the motor shaft was 
controlled at 10Hz (600 rpm) and the AE burst data were 
collected at a sampling rate of 5 MHz for the 5 full ceramic 
bearings: healthy bearing, bearing with inner race fault, 
bearing with outer race fault, bearing with ball fault, and 
bearing with cage fault.  For each bearing, a total of 400 AE 
bursts were collected in one data acquisition.  In each data 
acquisition, the bearing was run for less than 2 minutes.  The 
time to record a total of 400 AE bursts was less than a minute.  
It is assumed that the short data acquisition duration did not 
permit fault propagation during the testing. 

To keep a consistent testing condition, only one bearing 
house was used for all five bearings.  Every time when a 
bearing test was completed, the tested bearing was taken out 
from the bearing house and the next bearing was put into the 
same bearing house.  As the position of bearing house in the 
bearing test rig and the AE sensors attached to the bearing 
house did not change each time when the tested bearing was 
replaced, the variability of the testing conditions was 
minimized 

 

IV.  ANALYSIS RESULTS 

For each AE burst data, the EMD method was applied to 
decompose it into a number of IMF components.  An example 
of AE bursts and the first 4 IMF components of the AE burst 
are provided in Figure 6. 

As one can see from Figure 6 that for a typical AE burst 
collected during the full ceramic bearing seeded fault testing, 
the first three IMF components contained most of the energy 
in the original AE burst.  Therefore, only the first three IMF 
components of the AE bursts were used to extract the AE 
features. To extract the AE features, the three IMF 
components were summed and then the three AE features 
were extracted from the summed IMF components: rms, peak 

inner race fault outer race fault 

ball fault cage fault 



 6

value, and kurtosis.  For each AE feature, the first 10 values 
were grouped as the first data group, the second 10 values the 
second data group, and this process of putting the next 10 
values into a data group continued until 40 data groups were 
generated.  For each data group, the group average and 
standard deviation were computed.  Treating each group 
average and standard deviation as CIs, then a total of 6 CIs 
were generated.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 An AE burst and its first four IMF components. 
  
  The group averages and the group standard deviations of 
the AE feature rms of the five tested bearings are plotted in 
Figure 7 and Figure 8, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 The group averages of rms. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 The group standard deviation of rms. 
 

 From Figure 7, one can see that the AE burst energy level 
of inner race and outer race faults measured by the group 
average of rms is much higher than that of ball and cage 
faults.  This is because the impacts generated by the ball 
hitting on the damaged surface of the inner and outer race are 
much stronger.  Therefore, by using the group average of rms 
alone, one can separate the race faults from ball and cage 
faults.  Since the AE burst energy levels of the inner race fault 
and outer race fault are overlapped, the group average of rms 
cannot separate the outer race fault from the inner race fault.  
However, from Figure 8, one can see that using the group 
standard deviation of rms one could roughly separate the inner 
race fault from the outer race fault.  This is because the group 
standard deviation of rms measures the randomness of the AE 
impulses.  Since the AE impulses of the inner race fault were 
generated by the ball running against the rotating inner race 
rather than the non-rotating outer race, they show more 
randomness than the AE impulses of the outer race fault. 
 The group averages and the group standard deviations of 
the AE feature kurtosis of the five tested bearings are plotted 
in Figure 9 and Figure 10, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 The group averages of kurtosis. 
 
 
 
 
 
 

(b) The first 4 IMF components of the AE burst in (a) 
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Fig. 10 The group standard deviations of kurtosis. 
 

 From Figure 9, one can see that except for data points #14 
and #15 at which the CI values of the ball fault are higher than 
those of the healthy bearing, all the five bearings can be 
clearly separated by the group average of kurtosis.  Hence, by 
using the group average of kurtosis alone, one could roughly 
separate the bearing faults.  In theory, the kurtosis of a healthy 
bearing should have a lower value than a faulty bearing as the 
kurtosis measures the spikiness of the signals.  However, note 
that in Figure 9, the group averages of kurtosis of the healthy 
bearing are higher than those of the ball fault and cage fault.  
This might be caused by the fact that the seeded faults created 
on the surface of the ball and the cage were not large enough 
and the resulting pulses generated by these faults were easily 
buried in the background noises and overlapped with regular 
AE bursts.  From Figure 10, one cannot see a good separation 
of the bearing faults using the group standard deviation of 
kurtosis.   
 The group averages and the group standard deviations of 
the AE feature peak value of the five tested bearings are 
plotted in Figure 11 and Figure 12, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 The group averages of peak value. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 The group standard deviations of peak value. 
 
