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ABSTRACT 
 

The interpretation of invariants, such as curvatures which uniquely define the bending and twist 
of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. 
Accurate representations of curve and surface invariants, which enter into the definition of the 
strain energy equations, is particularly important in the case of large displacement analysis. This 
paper discusses this important subject in view of the fact that shear and bending are independent 
modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic 
coupling may exist. The paper shows, using simple examples, that shear without bending and 
bending without shear at an arbitrary point and along a certain direction are scenarios that higher-
order finite elements (FE) can represent with a degree of accuracy that depends on the order of 
interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes 
of deformation is evaluated in order to examine the effect of the order of the polynomial 
interpolation on the accuracy of representing these two independent modes. It is also shown in this 
paper that not all the curvature vectors contribute to bending deformation. In view of the 
conclusions drawn from the analysis of simple beam problems, the material curvature used in 
several previous investigations is evaluated both analytically and numerically. The problems 
associated with the material curvature matrix, obtained using the rotation of the beam cross-
section, and the fundamental differences between this material curvature matrix and the Serret-
Frenet curvature matrix are discussed.  
 
 
Keywords:  shear deformation; bending deformation; absolute nodal coordinate formulation; 
finite element; large displacement.  
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1. Introduction 

The formulation of the continuum elastic forces using a general continuum mechanics approach 

requires having a complete set of position vector gradients in order to properly define the 

components of the Green-Lagrange strain tensor or any other general strain measure [1 – 3]. 

Having a complete set of position vector gradients requires a full-parameterization of the 

continuum; two parameters for planar surfaces, and three parameters for volumes. The use of the 

general continuum mechanics approach in the case of fully-parameterized continuum does not 

require explicit definition of geometric invariants such as curvature and torsion which uniquely 

define the geometries of curves and surfaces [4 – 7].  

When gradient deficient continuum models are used, on the other hand, the general continuum 

mechanics approach cannot be used. In this case, specialized classical beam and plate theories are 

used to formulate the stress forces [8 – 12]. In these specialized theories, the geometric invariants, 

such as curvature and torsion, are often used in the formulation of the energy expressions. Accurate 

definitions of these invariants, therefore, is necessary in order to obtain reliable solutions. A fiber 

of a beam, for example, can be considered as a space curve that can experience arbitrary bending 

deformations. The curvature of the fiber is defined as the magnitude of the curvature vector 

obtained by differentiation of the unit tangent with respect to the arc length. The curvature, often 

in a simplified form, has been widely used in the literature in the formulation of the bending strain 

energy [8 – 12]. 

In the general theory of continuum mechanics, an infinitesimal volume has six independent 

modes of deformation; three stretch modes and three shear modes. Simplifying assumptions are 

used in the development of existing beam theories which are based, for the most part, on one-

dimensional parameterization. For example, in most existing beam formulations, the beam cross 
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section is assumed to remain planar and rigid. In the case of shear-deformable planar beams, for 

example, the shear is defined in terms of the angle between the beam cross section and the normal 

to the beam centerline. The shear angle is assumed to be totally independent from the beam 

bending; a beam, at an arbitrary point and along a certain direction, can bend without shear and 

can shear without bending. This basic assumption, which has been used for decades in the 

formulation of the beam equations, is also consistent with the general continuum mechanics theory 

in which pure shear deformation can be achieved independently from all other deformation types. 

The phrase “pure shear” will be used in this paper to refer to the case in which shear is the only 

mode of deformation experienced by the continuum. Nonetheless, in some investigations, new 

curvature definitions that kinematically couple the curvature and shear were introduced [13 – 15]. 

In some of these definitions, the angles that define the orientation of the beam cross section are 

used in the definition of the curvatures. A transformation matrix expressed in terms of these cross 

section angles is used in a manner that resembles the Serret-Frenet frame transformation used to 

define the curvature and torsion of a space curve [5, 6]. In the Serret-Frenet approach, the tangent, 

normal, and bi-normal vectors are used to define the Frenet frame which depends only on and can 

be uniquely defined using one parameter; the curve arc length.    

