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ABSTRACT 
 

This paper examines the performance of the 3rd and 4th order implicit Adams methods in the 
framework of the two-loop implicit sparse matrix numerical integration (TLISMNI) method in 
solving the differential/algebraic equations (DAE’s) of heavily constrained dynamical systems. 
The variable-step size TLISMNI/Adams method proposed in this investigation avoids numerical 
force differentiation, ensures satisfying the nonlinear algebraic constraint equations at the position, 
velocity, and acceleration levels, and allows using sparse matrix techniques for the efficiently 
solving the dynamical equations. The iterative outer loop of the TLISMNI/Adams method is aimed 
at achieving the convergence of the implicit integration formulae used to solve the independent 
differential equations of motion, while the inner loop is used to ensure the convergence of the 
iterative procedure used to satisfy the algebraic constraint equations. To solve the independent 
differential equations, two different implicit Adams integration formulae are examined in this 
investigation; a 3rd order implicit Adams-Moulton formula with a 2nd order explicit predictor 
Adams Bashforth formula, and a 4th order implicit Adams-Moulton formula with a 3rd order 
explicit predictor Adams Bashforth formula. A standard Newton-Raphson algorithm is used to 
satisfy the nonlinear algebraic constraint equations at the position level. The constraint equations 
at the velocity and acceleration levels are linear, and therefore, there is no need for an iterative 
procedure to solve for the dependent velocities and accelerations. The algorithm used for the error 
check and step-size change is described. The performance of the TLISMNI/Adams algorithm 
developed in this investigation is evaluated by comparison with the explicit predictor-corrector 
Adams method which has a variable-order and variable-step size. Simple and heavily constrained 
dynamical systems are used to evaluate the accuracy, robustness, damping characteristics, and 
effect of the outer-loop iterations of the proposed implicit schemes. The results obtained in this 
investigation show that the TLISMNI methods proposed in this study can be more efficient for 
stiff systems because of their ability to damp out high-frequency oscillations. Explicit integration 
methods, on the other hand, can be more efficient in the case on non-stiff systems. 
 
Keywords: Differential/algebraic equations; implicit integration; constrained dynamical systems; 
multibody systems; Adams integration methods. 
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1.  INTRODUCTION 

The motion of multibody systems (MBS) is governed by a system of differential/algebraic 

equations (DAE’s) [3]. The differential equations define the equations of motion, while the 

algebraic equations define the nonlinear kinematic constraints in the MBS application. These 

constraint equations describe mechanical joints as well as specified motion trajectories. In general 

MBS algorithms, the algebraic equations cannot always be easily eliminated, particularly in the 

case of closed-loops for which it is difficult to explicitly write the dependent coordinates as 

functions of the independent joint coordinates. For this reason, general MBS algorithms are 

designed as DAE’s solvers and allow for the use of an iterative procedure to solve for the nonlinear 

kinematic constraint equations at the position level. In this investigation, the numerical process of 

determining the dependent variables from the system degrees of freedom is referred to as the inner 

loop, while the iterative process for determining the independent variables (coordinates and 

velocities) using the implicit integration formulae is referred to as the outer loop. An explicit 

numerical integration scheme can always be as a special case of the implicit methods used in this 

investigation by limiting the number of iterations of the outer loop to one. 

Both explicit and implicit methods are used to solve the resulting MBS equations [6, 7, 11, 

12, 14]. Explicit methods, such as the explicit predictor-corrector Adams method with variable 

order and variable step size, are widely used in the solution of the MBS DAE’s [15]. Explicit 

methods, however, are not suited for solving stiff equations which characterize MBS applications, 

especially when flexible bodies with very high stiffness are considered. Such explicit methods 

often fail or become inefficient when stiff systems are analyzed. On the other hand, while implicit 

methods can be more efficient in solving stiff differential equations, existing implicit methods 

have several drawbacks that include the possibility of damping out some important details if used 
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by inexperienced user. In the case of DAE’s that characterize MBS applications, existing implicit 

methods suffer from serious problems that can lead to deterioration of the method efficiency and 

robustness, and to violation of basic mechanics principles. For example, most existing implicit 

methods require force differentiation, do not satisfy the constraint equations at all levels, and do 

not allow for exploiting sparse matrix techniques. Numerical differentiation can source of serious 

numerical problems when general MBS algorithms are considered, particularly when the system 

includes deformable bodies with high stiffness. The numerical differentiation of the flexible body 

forces is prone to errors that can lead to deterioration of the accuracy of the solution or even to 

divergence problems. Not satisfying the nonlinear algebraic constraint equations at the position, 

velocity, and acceleration levels is violation of the principle of mechanics. The basic Lagrange-

D’Alembert principle as well as other principles used in the derivation of the equations that govern 

the motion of dynamical systems are based on the assumption that the constraint equations are 

satisfied at all levels regardless of whether or not these constraint equations are eliminated using 

the embedding technique or kept in the formulation using the technique of Lagrange multipliers 

[6, 7, 11, 12, 14]. Furthermore, adopting sparse matrix techniques is necessary for obtaining 

efficient and accurate solution of heavily constrained and complex dynamical systems [8, 9]. 

However, most existing implicit methods require the differentiation of both the differential and 

algebraic equations in order to determine the Jacobian matrix associated with the unknown 

variables. This Jacobian matrix, used in the iterative Newton-Raphson algorithms, is not, in 

general, a sparse matrix, and therefore, efficient sparse matrix techniques that also require 

significantly smaller array space cannot be effectively exploited. 

 In order to address these concerns regarding the use of implicit integrators in MBS 

simulations, the two-loop implicit sparse matrix numerical integration (TLISMNI) method was 
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proposed [1, 5, 13]. Unlike other implicit numerical integration algorithms, the TLISMNI method 

does not require the numerical differentiation of the forces, ensures that the constraint equations 

are satisfied at all levels, and allows for effectively using sparse matrix techniques at all stages of 

the function evaluation. The TLISMNI method is designed to have two iterative loops; the outer 

and inner loops. The outer loop is designed to achieve convergence of the implicit integration 

formulae (differential equations), while the inner loop is designed to ensure that the nonlinear 

holonomic kinematic algebraic constraint equations are not violated. The algebraic equations at 

the velocity and acceleration levels are linear equations and do not require the use of an iterative 

procedure in order to obtain their solution. While the TLSIMNI method has been used in solving 

a large number of MBS applications, it has been only used with 2nd order integration methods such 

as Hilber–Hughes–Taylor (HHT), Trapezoidal, and BDF methods [1]. Furthermore, no analysis 

has been provided to examine the effectiveness of the outer loop of the TLISMNI algorithm.  