 From Figure 11, one can see that the AE burst peak level 
of inner race and outer race faults measured by the group 
average of peak value is much higher than that of ball and 
cage faults.  This is because the AE burst peaks generated by 
the ball hitting on the damaged surface of the inner and outer 
races are much higher.  Therefore, by using the group average 
of peak value alone, one can separate the race faults from ball 
and cage faults.  However, the group average of peak value 
cannot separate the outer race fault from the inner race fault.  
From Figure 12, one can see that by using the group standard 
deviation of peak value one could roughly separate the inner 
race fault from the outer race fault.   
 In summary, the best CI seems to be the group average of 
kurtosis as it shows relatively good separation among different 
bearings in comparison to other CIs.  For both rms and peak 
value, their CIs seems to be able to separate race faults from 
non-race faults but unable to separate bearings that don’t have 
the race faults: healthy bearing, bearing with ball fault, and 
bearing with cage fault. 
 As reported in the data mining based fault diagnostic 
papers by Kim and Parlos (2002), Wu and Chow (2004), and 
Sreejith et al. (2008), a good practice of splitting the data for 
training and validation is that the percentage of data used for 
training should be higher than 50%.  Therefore, in this paper, 
all the AE CI data generated were split into two groups: 60% 
of the data were used for training purpose to build up the fault 
classifier and 40% of the data were used for validation to test 
the performance of the AE based CIs.  The fault diagnosis 
results using KNN for different CIs and CI combinations are 
provided in Table I and Table II, respectively.  Note that in 
both Table I and Table II, the values of k are the best k values 
with the minimum % error determined by the KNN algorithm 
at the training stage.  The % error is defined as the percentage 
of data points of a fault type that were misclassified. 
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TABLE I 
  THE KNN FAULT DIAGNOSIS RESULTS USING SINGLE CI ONLY 

CI: rms-average (k = 6) CI: rms-standard deviation (k = 8) 
Type of Fault % Error for 

Training 
% Error for 
Validation 

Type of Fault % Error for 
Training 

% Error for 
Validation 

Healthy 13.04 11.76 Healthy 21.74 11.76 
Outer race 4.00 6.67 Outer race 12.00 20.00 
Inner race 12.50 18.75 Inner race 66.67 50.00 
Ball 19.23 21.43 Ball 7.69 21.43 
Cage 36.36 38.89 Cage 0.00 0.00 
Overall 16.67 20.00 Overall 21.67 20.00 
CI: kurtosis-average (k = 5) CI: kurtosis-standard deviation (k = 4) 
Type of Fault % Error for 

Training 
% Error for 
Validation 

Type of Fault % Error for 
Training 

% Error for 
Validation 

Healthy 8.70 17.65 Healthy 21.74 47.06 
Outer race 0.00 0.00 Outer race 36.00 20.00 
Inner race 4.17 18.75 Inner race 20.83 50.00 
Ball 0.00 21.43 Ball 38.46 57.14 
Cage 0.00 0.00 Cage 59.09 72.22 
Overall 2.50 11.25 Overall 35.00 50.00 
CI: peak value-average (k = 5) CI: peak value-standard deviation (k = 4) 
Type of Fault % Error for 

Training 
% Error for 
Validation 

Type of Fault % Error for 
Training 

% Error for 
Validation 

Healthy 8.70 35.29 Healthy 17.39 29.41 
Outer race 4.00 26.67 Outer race 16.00 33.33 
Inner race 41.67 31.25 Inner race 4.17 12.50 
Ball 26.92 35.71 Ball 11.54 21.43 
Cage 13.64 27.78 Cage 13.64 16.67 
Overall 19.17 31.25 Overall 12.50 22.50 

 
The results shown in Table I are consistent with the 

observations of the CI plots shown in Figure 7 through Figure 
12.  The group average of kurtosis has the lowest 
classification error among all the individual CIs tested.  
However, none of the individual CI tested has achieved a 
classification accuracy rate over 90%.  
 The results in Table II have shown that the classification 
accuracy can be significantly improved by combining 
individual CIs.  For example, by combining group average of 
rms with group standard deviation of rms, the classification 
error was reduced significantly from 20% to 6.25%.  In the 
case of combining all the CIs, the error was reduced to 7.50%.  
Overall, by combining all individual CIs, a classification 
accuracy rate of over 92% can be achieved.   
 In this paper, the performance of the KNN based fault 
classifier was compared with a neural network based 
classifier.   For the comparison purpose, the neural network 
based classifier was used to classify the bearing faults using 
the same CIs as the KNN algorithm.  The neural network used 

for comparison was a backpropagation neural network with 
one hidden layer.  To train the neural network, 1000 iterations 
were used.  The fault diagnosis results using the neural 
network for the same CI combinations shown in Table II are 
provided in Table III.  Note that in Table III, the values of 
Node are the best number of nodes of the hidden layer with 
the minimum % error determined by the neural network 
algorithm at the training stage.  The % error is defined as the 
percentage of data points of a fault type that were 
misclassified.  From the results shown in Table III, a similar 
conclusion to that by the KNN based algorithm can be drawn.  
The classification accuracy can be significantly improved by 
combining all individual CIs.  By comparing with the results 
shown in Table II and Table III, one could see that the 
performance of the KNN based algorithm is comparable with 
that of the neural network based algorithm.   Over 92% 
accuracy rate was achieved by both algorithms when all the 
CIs were combined.  
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TABLE II 