When using the first and second fundamental theorems of surfaces [5, 6], it is important to 

recognize that not all curvature vectors are associated with bending deformations. Curvature 

vectors that involve differentiation twice with respect to the same coordinate line describe the 

change of the orientation of tangent vectors to fibers and can be associated with bending 

deformation as will be discussed in this paper. Curvature vectors that result from the differentiation 

with respect to two different coordinate lines (parameters) can appear in the formulation of the 

shear as will be demonstrated in this paper. 
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The absolute nodal coordinate formulation (ANCF) fully-parameterized elements allow for 

developing new and more general beam models and for investigating the assumptions used in the 

classical beam and plate theories [16 – 29]. The use of the position vector gradients as nodal 

coordinates allows for relaxing the assumptions of small deformation used for most conventional 

beam and plate elements [30 – 32]. ANCF position gradient vectors capture accurately arbitrarily 

large rigid body rotations and high speed spinning motion [33 – 35]. For this reason, such general 

elements are suited for evaluating the assumptions used in the classical approaches.   

This study, which is concerned with the interpretation of the geometric invariants such as the 

curvature in the FE large displacement analysis, is motivated by the fact that the definition of curve 

and surface invariants is fundamental for the accurate beam and plate stress force formulation. The 

focus in this paper will be on the analysis of planar beams in order to avoid the complexities of the 

three-dimensional analysis and to be able to obtain simple expressions that can shed light clearly 

on different geometric definitions. The specific contributions of this paper can be summarized as 

follows: 

1. It is demonstrated analytically, in Section 2, that the position vector gradients can be used to 

represent the case of shear without bending. To this end, each of the gradient vector is defined 

in terms of a stretch coefficient and an angle that defines the orientation of the gradient vector. 

It is shown that in the case of shear, the transverse gradient vector can have an arbitrary 

orientation with respect to the normal to the beam fiber. The shear can be non-uniform, while 

the beam fiber remains straight, demonstrating that bending cannot be defined in terms of the 

derivative of the shear angle. 

2. In Section 3, the accuracy of using the FE approximation in the representation of the shear 

without bending (SWB) and bending without shear (BWS) is examined. To this end, a fully-
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parameterized ANCF beam element is used to formulate the beam problem [20]. It is shown 

that higher-order elements can be used systematically to obtain the SWB and BWS scenarios 

in the case of arbitrarily large rigid body displacement. 

3. It is shown in Section 4 that a curvature vector obtained by differentiation with respect to two 

different coordinate lines (parameters) may not be associated with bending deformation, and 

such a curvature vector can appear in the formulation of the SWB problem. This curvature 

vector can be related to the derivative of the angle that defines the orientation of the cross 

section with respect to the arc length parameter.   

4. Based on the conclusions drawn from the analysis presented in Sections 2 and 3, the definition 

of the material curvature used by other researchers is evaluated in Section 4 [13 – 15]. Despite 

the fact that the material curvature is defined in terms of the angle that defines the orientation 

of the beam cross section, the material curvature was used by some researchers to formulate 

the beam bending forces. 

5. The fundamental differences between the Serret-Frenet approach and the material curvature 

approach that employs the cross section orientation matrix, are highlighted in Section 4 of the 

paper. 

6. Simple numerical examples are used throughout the paper to examine the effect of the FE 

interpolation in the representation of the SWB and BWS cases. Simple numerical examples 

are also used in Section 5 to evaluate the definition of the material curvature matrix.  