 It is the objective of this investigation to develop a TLISMNI algorithm based on the 

implicit 3rd and 4th order Adams integration methods and compare the performance of the new 

algorithm with the TLISMNI algorithm based on the 2nd order integration formula defined by the 

trapezoidal method as well as with the explicit predictor-corrector variable-order Adams method 

[15]. In the algorithm developed in this study two different Adams integration formulae are used; 

the 2nd order explicit Adams-Bashforth formula is used as the predictor for the 3rd order implicit 

corrector Adams-Moulton method, and the 3rd order explicit Adams-Bashforth formula is used as 

the predictor for the 4th order implicit corrector Adams-Moulton formula [2]. Because of the nature 

of the large scale problems and the intensive computations required to evaluate the equations of 

motion, the number of iterations of the outer loop is kept small to increase the efficiency of the 

method. During the outer iterations, the time step is kept constant, the predictor formula is not used 
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after the first iteration, and if the outer iterations do not converge, the time step is reduced before 

restarting the iterations. Because the iterations for the position analysis cannot be in general 

avoided, particularly in the case of MBS with closed loops, use of a Newton-Raphson algorithm 

for the inner loop ensures that the nonlinear algebraic constraint equations are satisfied. The error 

check used to determine the convergence of the outer loop involves only the independent variables, 

and the dependent variables (coordinates and velocity) are determined using the nonlinear 

algebraic equations, thereby ensuring that these algebraic equations are satisfied and there is no 

violation of the basic physics principles (17, 12]. The effectiveness of the outer loop iterations is 

evaluated in this investigation, and the results obtained have shown that such outer loop iterations 

are necessary in order to achieve the convergence and robustness of the TLISMNI/Adams 

algorithm proposed in this investigation. For the first outer loop iteration, the error is estimated 

based on the difference between the corrected and predicted solutions, and for subsequent outer 

loop iterations, the error is estimated based on the difference between the current iteration corrector 

solution and the corrector solution of the previous iteration. The effect of the time step size and 

error tolerance on the damping characteristics of the proposed algorithm is evaluated in order to 

shed light on the disadvantages and advantages of using implicit numerical integration methods. 

Several numerical examples, including examples that represent large scale and heavily constrained 

systems, are used in order to properly asses the effect of increasing the order of the integration 

formula and the effectiveness of the outer loop iterations. 

 

2.  ADAMS INTEGRATION FORMULAE 

Low order implicit integration methods such as Newmark and HHT are widely used in the field of 

computational mechanics to solve challenging physics and engineering problems. While low-order 
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implicit methods can be very effective in solving many problems, they must be used with care 

because of the inherent nature of numerical damping and inability to capture accurately high speed 

and highly nonlinear rotational motion. Nonetheless, in dynamical systems with stiff deformable 

bodies and/or springs, the high frequency oscillations may have a negligible effect on the solution. 

Accurate explicit methods attempt to capture these high frequency oscillations; making the method 

very inefficient or in many cases fail. For this reason, a general purpose MBS algorithm that is 

based only on an explicit solver can have serious limitations and can fail in solving many practical 

problems. Implicit integrators, on the other hand, have the ability to damp out high frequency 

signals, and therefore, such implicit methods can be much more efficient in solving many 

engineering problems in which the effect of high-frequency oscillations on the solution accuracy 

is negligible. Because the decision of which signals are important and should not be filtered out 

depends mainly on the experience of the analyst, it is important to provide the two options (explicit 

and implicit solvers) in general-purpose MBS software. The stiff problems in which the explicit 

integrator works, regardless of whether or not the solution is efficiently obtained, can be used as 

reference solution to assess the accuracy of the implicit integration method. Such reference 

solutions, which can serve as a guide, are particularly important when the widely used general-

purpose MBS software are adopted by inexperienced analysts, as it is the case in industries which 

heavily rely on the virtual testing ground for the product design and performance evaluation. In 

this section, the integration formulae used in this investigation are presented since they will be 

later referenced in this paper. More details regarding the derivation of these formulae can be found 

in standard numerical analysis texts [2, 10].  

 The TLISMNI method has been proposed and used with 2nd order integration formulae 

such as HHT and the trapezoidal methods. In this investigation, the performance of two different 
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Adams integration formulae is examined; the implicit 3rd and 4th order Adams methods are used 

and the results obtained are compared with the results obtained using the 2nd order trapezoidal 

method and the results obtained using the explicit variable-order Adams method [15]. In the 

procedure described in this paper, it is assumed that the equations of motion can be converted to 

the first-order state-space form and written as  , ty f y , where 
TT T   y q q , t  is time, and q  

and q  are, respectively, the vector of the system coordinates and velocities. It follows that  

   0 0
,

t
t t dt  y y f y . The integral in this equation can be approximated using different methods 

leading to the general expression for 1p   step methods, including Adams method, as  

 1 0 1
,

p p

n j n j j n j n jj j
a h b t    

  y y f y , where 0p  , n p , ny  is the solution at time nt , h  

is the time step size, and ja  and jb  are constants whose values and number define the method and 

order to be used with the condition that either 0pa   or 0pb   [2].  As explained by Atkinson, 

the coefficients ja  and jb  can be determined using the method of undetermined coefficients or the 

method of numerical integration. The 2nd order explicit Adams-Bashforth predictor is defined by 

the formula 

           1 13
2n n n npr

h
   y y y y       (1) 

where  n nty y ,  n n nt ,y y y  , and subscript pr  refers to predictor. The 3rd order implicit 

Adams-Moulton formula is given by 

           1 1 15 8
12n n n n ncr

h
     y y y y y       (2) 

where subscript cr  refers to corrector. In this investigation, the explicit 2nd order Adams-Bashforth 

formula is used as the predictor and the 3rd order Adams-Moulton formula is used as the corrector 
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for the first outer loop iteration in the TLISMNI/Adams algorithm. After the end of the iteration, 

the error is estimated as the norm of the vector    1 1 1n n ncr pr   e y y . If the 

   1 1 1n n ncr pr
    e y y  , where    is a given error tolerance, the solution is assumed to 

converge, and no other outer loop iterations are performed. If    1 1 1n n ncr pr
    e y y , other 

outer iterations are performed using the iterative corrector formula 

   1
1 1 15 8

12
k k

n n n n ncr

h 
     y y y y y       (3) 

In this equation, superscript k  refers to the outer loop iteration number, and  1 1
1 1 1 1,k k

n n n nt 
   y y y 

. Convergence of the outer loop iterations is achieved for 1k  , if     1

1 1 1

k k

n n ncr cr


    e y y . 

During these outer loop iterations, the time step h  is kept constant. If the outer loop iterations 

converge, the error is analyzed to determine whether or not the time step size h  can be increased. 

If the outer loop iterations do not converge, the time step h  is reduced and the outer loop iterations 

are restarted with the smaller h . 