THE KNN FAULT DIAGNOSIS RESULTS USING COMBINATION OF CIS 
CIs: rms-average + rms-standard deviation (k = 4)
Type of Fault % Error for Training % of Error for Validation 
Healthy 8.70 5.88 
Outer race 4.00 0.00 
Inner race 4.17 12.50 
Ball 3.85 14.29 
Cage 9.09 0.00 
Overall 5.83 6.25 
CIs: kurtosis-average + kurtosis-standard deviation (k = 3)
Type of Fault % Error for Training % of Error for Validation 
Healthy 4.35 17.65 
Outer race 0.00 0.00 
Inner race 0.00 18.75 
Ball 0.00 21.43 
Cage 4.55 0.00 
Overall 1.67 11.25 
CIs: peak value-average + peak value-standard deviation (k = 3)
Type of Fault % Error for Training % of Error for Validation 
Healthy 21.74 35.29 
Outer race 0.00 13.33 
Inner race 0.00 12.50 
Ball 3.85 7.14 
Cage 9.09 11.11 
Overall 6.67 16.25 
CIs: rms-average + rms-standard deviation+ kurtosis-average + kurtosis-standard deviation + peak 
value-average + peak value-standard deviation (k = 1)
Type of Fault % Error for Training % of Error for Validation 
Healthy 0.00 11.76 
Outer race 0.00 0.00 
Inner race 0.00 6.25 
Ball 0.00 14.29 
Cage 0.00 5.56 
Overall 0.00 7.50 
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TABLE III 

THE ANN FAULT DIAGNOSIS RESULTS USING COMBINATION OF CIS 
CIs: rms-average + rms-standard deviation (Node = 2)
Type of Fault % of Error for Validation 
Healthy 31.25 
Outer race 0.00 
Inner race 14.29 
Ball 88.24 
Cage 0.00 
Overall 27.50 
CIs: kurtosis-average + kurtosis-standard deviation (Node = 10) 
Type of Fault % of Error for Validation 
Healthy 18.75 
Outer race 0.00 
Inner race 21.43 
Ball 29.41 
Cage 0.00 
Overall 13.75 
CIs: peak value-average + peak value-standard deviation (Node 
= 6 ) 
Type of Fault % of Error for Validation 
Healthy 87.50 
Outer race 0.00 
Inner race 14.29 
Ball 70.59 
Cage 0.00 
Overall 35.00 
CIs: rms-average + rms-standard deviation+ kurtosis-average + 
kurtosis-standard deviation + peak value-average + peak value-
standard deviation (Node = 25)
Type of Fault % of Error for Validation 
Healthy 6.25 
Outer race 0.00 
Inner race 21.43 
Ball 5.88 
Cage 0.00 
Overall 6.25 

 
 
   

V.  CONCLUSIONS 

 Full ceramic bearings are considered the first step towards 
full ceramic, oil free engines in the future.  No research on full 
ceramic bearing fault diagnostics using acoustic emission 
sensors has been reported.   In this paper, a data mining based 
full ceramic bearing diagnostic system using AE based 
condition indicators was presented.  Seeded fault tests on 
bearing outer race, inner race, ceramic balls, and cage were 
conducted and AE burst data were collected.  Three AE 
features were extracted from the IMF components obtained 
using the EMD method.  The three AE features were: rms, 
kurtosis, and peak value.  Each AE feature was further 
processed using data groups to obtain the group averages and 

group standard deviations.  The obtained group averages and 
standard deviations were treated as CIs to train a data mining 
based bearing fault classifier using a KNN algorithm.  60% of 
the CIs were used for training the fault classifier and 40% for 
validation to test the performance of the AE based CIs.  The 
results of the validation have shown: (1) Among all the 
individual CIs tested, the group average of kurtosis has the 
lowest classification % error.  However, none of the 
individual CIs tested has achieved a classification accuracy 
rate over 90%. (2) The classification accuracy can be 
significantly improved by combining individual CIs.  The best 
combination of CIs is the combination of the group average of 
rms and group standard deviation of rms.  The classification 
accuracy of this CI combination is over 92%.  The 
performance of the KNN based fault classifier was also 
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compared with that of a backpropagation neural network 
based fault classifier.  The comparison results showed that the 
performance of the KNN based algorithm is comparable with 
that of the neural network based algorithm.   Over 92% 
accuracy rate was achieved by both algorithms when all the 
CIs were combined. 
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