7. The new analytical and numerical results obtained in this paper clearly show that the definition 

of the material curvature can lead to wrong results when the shear deformation is dominant, 

and the material curvature converges to the differential geometry-based curvature only when 

the shear deformation is not considered.  
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2. Generalized shear forces 

The shear angle in the simple planar analysis is defined as the angle between the normal to the 

beam centerline and the beam cross-section. This angle, therefore, is independent of the angle that 

defines the orientation of the normal or the tangent to the centerline. In the planar analysis, the 

matrix that defines the Frenet frame in differential geometry is formed using the unit tangent and 

unit curvature (normal) vectors. The change of the orientation of the tangent to a curve such as the 

beam centerline defines the bending or the curvature of the curve; the curvature is defined to be 

the norm of the curvature vector which is obtained by differentiating the unit tangent with respect 

the arc length of the curve. 

2.1 Alternate position vector gradient representation 

In order to develop expressions for the generalized shear forces, the position gradient vectors that 

enter into the definition of the Green-Lagrange strains are written in this section using a stretch 

coefficient and an angle that defines the orientation of the gradient vector. While this 

representation preserves the generality of the analysis because it allows for a change in the 

magnitude and orientation of the position vector gradients, it provides a convenient way for 

obtaining the deformation modes that will be discussed in this paper. Each of the position vector 

gradients can be written in terms of a stretch coefficient and a unit vector as 

      (1) 

In this equation,  and  are stretch coefficients, and  

and  are angles that define the orientations of the gradient vectors. In this 

investigation, it is assumed that  and  are not, in general, the same in order to allow for shear 
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deformations. If the condition  is enforced, the stretch of the cross section is not allowed. 

The dependence of  on  allows for accounting for the effect of bending when a general 

continuum mechanics approach is used to formulate the elastic forces. The assumption  will 

be used in some sections of this paper in order to focus on the shear deformation and develop 

models that employ some of the basic assumptions used in the classical beam formulations. 

The components of the Green-Lagrangian strain tensor can be written in terms of these position 

vector gradients as 

      (2)  

Using the stretch coefficient and the angle representation for the gradient vectors, it is clear from 

the above equation that the components of the Green-Lagrange strain tensor are written in terms 

of two stretch coefficients and one angle  which defines the shear angle. It is also clear 

that if the gradient vectors are not orthogonal, the stretch coefficients  and  contribute to the 

shear strain. It follows that a virtual change in the strain components can be written in terms of the 

virtual change of the stretch coefficients and the angles as 

 (3) 

In this equation,  is the shear angle. It is important, however, to note that the shear 

strain does not depend only on this shear angle, and therefore, using this angle to formulate the 

shear strain energy should be viewed as an approximation. Careful examination of the virtual 
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changes of Eq. 3 sheds light on the generalized elastic forces that will be developed in terms of the 

stretch coefficients and the angles that define the orientations of the position vector gradients. 

2.2 Planar rigid cross section  

If the condition , that is no cross section stretch, is enforced and warping of the beam cross 

section is not considered, the virtual change in the strain components reduces to 

   (4) 

It is clear from this equation that the shear strain  is function of the shear angle . The curvature 

at an arbitrary point on an arbitrary fiber of the continuum for a given  is defined as 

, where  is the arc length. It is important, however, to point out that, in general, there is no 

relationship between  and . This important issue will be revisited when discussing 

the material curvature in a later section of this paper. Using the form of the position vector 

gradients introduced in this section, it is clear that the curvature of a fiber for a given  does not 

depend on the stretch coefficient . This is clear from the fact that the derivative of the unit 

tangent (gradient) vector  with respect to the arc length defines the curvature 

vector , demonstrating that the magnitude of the curvature 

vector is  regardless of the change in the stretch coefficient . 

2.3 Shear deformation without bending 

In the case of shear without bending (SWB),  and . In this special case, one has 

. The virtual work of the elastic forces in this special case 
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reduces to , where  is the shear stress,  is the modulus of 

rigidity, and  is the continuum volume. It follows that 

     (5) 

The virtual change  can be expressed in terms of the virtual change in the coordinates used to 

define the continuum configuration. For example, if the method of separation of variable is used 

to write the position vector  as , where  is a shape matrix that depends 

on the spatial coordinates and  is the vector of time dependent coordinates, then a virtual change 

in the position and gradient coordinates can be written as , and 

, where  is the partial derivatives of row  of the shape 

matrix  with respect to the spatial coordinate . Using these definitions, one can show that the 

virtual change in the shear angle  can be written systematically in terms of the virtual change of 

the coordinates as  , where  is an appropriate velocity transformation matrix.  