 In addition to the 3rd order implicit Adams method, the 4th order implicit Adams-Moulton 

corrector formula      1 1 1 224 9 19 5n n n n n ncr
h       y y y y y y     is used with the explicit 3rd 

order Adams-Bashforth predictor formula     1 1 212 23 16 5n n n n npr
h     y y y y y   . The local 

truncation error in these higher-order predictor and corrector formulae are defined as in the case 

of the 3rd order implicit method previously described in this section. 

 The effect of increasing the order of the integration formula is evaluated by comparing the 

numerical results obtained using the two different TLISMNI/Adams schemes with the results 

obtained using the explicit variable-order and variable-step size Adams predictor-corrector method 
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as well as the results obtained using the TLISMNI/trapezoidal implementation. For the 2nd order 

implicit trapezoidal method, the explicit midpoint method   1 1 2n n npr
h  y y y  is used as the 

predictor. The implicit trapezoidal corrector is     1 12n n n ncr
h   y y y y  . The outer-loop 

iterations in the TLISMNI method in the case of the trapezoidal formula are defined as 

    1
1 12

k k
n n n ncr

h 
   y y y y  . 

 Since in the case of multistep methods, information from previous steps are needed, the 

single-step Runge-Kutta method is used at the beginning of the integration to obtain the 

information at three time points that are required for using the implicit Adams and trapezoidal 

integration formulae as well as the predictors used with these formulae. Very small time steps are 

used with Runge-Kutta method in order to guarantee the accuracy of the solution history to be used 

with the integration formulae that will be examined in this investigation. As previously mentioned, 

in the TLISMNI algorithm used in this investigation, the outer loop iterations are used to achieve 

the convergence of the implicit numerical integration formulae, while the inner loop iterations are 

used to satisfy the algebraic constraint equations used in the evaluation of the vector 1ny  required 

in the integration formula. The evaluation of  1ny  using the equations of motion and the algebraic 

constraint equations is discussed in the following section. 

 

3.  CONSTRAINED DYNAMICAL SYSTEMS 

The motion of many physics and engineering systems is governed by a system of 

differential/algebraic equations which are presented in a general form in this section for reference 

to be made in later sections of the paper. It is also explained in this section, how the inner TLISMNI 
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loop can be designed to obtain a sparse matrix structure in the computer implementation of the 

dynamic equations in general MBS algorithms. 

 For a constrained dynamical system, the differential equations define the 2nd order 

equations of motion, while the algebraic equations define the MBS motion constraints. In MBS 

applications, the equations of motion are often highly nonlinear due to the geometric nonlinearities 

that arise from the finite rotations of the system components and the geometric and possibly 

material nonlinearities that arise, respectively, from the use of nonlinear strain displacement 

relationships and the use of nonlinear material models. The constraint equations, which define 

mechanical joints and specified motion trajectories, are also highly nonlinear. In general, the MBS 

differential and the algebraic equations can be written, respectively, in the following forms 

T , qMq C λ Q  and  , t C q 0  [11, 14, 12], where M  is the system mass matrix, q  is the system 

generalized coordinate vector, C  is the constraint function vector, t  is time, qC  is the Jacobian 

matrix of the kinematic constraint equations, λ  is the Lagrange multiplier vector, and Q  is the 

generalized force vector that include all external, elastic, Coriolis and centrifugal forces. The first 

and second time-derivatives of the constraint equations  , t C q 0  define, respectively, the 

constraint equations at the velocity and acceleration levels as t qC q C , and dqC q Q . In these 

equations, tC  is the partial derivative of the constraint equations with respect to time, and dQ  is 

a vector that absorbs terms which are quadratic in the velocities. While the constraint equations at 

the position level can be highly nonlinear functions of the coordinates, the constraint equations at 

the velocity and acceleration levels are linear in the velocities and accelerations, respectively. 

Combining the equations of motion T qMq C λ Q  and the constraint equations at the acceleration 

level dqC q Q  in one matrix equation, one obtains 
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T

d

    
    

      

q

q

QM C q

QC 0 λ


    (4) 

This equation, which has a sparse coefficient matrix, can be solved for the acceleration vector q  

and the vector of Lagrange multipliers λ . The solution of this matrix equation ensures that the 

constraint equations at the acceleration level are satisfied. Because the preceding matrix equation 

is linear in the acceleration vector q  and the vector of Lagrange multipliers λ , there is no need 

for the use of an iterative procedure. For a given set of initial conditions on the coordinates q  and 

the velocities q , the Jacobian matrix of the kinematic constraint equations qC  can be evaluated 

and used to define a set of independent and dependent coordinates iq  and dq , respectively [16, 

17, 12]. Knowing the independent coordinates iq , the nonlinear algebraic constraint equations can 

be solved iteratively using a Newton-Raphson algorithm to determine the dependent coordinates 

using the equation 

  
l l

l

i

   
    

  
qC C

q
I 0

     (5) 

 where superscript l  refers to the Newton-iteration number,  q  are the Newton differences, and 

iI  is a Boolean matrix which has ones corresponding to the location of the independent coordinates 

to ensure i q 0  and zeros in all other locations, that is i iI q q . Because the coefficient matrix 

in the preceding equation is sparse, sparse matrix techniques can be used during the Newton 

iterations. Equation 5 represents the inner loop of the TLISMNI algorithm used in this study. Once 

the dependent coordinates are determined and knowing the independent velocities, the dependent 

velocities can be calculated from the linear sparse matrix equation 

  t

i i

   
   

   
qC C

q
I q


      (6) 
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Knowing the coordinates and velocities, Eq. 4 can be constructed and used to determine the vector 

of unknown accelerations and Lagrange multipliers.  

 During the process of the numerical solution, the integration formula used defines the 

vector    1 1 1

TT T

n i in n  
   y q q . This vector is used in the equations described in this section to 

evaluate the vector    1 1 1

TT T

n i in n  
   y q q   that appear in the implicit corrector integration 

formula. Using the equations presented in this and preceding sections, the steps of the 

TLISMNI/Adams algorithm can be outlined as described in the following section. 

 

4. TLISMNI/ADAMS ALGORITHM 

Using the equations described in the preceding two sections, a TLISMNI/Adams algorithm can be 

developed. The steps of this algorithm can be summarized, using the implicit 3rd order Adams 

method as an example, as follows:  

1. Given the initial coordinates and velocities q  and q , respectively, the constraint Jacobian 

matrix qC  is evaluated and used with a Gaussian elimination method to identify the 

independent coordinates (degrees of freedom) iq  and independent velocities iq . The state 

vector    
TT T

n i in n
   y q q  with 0n  , in the case of the initial conditions, is used as 

input to the numerical integration routine.  

2. At the initial time, a single-step Runge-Kutta method is used in the numerical integration 

with very small time step in order to determine history information required by the 

multistep predictor and corrector formulae used in this investigation. 
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3. Having the information needed from previous time steps, the 2nd order explicit predictor 

Adams-Bashforth formula     1 12 3n n n npr
h   y y y y   is used to predict the solution 

   1 1 1

TT T

n i in n  
   y q q . Using this predicted solution, the equations of motion 

summarized in the preceding section are used to evaluate    1 1 1

TT T

n i in n  
   y q q  . 