The virtual work of the elastic forces can then be written as 

         (6) 
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According to the more general continuum mechanics principles and the principles of the simplified 

linear vibration theory, the bending and shear are independent modes of deformation and they 

should not be kinematically coupled. Pure shear deformation should not produce bending and 

should not change the curvature of the fibers. This fact, which is crucial in the discussion provided 

later in this paper on the material curvature, can be easily proved. Because in the SWB case 

considered in this paper, the axial and transverse normal strains   and , that is, 

 and  , differentiation of the first equation with respect to  and the second 

equation with respect to  shows that  and , this is with the understanding that 

 and the FE interpolations may not enforce these conditions everywhere within the 

element. These two equations show that the rate of change of a gradient vector tangent to one 

coordinate line with respect to the other coordinate line is zero along the other tangent vector, 

demonstrating that the fibers at a point and along a certain direction can rotate without bending as 

shown in Fig. 1. Therefore, the shear without bending is associated with a rotation that does not 

contribute to the bending deformation at a point along a certain direction. Nonetheless, if the two 

gradient vectors  and are not orthogonal, a change in the length of these vectors without a 

change in the shear angle can also lead to a change in the shear strain as it is clear from the 

definition . That is, the shear, in the general theory of continuum mechanics, cannot 

be described completely by an angle. 

 

3. Finite element discretization 

The position field of the planar ANCF shear deformable beam element used in this investigation 

can be written as [20] 

11 0e = 22 0e =

1T
x x =r r 1T

y y =r r y

x 0T
xy x =r r 0T

yx y =r r

yx xy=r r

xr yr

( )12 1 2 T
x ye = r r



12 
 

     (7) 

In this equation,  and  are, respectively, the longitudinal and transverse spatial coordinates of 

the element,  is the position vector of an arbitrary point on the beam centerline, and 

 is the transverse position gradient vector.  Using the shape functions presented in the 

appendix of this paper, one can show that, for this particular element, a linear interpolation is used 

for  and such an interpolation is defined in terms of the nodal transverse position gradient vectors 

as , where ,  is the length of the element, and superscript  refers 

to the node number. Furthermore, the shape functions presented in the appendix show that 

 does not depend on the transverse gradient vectors at the nodes. It follows that the 

position gradient vector associated with the axial coordinate  can be written as .  

3.1 Shear without bending 

The higher-order ANCF planar beam element allows for creating easily different deformation 

scenarios that will shed light on the fundamental issues considered in this investigation [20]. For 

example, a shear deformation without bending can be described by the following vector of nodal 

coordinates: 

  (8) 

In this equation,  and  represent an arbitrary rigid body translation,  is an arbitrary rigid 

body rotation, and  and  are shear angles at the first and second nodes, respectively. Using 

this vector of nodal coordinates and the shape functions presented in the appendix, one can show 
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that the position, gradient, and curvature vectors at an arbitrary point on the element can be written 

as  

  (9) 

In this equation, . The configuration of the beam in this special SWB case is shown in Fig. 

2 in the case of zero rigid body motion, that is, , and for the shear angles  

and . The preceding equation shows that for a given , the position gradient vector  

assumes a constant orientation within the element, demonstrating the fact that the shear does not 

produce bending of the longitudinal fibers of the beam. Similarly for a given value of , the 

position vector gradient vector  assumes a constant orientation within the element, 

demonstrating that the shear deformation does not produce bending of the transverse fibers. This 

fact is demonstrated clearly in Fig. 1. It is also important to understand that the curvature vector 

 in the SWB case is not associated with bending of fibers; it describes the change of the 

orientation of the gradient vector  as  is changed and describes the change of the orientation 

of  as  is changed. This fact is also clear from Fig. 1. It is clear, therefore, that in the SWB 

case, the fibers may change their orientation, but they do not bend since shear is an independent 

deformation mode; this is despite the fact that there can be force coupling between these two modes 

of deformation. 
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3.2 Finite element approximation 

If the shear angle within the element is such that , a condition that can be ensured if the 

element length or the shear angle is small, one obtains 

        (10) 

In this case,  

  (11) 

Using the equations presented in this section, one can show that in the case of pure shear, the 

normal strains at the nodes are identically equal to zero.  

3.3 Bending deformation 

The special case of bending without shear (BWS) can be described by the following vector of 

ANCF nodal coordinates: 

 (12) 
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is defined by the following equation: 
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Figure 3 shows the configuration of the beam for the rigid body rotation , , and 

. The longitudinal position vector gradient is given in this case as 

 (14) 

The transverse position vector gradient is given by 

  (15) 

The curvature vector  is defined in this BWS case as 

  (16) 

Using these equations, one can show that at the nodes, in this BWS case, the shear strain 

 is identically zero. Similarly, at the nodes, the normal strain  is 

identically zero. This demonstrates that in the BWS case, there is only one non-zero Green-

Lagrange strain . In the case of symmetric bending, the centerline does not stretch, while fibers 

below and above the centerline, as shown in Fig. 4, shorten and elongate, respectively. This is in 

turn produces axial stresses that define the beam bending moment. Strains at an arbitrary points 

that are not nodal points can be determined using the FE interpolation. For example in the case of 

Euler-Bernoulli beam theory, the axial strain is zero at the beam neutral axis, while the strain is 

assumed to vary linearly away from the neutral axis. 

3.4 Generalized bending forces 
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One can also show that the axial component of the Green-Lagrange strain tensor can be written in 

its most general form in the case of the ANCF element considered in this section as 

   (17)  

Using this definition of the axial strain, the virtual work of the generalized elastic bending forces 

in the case of linear elastic material can be written as 

    (18) 

In this equation,  is the modulus of elasticity, and  is the axial stress. The virtual change in 

 can be systematically expressed in terms of the virtual change of the element coordinates as 

, where  is an appropriate velocity transformation matrix. This equation 

can be substituted into the virtual work expression to define the generalized bending moments 

associated with the element generalized coordinates. 

 

4. Material curvature 

As previously mentioned, in the continuum mechanics theory, bending and shear are independent 

modes of deformation and they should not be kinematically coupled. Kinetic or stiffness coupling 

may exist between independent modes, coordinates, or degrees of freedom. According to the 

principles of continuum mechanics, deformation can occur in a shear mode only or bending mode 

only. Fluids, for example, can be subjected to only shear forces and a solid, at an arbitrary point 

and along a certain direction, can deform in a shear mode only without having any other mode of 

deformation. A beam, at an arbitrary point and along a certain direction, can bend without shear 

and can shear without bending. Having a kinematic relationship between the shear and bending 

deformations violates these basic principles. 
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 As also demonstrated in this paper, not all curvature vectors are associated with bending 

deformations. A curvature vector is associated with a bending deformation if it describes the 

change of the orientation of a tangent vector along the same coordinate line (fiber) used to define 

the tangent vector. This fact was clearly demonstrated using the planar analysis presented in this 

paper. 

 Despite the known facts and principles mentioned above, some investigations proposed 

bending definitions that are based on the rotation of the beam cross section. In the case of a shear 

deformable beam element, the rotation of the cross section with respect to the normal to the beam 

centerline curve defines the shear angle. Additionally, if the gradient vectors are not orthogonal, 

the stretch can contribute to the change in the shear strain, as previously discussed. Therefore, 

using derivatives of the rotations that define the orientation of the beam cross section to define 

curvatures that enter into the formulation of the beam bending forces implies that non-uniform 

shear must be accompanied by bending, which violates the fact that the shear and bending modes 

should not be kinematically related. The curvature of the beam fibers is defined as the magnitude 

of the curvature vector obtained by differentiating the unit tangent with respect to the arc length 

parameter. One can show that this curvature can also be defined as the derivative of the angle that 

defines the orientation of the tangent vector with respect to the arc length, as previously shown in 

the paper. One of the definitions which kinematically relate the shear to the curvature is what is 

referred to as the material curvature which will be discussed in this section.  