4. The Adams-Moulton corrector formula      1 1 112 5 8n n n n ncr
h     y y y y y    is used to 

evaluate the solution. If the error    1 1 1n n ncr pr
    e y y , where   is a given error 

tolerance, then convergence is achieved and no other outer loop iterations are required. In 

this case, go to Step 6. 

5. If    1 1 1n n ncr pr
    e y y , 1ny  obtained at the predictor step is denoted as 1

1ny , and 

the TLISMNI outer loop iterations start to evaluate 

     1
1 1 112 5 8

k k
n n n n ncr

h 
     y y y y y   , where 1

1
k
n

y  is evaluated using   1

1

k

n cr


y  for 1k   

using the TLISMNI inner loop and the motion and algebraic constraint equations 

summarized in the preceding section. During the outer loop iterations, the time step h  is 

kept constant. Convergence is achieved if      1

1 1 1

k k

n n ncr cr


    e y y . If convergence 

criteria is not satisfied after specified number of TLISMNI outer loop iterations itn , go to 

Step 7, otherwise go to Step 6. 

6. If convergence is achieved, check whether or not the ft t , where ft  is the specified end 

of simulation time. If ft t , then the simulation is stopped, otherwise, the error is used to 



15 
 

determine whether or not the step size h  can be increased according to the criterion 

described in the following section. If ft t , update the solution history and go to Step 3. 

7. If convergence is not achieved using the time step h , the time step is reduced according to 

the criterion described in the following section. Keeping the solution history the same, go 

to Step 3.  

In this investigation, the same algorithm is used for the implicit 4th order Adams formula with the 

3rd order Adams-Bashforth predictor, and the implicit trapezoidal corrector with the explicit 

midpoint predictor, as previously mentioned in this paper. In the three cases, the TLISMNI 

algorithm is implemented to take advantage of the sparsity of the matrices presented in the 

preceding section. Furthermore, in such an algorithm numerical force differentiation is not 

required and the constraint equations are satisfied at all levels. In the algorithm used in this 

investigation, the time step is halved if convergence is not achieved in the inner loop during the 

Newton-Raphson iterations used to ensure that the position constraint equations are satisfied. 

 

5. ERROR AND TIME STEP SELECTION CRITERIA 

In the TLISMNI/Adams algorithm developed in this investigation, the order of the integration 

formulae is not varied. A variable step size is used in order to improve the convergence 

characteristics and efficiency of the algorithm. During the outer loop iterations, however, the step 

size is kept constant until convergence is achieved or fails. If the outer loop iterations converge, 

the step size is kept the same or increased depending on the magnitude of the error. In this section, 

the 3rd order Adams-Moulton method is used in the discussion of the error and time step selection 

criteria. A similar procedure can be used with the implicit 4th order Adams formula. It is important, 

however, to point out that the use of other criteria for the error check and time step selection may 
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be more appropriate for specific applications, and therefore, the criteria presented in this section 

should not be viewed as the only or most optimum ones for all MBS applications when a TLISMNI 

algorithm is used. 

 For the 3rd order implicit Adams-Moulton method used in this investigation, the truncation 

error is estimated as   4 4 4
1 11 24n nT h d dt  y  (Atkinson, 1978). Using this truncation error 

equation and the solution history, one can use backward differentiation formula to write 

   1 1 1 21 24 3 3n n n n nT h      y y y y       (7) 

In the case of convergence,    1 1 1n n ncr pr
    e y y , and if  1 1n nT  e , where   is a 

coefficient that can include a safety factor, the new time step h  can be increased using the equation 

  1

4

24 n

y

h
D


e

     (8) 

This is with the assumption that  3
4 1 1 23 3 8 0y n n n nD h      y y y y    . If 

1 1 1n n nT T    e , the time step can be kept the same for the next step. Atkinson (1978) 

proposed a time-step selection strategy for the trapezoidal method. Using an approach similar to 

the one proposed by Atkinson, the new step size can be selected using the equation 

 4

1 2o nh h h e , where oh  is the previous time step . Therefore, a more efficient method for 

selecting the new time step is  1 34
12

/

o nh h  e . In the algorithm used in this investigation, the 

time step is not allowed to increase more than five times, that is, h  is selected such that 5 oh h . 

In order to avoid repeated calculation of 4 yD , in the TLISMNI/Adams algorithm used in this 

investigation, the time step is selected according to  
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1 3
4

1

Maximum 5
2

/

o
o

n

h
h h ,





  
       

e
    (9) 

On the other hand, if the outer iterations do not converge,    1 1 1n n ncr pr
    e y y , and if  

1 1n nT e , The new step size h  can be decreased using Eq. 8, 1 424 n yh D e , with the 

assumption that 4 0yD  . In order to ensure that the step size will be significantly reduced and 

avoid the calculation of 4 yD , the following equation is used: 

   

1 3
4

1

Maximum
2 2

/

o o

n

h h
h ,





  
       

e
    (10) 

The initial time step can be selected using an approach similar to the one proposed by Atkinson 

[2] for the trapezoidal method. Following Atkinson’s approach, the initial time step ih  can be 

selected according to 4
42 24i i yh h D  . This equation can be used to determine the new time 

step as  1 3

412
/

i yh D . This method for determining the time step requires the evaluation of 

4 yD  only once at the beginning of the simulation. The truncation error formulae for the 3rd order 

Adams-Bashforth predictor and the 4th order Adams-Moulton corrector formulae are given, 

respectively, as   4 4 4
1 13 8n nT h d dt  y  and   5 5 5

1 119 720n nT h d dt  y . Using these 

truncation errors, a procedure similar to the one described for the 3rd order Adams formula can be 

used [2]. 

 A similar procedure is used in the case of the 2nd order trapezoidal method which has a 

different truncation error defined as   3 3 3
1 11 12n nT h d dt  y , which can be written using the 

solution at previous time points as 
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   1 1 11 3 2n n n nT h    y y y       (11) 

In the case of the convergence of the trapezoidal method, the new time step size is determined 

using the equation 

  
3

1

Maximum 5
2

o
o

n

h
h h ,





 
   

 e
    (12) 

In the case of divergence of the trapezoidal method, the new time step is evaluated according to 

  
3

1

Maximum
2 2
o o

n

h h
h ,





 
   

 e
    (13) 

The initial time step in the case of the trapezoidal method is evaluated as 36i yh D , where 

 2
3 1 12 4y n n nD h   y y y    [2]. The trapezoidal method is implemented in the TLISMNI 

framework [1] in order to allow comparison with the new TLISMNI/Adams algorithm. The results 

of the new algorithm are also compared with the explicit predictor-corrector Adams method with 

variable-order and variable time step. 

 

6. NUMERICAL RESULTS  

In this section, examples are presented in order to evaluate the implementation of the 

TLISMNI/Adams algorithm proposed in this study. These examples include mass-spring systems 

and heavily constrained MBS vehicle model. The mass-spring systems will allow clearly 

investigating the effect of varying the problem stiffness. The heavily constrained MBS vehicle 

model, which includes a large number of differential and algebraic equations and relatively large 

number of bodies is designed first as a non-stiff model and is used to demonstrate the efficiency 
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of the explicit methods and the less significant effects of the tolerances and the outer-loop iterations 

when the implicit integration methods are used. 

6.1 Mass-Spring System  

Figure 1 shows three different masses 1 2,m m and 3m connected by three springs which have 

stiffness coefficients 1 2,k k  and 3k , respectively. The three masses are assumed to have values 

1 2 3 1kgm m m   , while the stiffness are assumed to have different coefficients that produce 

slow, moderate, and fast oscillations. In this example, the stiffness coefficients are varied in the 

range 61 0 10 N/m.  – 121 0 10 N/m.  . These values for the mass and stiffness coefficients produce 

different solutions that have frequencies in the range 31 0 10 rad/s.  – 61 0 10 rad/s.  . All the masses 

are assumed to have the same initial displacement of 0.01 m. In order to examine the 

implementation of the proposed TLISMNI/Adams algorithm, the system is modeled using a 

general three-dimensional MBS algorithm in which Euler parameters are used to describe the 

orientation of the masses. Each mass is connected to the ground by a prismatic joint, ensuring a 

single degree of freedom for each mass-spring system. Including the ground body, the system 

motion is described using 28 absolute Cartesian coordinates (7 coordinates for each body including 

the four Euler parameters), and 25 algebraic constraint equations that describe 4 Euler parameter 

constraint equations, 3 prismatic joints (15 equations), and 6 ground constraint equations for the 

ground body. In this example, the effect of the stick-slip friction is not considered. To evaluate the 

effect of the change of the error tolerance, the number of outer-loop iterations, and the initial time 

step, a reference model is first used. In the reference model, all the springs are assumed to have 

the same stiffness coefficients, that is, 6
1 2 3 1 0 10 N/mk k k .    , the relative error tolerance is 

assumed 610 , and the initial time step is assumed 410  s. The simulation time is assumed to be 2 
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s. As shown in Fig. 2, the reference model produces a solution that agrees well with the analytical 

solution of the problem when all integration methods considered in this investigation are used. The 

numerical simulations also showed that all integration methods have comparable CPU times in the 

case of the reference model with low stiffness coefficient for all springs. While simulations were 

performed for two complete seconds, in order to show clearly the solution details and avoid 

obfuscated figures, some of the results are presented for only 0.2 s. For the smaller time window, 

no changes in the accuracy of the solution are observed over the longer simulation period. 

Relative Error Tolerance The computational efficiency of the integration methods is tested by 

changing the relative error tolerance while other parameters are fixed. Table 1 shows that the CPU 

times of all methods are comparable in the case of loose error tolerance, while they differ when 

the tolerance is tightened.  In this table, a  refers to the absolute error tolerance which is used only 

for the explicit Adams method, r  is the relative error tolerance, k  is the stiffness of all springs, 0h  

is the initial time step, and itn  is the maximum number of the outer-loop iterations allowed. No 

outer-loop iterations are used for the explicit Adams, maximum of three outer-loop iterations are 

used for the implicit Adams, and maximum of four outer-loop iterations are used for the implicit 

trapezoidal. The CPU time in this table is measured with respect to the 4th order implicit Adams 

method. The results of Table 1 show that the 4th order Adams method is more efficient than the 

other two TLISMNI methods, and the explicit Adams method remains the most efficient method 

for this non-stiff system. Figures 3 and 4 show the solutions obtained for the two cases of the 

relative error tolerance presented in Table 1. Since all masses have the same solutions, the results 

in these figures are presented only for the displacement of the first mass. As clearly shown by the 

results of these figures, when a loose error tolerance is used, the implicit methods damp out the 

solution. This damping effect is significantly reduced as the error tolerance is tightened, as it is 
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clear from the two cases of 410r
  (Fig. 3), and 710r

  (Fig. 4). The ability of the implicit 

method to damp out solutions can be advantageous when it is desired in some applications to filter 

out high-frequency and less-significant signals.  

Initial Time Step Table 2 compares the efficiency of different integration methods when the 

initial time step is changed. As previously mentioned, all the methods used in this investigation 

have a variable time step that is selected according to the error in the solution. The results presented 

in Table 2 show that the 4th order implicit Adams method has the same degree of efficiency as the 

explicit Adams method and both of these methods are more efficient compared to the implicit 3rd 

order Adams and trapezoidal methods. It was also observed that reducing the time step leads to a 

reduction of the maximum number of the outer-loop iterations required by the 4th order Adams 

method. When using 5
0 10h  , the maximum number of outer-loop iterations required by the 4th 

order TLISMNI Adams method reduces to only two iterations. Because in the implementation 

used in this investigation the reduction in the time step is controlled to be a percentage of the 

previous time step, the initial time step proposed by the user can have an effect on the efficiency 

of the method as shown by the results presented in Table 2.  In the algorithm used in this study, 

the time step is halved if the inner-loop that ensures that the algebraic constraint equations are 

satisfied at the position level, fails to converge.  

Number of the Outer-Loop Iterations If the maximum number of outer-loop iterations itn  

is set to one, the implicit method has only the inner-loop iterations used to ensure that the constraint 

equations are satisfied at the position level. In this case, no iterations are used with the integration 

corrector formula. If convergence is not achieved, the time step is reduced and the predictor 

formula is used again. When the outer-loop iterations are performed, the predictor formula is not 

used, and the corrector formula previous iteration results are used.  Table 3 shows the effect of 
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changing the maximum number of the outer-loop iterations. The results presented in this table 

show that when itn  is equal to one, the trapezoidal method fails for the given numerical parameters 

selected. As the maximum number of outer-loop iterations increases for this non-stiff system, the 

4th order Adams method becomes as efficient as the explicit Adams method which has a variable 

order [15].  Increasing itn beyond a certain number does not contribute to improvement in the 

efficiency of the methods since the methods converge with a number of iterations less than the 

user-specified itn . The numerical simulations also show that if very low itn  is used, the time step 

of the implicit methods is reduced, making the method less efficient. Therefore, it is important to 

select the proper number of maximum outer-loop iterations. Such a number, however, depends on 

the problem being investigated and the frequency contents in the solution.  