4.1 Bending and curvature vectors 

Some of the new FE formulations offer the opportunity for the evaluation of some geometric 

definitions that have not been evaluated before. For example, fully-parameterized ANCF beam 

elements can be used to develop more general beam theories that account for shear and warping. 
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As previously shown in this paper, one of the ANCF planar elements can be used to define three 

curvature vectors , and . The first two curvature vectors describe the rate of change of 

the orientation of tangent vectors along the two coordinate lines  and , and therefore, they can 

be associated with bending deformations. The curvature vector  needs to be interpreted 

differently since it does not define the rate of change of the orientation of a tangent vector along 

the same coordinate line. The meaning of the curvature vector  can be further explained by 

writing the displacement field of the planar fully-parameterized ANCF beam element as 

. In this equation,  defines the absolute position of the material points on 

the beam centerline, as previously mentioned. It is clear from this equation that if  is interpolated 

linearly as in the case of the original fully-parameterized beam element then , , and 

, the latter as it was previously shown can be written in terms of the transverse 

gradients at the nodal points as . A more general expression that will shed light on 

some of the definitions that will be developed in this section can be obtained for the curvature 

vector  in the case of a beam model based on the assumption of a rigid cross section. In this 

case,  remains a unit vector (no cross-section stretch) and , that is, the centerline of the 

beam does not experience any bending. In this special case, without loss of generality, one can 

write  in terms of an angle as  , where  can have value that 

varies as function of the coordinate  or the arc length . It follows that 

           (19) 
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where . The curvature vector  represents the rate of change of the tangent vector 

 in the direction of the coordinate line . Because , the curvature vector  also 

represents the rate of change of the tangent vector  in the direction of the coordinate line . 

Therefore, in the simple case described in this section, the curvature vector  is not associated 

with bending; it describes how the fibers of the beams are oriented. For example, for a given , 

the change of the orientation of  as  changes will describe how the rigid fibers of the cross 

section are oriented. Similarly, for a given , the change of the orientation of  as changes 

describes the orientation of the fibers which were originally parallel to the beam centerline in the 

straight configuration. This deformation scenario is shown in Fig. 1 where several fibers along the 

coordinate lines  and  are shown to rotate as rigid lines that do not experience bending.  

4.2 Material curvature 

The partial differential equation that governs the bending vibration of beams is a fourth order 

equation defined as , where  is the mass density,  is the 

cross section area,  is the bending deformation,  is the modulus of elasticity,  is the second 

moment of area, and  is the forcing function. Because of the fourth derivative with respect to 

the axial coordinate , classical and computational approaches assumed interpolating functions of 

order three (cubic) or higher. Such an approach ensures that the curvature of the beam is properly 

captured. A lower order of interpolation cannot be used with the fourth order beam equation to 

obtain a meaningful solution and capture the beam bending under more general loading conditions. 

When low-order elements are used in the FE analysis, the curvature may not be defined 

properly. For example, if an element based on a first-order polynomial approximation is used, the 

curvature within the element will always be zero, and if an element based on quadratic 
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interpolation, the curvature within the element will be constant (circle with constant radius of 

curvature). This is the main reason, cubic interpolation is always used to properly capture beam 

bending. However, low-order elements such as rectangular, triangular, solid, and tetrahedral 

elements have been used in modeling beam problems. While these low-order elements do not 

ensure the continuity of the rotation field at the nodal points, they are often used with a general 

continuum mechanics approach that employs Green-Lagrange strain tensor. In this case, an explicit 