Stiffness Coefficients  To evaluate the performance of the implicit integrators in the case 

of stiff systems, the stiffness coefficients of the springs are assumed to have values of 

6 8
1 21 0 10 N/m 1 0 10 N/mk . , k .    , and 12

3 1 0 10 N/mk .  . The solution of the displacement of 

the first mass remains the same as previously reported. Figures 5 and 6 show the displacements of 

the second and third mass, when all other parameters used for the reference model, are kept the 

same ( 4 6
0 10 10ah ,   , and 610r

 ). The results presented in Figs. 5 and 6 clearly show how 

the implicit integration methods damp out the solution in the case of stiff problems. For the 

moderate stiffness, as in the case of the second mass shown in Fig. 5, all the implicit integration 

methods considered in this investigation have comparable effect on filtering out higher 

frequencies. Nonetheless, the difference in damping effect becomes significant in the case of high 

stiffness as evident by the results of the third mass. The results presented in Fig. 6 also show that 

solutions can be obtained using the implicit integrators, while the explicit Adams method fails in 

the case of a highly stiff system. In the case of this stiff system, Tables 4 - 6 shows the CPU times 
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when r  is varied, 0h is varied, and itn  is varied, respectively. Figures 7 – 12 show the results of 

the displacements of the second and third masses that correspond to the three cases of 

4 6
0 10 10ah ,   , and 410r

 ; 4 6
0 10 10ah ,   , and 710r

 ; and 5 6
0 10 10ah ,   , and

610r
 . All the implicit methods solutions can converge, while the explicit method can fail if 

more accuracy is demanded by tightening the relative error. Nonetheless, a good agreement 

between the solutions obtained the explicit Adams method and the 4th order implicit Adams is 

found whenever the explicit Adams method converges. The results presented in these figures 

clearly demonstrate the ability of the implicit integration methods to damp out high frequency 

oscillations when proper numerical parameters are selected. These methods, as expected, can also 

be much more efficient as compared to the explicit methods which are not suited for solving stiff 

problems. In some stiff problems, as shown in this numerical study, the explicit Adams fails to 

obtain the solution for the entire simulation. For example, the explicit Adams method fails in the 

case of the numerical parameters 4 6
0 10 10ah ,   , and 710r

 , as shown in Table 4. 

6.2 HMMWV Vehicle Model 

In order to further test the performance of the TLISMNI/Adams integration method in the case of 

a complex MBS DAE’s system, a heavily constrained vehicle model is considered. The model 

considered in this section is the high-mobility multi-purpose wheeled vehicle (HMMWV) which 

is designed for off-road operations [4]. The vehicle model, which is shown in Fig. 13 and has front 

and rear suspensions, tires, and steering system, consists of 50 bodies connected by different types 

of joints and bushings elements. Table 7 shows the vehicle inertia and geometric properties, while 

Table 8 shows the types of joints used and the number of nonlinear algebraic constraint equations 

resulting from the use of each joint type. The model has 350 absolute coordinates because of the 

use of Euler parameters as orientation coordinates, 320 nonlinear algebraic constraint equations, 
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and 30 degrees of freedom. The algebraic constraint equations include 6 ground, 50 Euler-

parameters, 81 spherical joint, 85 revolute joint, 42 rigid joint, 36 cylindrical joint, 1 relative 

angular velocity, 11 gear, 1 relative coordinate projection, 2 rack and pinion, and 5 dot-product 

constraint equations. The front and rear suspension springs are assumed to have stiffness 

coefficients of 51.67071 10 N/m  and 53.02619 10 N/m  respectively, respectively, and 

undeformed lengths of 0.33934m and 0.31572m, respectively. Figures 14 – 15 show the nonlinear 

damping force-velocity relationships of the suspension dashpots. In addition to the suspension 

elements, the vehicle model has 4 bushing elements. The bushing stiffness coefficients in three 

perpendicular directions are assumed to be 62.0 10 N/m , 62.0 10 N/m , and 62.0952 10 N/m , 

the damping coefficients in these three directions are assumed to be 31.0 10  N.s/m. Figures 16 – 

18 show the nonlinear bushing torque-angular displacement relationships. The damping 

coefficients associated with these bushing rotational coordinates is assumed to be 25.7296 10  

N.m.s/rad. The vehicle is assumed to have an initial velocity of 18 km/h and the simulation time 

is assumed to be for 10 s. Figure 19 shows the forward position of the center of mass of the 

HMMWV chassis as a function of time, while Figure 20 shows the vertical position of the same 

point. The results in Fig. 19 show the effect of friction which is a source of energy dissipation that 

results in reducing the vehicle forward velocity. Table 9 shows the effect of changing the relative 

error r  on the CPU time when considering the methods discussed in this investigation, while 

Table 10 shows the effect of changing the maximum number of the outer-loop iterations itn . 

Because of the heavy chassis of this vehicle, the model frequency content is not very high, and 

consequently, the explicit Adams integrator becomes faster. It was found that by increasing the 

bushing stiffness coefficients to 122.0 10 N/m , 122.0 10 N/m , and 122.0952 10 N/m , the 



25 
 

implicit methods become on the average 85% faster than the explicit Adams method. For this 

model increasing the bushing damping coefficients did not improve the performance of the implicit 

methods since the bushing damping contributed to damping out the high frequency signals, and 

therefore, for this particular example, the performance of the explicit methods can improve as the 

result of damping out the high frequency signals.  Numerical experimentation has also shown that 

there is no efficiency improvement gained by increasing the number of outer loop iterations 

beyond 3 when the implicit methods are used. 

 

7. SUMMARY AND CONCLUSIONS 

Most existing implicit numerical integration methods used for solving MBS application problems 

are not suited for the solution of very large systems; particularly those systems that include flexible 

bodies which may have a very large number of generalized coordinates. When flexible bodies with 

high stiffness are considered, numerical differentiation of the forces can be source of errors. 

Furthermore, some existing implicit integration methods do not exploit sparse matrix techniques 

required for the efficient solution of large scale MBS applications, and do not ensure that the 

kinematic constraint equations are satisfied at position, velocity, and acceleration levels. This 

paper addresses these computational challenges by developing a new TLISMNI/Adams algorithm 

in which the 3rd and 4th order implicit Adams-Moulton formulae are used as the correctors, 

respectively, with the explicit 2nd and 3rd order Adams-Bashforth formulae as predictor. The 

proposed methods, therefore, have a constant order, while the step size is allowed to vary in order 

to enhance the efficiency and convergence characteristics of the methods when used in the DAE’s 

solution of heavily constrained dynamical systems. The variable-step size TLISMNI method 

proposed in this investigation avoids numerical differentiation of forces, ensures that the nonlinear 
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algebraic constraint equations are satisfied at all levels, and exploits sparse matrix techniques for 

the efficient solution of the dynamical system equations. During the iterative outer loop iterations, 

the time step is not allowed to vary until convergence is achieved or fails. The inner loop is used 

to ensure the convergence of the iterative procedure used to satisfy the holonomic algebraic 

constraint equations. As discussed in this paper, the holonomic constraint equations at the velocity 

and acceleration levels are always linear and do not require an iterative procedure to solve for the 

dependent velocities and accelerations. The criteria used for the error check and step-size selection 

is described. The performance of the TLISMNI/Adams algorithm developed in this investigation 

is evaluated by comparison with the 2nd order implicit trapezoidal method and the variable-order 

explicit predictor-corrector Adams method [15]. The numerical results obtained in this 

investigation are used to shed light on the advantages and drawbacks of the implicit integrators 

when used in the analysis of constrained dynamical systems. Two examples that include mass-

spring systems and heavily constrained MBS vehicle model are considered in this study. The mass-

spring systems allowed to clearly investigate the effect of varying the problem stiffness, while the 

heavily constrained MBS vehicle model, which includes a large number of differential and 

algebraic equations and relatively large number of bodies is a non-stiff model and is used to 

demonstrate the efficiency of the explicit methods and the less significant effects of the tolerances 

and the outer-loop iterations when the implicit integration methods are used. The results obtained 

using the two examples considered in this investigation show that the TLISMNI methods proposed 

in this study can be more efficient for stiff systems because of their ability to damp out high-

frequency oscillations. The use of the iterative procedure allows for damping out the high-

frequency oscillations despite the fact that the proposed TLISMNI methods do not include 

numerical damping as in the case of the HHT method. The results obtained in this study also show 
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that explicit integration methods, such as the explicit Adams method, can be more efficient in the 

case on non-stiff systems. 

 Stiff systems are characterized by widely-separated eigenvalue solutions, and not 

necessarily with high frequency content. A variable time-step integration method is appropriate in 

the case of sudden changes in response characteristics such as in the jump phenomenon of 

nonlinear systems, stiffening and/or softening effects, or stick-slip phenomena. All the methods 

used in the paper, including the explicit Adams method, are variable time-step methods. Future 

investigations will focus on examining the effectiveness of the proposed integration methods in 

the case of discontinuities, an important scenario which has not been addressed in this investigation 

which is mainly focused on the application of the proposed methods to stiff systems not subjected 

to discontinuities. 
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Abbreviations  

BDF  Backward differentiation formula 

CPU  Central processing unit 

DAE  Differential/algebraic equations  

HHT  Hilber–Hughes–Taylor  

HMMWV  High-mobility multi-purpose wheeled vehicle  

MBS  Multibody system 

TLISMNI Two-loop implicit sparse matrix numerical integration   

 

Nomenclature 

C  Vector of constraint functions 

qC    Constraint Jacobian matrix 

tC    Partial derivative of the constraint functions with respect to time 

e   Error vector 

f    Time derivative of the state vector 

h    Time step size 

0h    Initial time step 

ik    Stiffness coefficient of spring i   

M    System mass matrix 

im    Mass of mass i   

itn    Number of outer-loop iterations 

Q    Force vector 
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dQ    Constraint quadratic velocity vector 

q    Vector of system generalized coordinate 

dq    Vector of dependent coordinates 

iq    Vector of independent coordinates or degrees of freedom 

q    Velocity vector 

q    Acceleration vector 

kT    Truncation error at step k   

t    Time 

ft    End of the simulation time 

y    State Vector 

 

    Error tolerance 

a    Absolute error 

r    Relative error 

λ    Vector of Lagrange multipliers  
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Table 1. Effect of the relative error tolerance on CPU time  6 4 6
010 N/m 10 10ak , h ,     

Method 410r
  710r

  

Explicit Adams 1 0.67 

Implicit Adams (2nd order) 1 1.34 

Implicit Adams (4th order) 1 1 

Implicit Trapezoidal 1.3 1.67 

 

Table 2. Effect of initial time step on the CPU time  6 6 610 N/m 10 10a rk , ,      

Method 3
0 10h   5

0 10h   

Explicit Adams 1 1 

Implicit Adams (3rd order) 2 1.67 

Implicit Adams (4th order) 1 1 

Implicit Trapezoidal 2 1.67 

 

Table 3. Effect of the maximum outer-loop iterations on the CPU time 

 6 6 6 4
010 N/m 10 10 10a rk , , , h        

Method 1itn   2itn   3itn   4itn   5itn   6itn   7itn   

Explicit Adams 0.34 0.34 1 1 1 1 1 

Implicit Adams (3rd 
order) 

3.34 0.67 1.5 1.5 1.5 1.5 1.5 

Implicit Adams (4th order) 1 1 1 1 1 1 1 

Implicit Trapezoidal Failed 1.85 5.5 2 2 2 2 
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Table 4. Effect of the relative error tolerance on CPU time  4 6
0 10 10ah ,    

Method 410r
  610r

  710r
  

Explicit Adams 2.2 1.54 Failed 

Implicit Adams (3rd order) 0.75 1.85 2.53 

Implicit Adams (4th order) 1 1 1 

Implicit Trapezoidal 0.93 2.18 2.77 

 

Table 5. Effect of initial time step on the CPU time  6 610 10a r,     

Method 3
0 10t   4

0 10t   5
0 10t   

Explicit Adams Failed 1.23 2.46 

Implicit Adams (3rd order) 2.66 1.90 1.47 

Implicit Adams (4th order) 1 1 1 

Implicit Trapezoidal 3.36 2.17 5.18 

 

Table 6. Effect of the maximum outer-loop iterations on the CPU time

 6 6 4
010 10 10a r, , h       

Method 1itn   2itn   3itn   4itn   5itn   6itn   7itn   

Explicit Adams 1 1 1 1 1 1 1 

Implicit Adams (3rd 
order) 

1 0.13 0.13 0.03 0.03 0.03 0.03 

Implicit Adams (4th 
order) 

1 0.98 0.12 0.06 0.04 0.04 0.04 

Implicit Trapezoidal Failed Failed 1 0.29 0.16 0.16 0.16 
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Table 7. Vehicle inertia and geometric properties 

Components Mass (kg) xxI  (kg.m2) yyI  (kg.m2) zzI  (kg.m2) 

Ground  1 1 1 1 
Front sub-frame 50.000 61.0000 10  61.0000 10  61.0000 10  
Rear sub-frame 45.359    42.9264 10  42.9264 10  42.9264 10  
Chassis  2086.5     31.0785 10  32.9557 10  33.5702 10  

Front left and right suspensions 
Upright  3.6382     24.0800 10  24.2300 10   38.3400 10  
Upper arm 5.4431     22.3300 10  23.6100 10  21.3200 10  
Lower arm  16.329    0.14688     0.23163   0.11852 
Upper strut  5.0000 61.0000 10  61.0000 10  61.0000 10  
Lower strut  5.0000         61.0000 10  61.0000 10  61.0000 10  
Tire  68.039     1.1998    1.7558    1.1998 
Tie rod  0.5545      35.7854 10  35.7854 10  51.7745 10  
Tri pot  1.9851    31.1019 10  31.1019 10  48.1390 10  
Drive shaft  4.2175    0.16599           0.16599           46.9283 10  
Spindle  1.1028    44.7790 10  44.7790 10  44.9628 10  

Rear left and right suspensions 
Upright  3.6382      24.0800 10  24.2300 10  38.3400 10  
Upper arm 5.9320      0.068400         0.091400         0.024000 
Lower arm  16.287     0.29036    0.51811    0.23229 
Upper strut  5.0000 61.0000 10  61.0000 10  61.0000 10  
Lower strut  5.0000     61.0000 10  61.0000 10  61.0000 10  
Tire  68.039      1.1998    1.7558    1.1998 
Tie rod  2.0412      24.2200 10  24.2200 10  41.9000 10  
Tri pot  2.0307    31.1383 10  31.1383 10  48.4254 10  
Drive shaft  6.0495    0.24565           0.24565           31.4463 10  
Spindle  1.5046    47.7539 10  47.7539 10  49.2387 10  

Steering system 
Steering wheel  2.1500         22.5892 10  22.5892 10  25.1629 10  
Steering column  2.7985         26.4319 10  26.4319 10  43.0466 10  
Intermediate shaft  2.2535         23.2103 10  23.2103 10  42.4336 10  
Steering shaft  2.0182         22.3725 10  22.3725 10  42.2182 10  
Rack  3.4424         0.23089           0.23089           42.6961 10  
Pinion  0.5000 61.0000 10  61.0000 10  61.0000 10  
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Table 8. Joints used in HMMWV Model 

Joint type Number of 
constraints 

Generalized-Coordinate-Constraint 6 
Euler parameter constraint equations 50 
Spherical-Joints 81 
Revolute-(Pin)-Joints 85 
Rigid-(Bracket)-Joints 42 
Cylindrical-Joints 36 
Relative-Angular-Velocity-Constraint 1 
Gear-Constraint-Element 11 
Relative-Coordinate-Projection-Constraint 1 

Rack-Pinion-Constraint 2 

Dot-Product-Constraint 5 

 

Table 9 Effect of the relative error on HMMWV CPU time  3 5
0 10 10at ,    

Method 510r
  610r

  710r
  

Explicit Adams 1 1 1 

Implicit Adams (3rd order) 1.31 1.31 1.31 

Implicit Adams (4th order) 1.59 1.59 1.57 

Implicit Trapezoidal 1.48 1.48 1.42 

 

Table 10 Effect of the number of outer-loop iterations on the HMMWV CPU time

 5 5 3
010 10 10a r, , t       

Method 1itn   2itn   3itn   4itn   5itn   

Explicit Adams 1     1     1     1     1     

Implicit Adams (3rd order) 1    0.82     0.76    0.75    0.76    

Implicit Adams (4th order) 1 0.71 0.52 0.52 0.52 

Implicit Trapezoidal  1     0.92     0.76    0.77    0.77    
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Figure 1. Mass Spring System Model 
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(a)  

(  Explicit Adams Method, 4th Order Implicit Adams Method) 
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(b) 

(  3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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 (c) 

( Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 2. Coordinate of Mass 1 ( 6
1 2 3 10k k k    N/m) 
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(a) Explicit Adams Method 
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(b) 3rd Order Implicit Adams Method 
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(c) 4th Order Implicit Adams Method 
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(d) Implicit Trapezoidal Method 
 

Figure 3. Coordinate of Mass 1 ( 410r
  ,  6

1 2 3 10k k k    N/m) 
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(a)  

( Explicit Adams Method,  4th Order Implicit Adams Method) 
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(b)  

(  3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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(c)  

(  Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 4. Coordinate of Mass 1 ( 710r
 , 6

1 2 3 10k k k    N/m) 
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 (a)  

( Explicit Adams Method,  4th Order Implicit Adams Method) 
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(b) 

(   3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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(c) 

(  Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 5. Coordinate of Mass 2 ( 8
2 10k   N/m) 
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(a) Explicit Adams Method 
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(b) 3rd Order Implicit Adams Method 
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(c) 4th Order Implicit Adams Method 
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(d) Implicit Trapezoidal Method 

Figure 6. Coordinate of Mass 3 ( 12
3 10k   N/m) 
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 (a) 

( Explicit Adams Method,  4th Order Implicit Adams Method) 
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(b) 

(   3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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(c) 

(  Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 7. Coordinate of Mass 2 ( 410r
 , 8

2 10k   N/m) 
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Figure 8. Coordinate of Mass 3 ( 410r
 , 12

3 10k   N/m)  

(  Explicit Adams Method,   3rd Order Implicit Adams Method,  4th Order Implicit Adams 
Method,  Implicit Trapezoidal Method) 
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(a) 

(   3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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(b) 

(  Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 9. Coordinate of Mass 2 ( 710r
 , 8

2 10k   N/m)  
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(a) 3rd Order Implicit Adams Method 
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(b) 4th Order Implicit Adams Method 
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(c) Implicit Trapezoidal Method 

Figure 10. Coordinate of Mass 3 ( 710r
 , 12

3 10k   N/m) 
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 (a) 

( Explicit Adams Method,  4th Order Implicit Adams Method) 
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(b) 

(   3rd Order Implicit Adams Method,  4th Order Implicit Adams Method) 
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(c) 

(  Implicit Trapezoidal Method,  4th Order Implicit Adams Method) 

Figure 11. Coordinate of Mass 2 ( 5
0 10t  , 8

2 10k   N/m) 
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(a) Explicit Adams Method 
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(b) 3rd Order Implicit Adams Method 
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(c) 4th Order Implicit Adams Method 



69 
 

 

(d) Implicit Trapezoidal Method 

Figure 12. Coordinate of Mass 3 ( 5
0 10t  , 12

3 10k   N/m) 
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Figure. 13 HMMWV Model 
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Figure. 14 Damping Coefficient of the Front Suspension Damper  
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Figure. 15 Damping Coefficient of the Rear Suspension Damper  
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Figure. 16 Bushing Stiffness Coefficient (rotation about X-Axis)  
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Figure. 17 Bushing Stiffness Coefficient (Rotation about Y-Axis)  
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Figure. 18 Bushing Stiffness Coefficient (Rotation about Z-Axis)  
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Figure.19 Forward Position of the Chassis Center of Mass 

(  Explicit Adams Method,   3rd Order Implicit Adams Method,  4th Order Implicit Adams 
Method,  Implicit Trapezoidal Method) 
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Figure. 20 Vertical Position of the Chassis Center of Mass 

(  Explicit Adams Method,   3rd Order Implicit Adams Method,  4th Order Implicit Adams 
Method,  Implicit Trapezoidal Method) 

 

 

 