definition of the curvature is not necessary since the elastic forces are formulated using the stress 

and strain tensors with an appropriate constitutive model. Some researchers who investigated beam 

bending, however, suggested the use of curvature definitions that differ from the differential 

geometry definitions for the use with the low-order finite elements. One of these definitions is the 

material curvature introduced by Simo et al. [13 - 15] and used with the large rotation vector 

formulations (LRVF). In this definition, the matrix  that defines the orientation of the beam 

cross section is used to define a curvature matrix as . It is important to point out 

that the material curvature matrix  is not the same as the Serret-Frenet matrix obtained from a 

parameterized curve. In the Serret-Frenet approach, no cross section that has independent rotation 

from the rigid surface normal to the tangent vector is used. In the case of planar analysis, the 

matrices  and  are given, respectively, by 

           (20)  

Using these general definition for the planar transformation, one can show that 

         (21) 
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It is clear that this matrix is expressed in terms of the derivative of the angle that defines the 

orientation of the cross section with respect to the arc length. In the case of non-uniform shear 

without bending, the use of the definition of the above equation to formulate the bending elastic 

forces may not be appropriate because bending and shear are assumed to be independent modes of 

deformations. It is important also to point out that in the three-dimensional case, the analysis 

becomes much more complicated and other deformation modes such as torsion and out-of-plane 

bending must be considered. In the case of shear-deformable beam, the cross section is assumed 

to have an independent rotation that is not kinematically related to the rotation that defines the 

orientation of the tangent line used in the derivation of the Serret-Frenet frame.  

4.3 Serret-Frenet matrix 

In the case of a planar curve, the Frenet frame is defined using an orthogonal matrix  whose 

first column is the tangent vector  and its second column is the unit curvature vector , 

where , and , that is  . It follows that . 

Using the well-known orthogonality relationships between the Frenet vectors [5, 6], one can show 

that curvature matrix  associated with a space curve is defined as 

         (22) 

This matrix is obtained using the tangent vector to the space curve and it is not associated with 

another independent angle or a cross section. The curvature  which appears in this matrix is 

obtained as , as previously stated. 

4.4 Summary 
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In the following section, examples will be presented in order to evaluate the use of the material 

curvature. Before presenting such a numerical evaluation, it is necessary to summarize some 

important conclusions based on the simple planar analysis considered in this study: 

1. In the LRVF beams, only one parameter is used to define the beam kinematics (axial coordinate 

), and therefore, the discussion presented in this section on the curvature vector  is not 

relevant to LRVF beam problems. Nonetheless, it is important to recognize that the curvature 

vector  may not be directly related to the bending of beam fibers and may be related to the 

derivative of the angle that defines the orientation of the beam cross-section when more general 

ANCF beam elements are used. 

2. It follows that the curvature vector  can be a non-zero vector while no bending is 

experienced as shown by the results of Fig. 5. That is, in the case of a surface, the curvature 

vector  used in the second fundamental form of surfaces should be interpreted differently 

from the other two curvature vectors  and  when discussing bending of beams and plates. 

3. The analysis presented in this section shows that while  is called a curvature vector, this 

vector is more associated with shear mode of deformation in the simple beam example 

considered. 

4. If  is linearly interpolated as , where the superscript refers to the node 

number, then , which shows that  does not change within the element. 

The linear interpolation ensures that the cross-section remains planar (no warping); an 

assumption required for the discussion presented in this section. 
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5. Using the assumption that , one can show that the material curvature 

matrix , in this case, is defined by Eq. 21, where  is the arc length and . As 

demonstrated in this section, counter examples can be developed to demonstrate that the 

material curvature matrix is not related to curvature. 

6. The material curvature matrix  used by some researchers in the mechanics community is not 

related to the curvature matrix  used in differential geometry. In some ANCF investigations 

[36], the tangent and cross section frames were used to define geometric parameters. Using 

these two different frames, two different definitions for the matrix  were 

provided. It is important, however, to emphasize the following facts: (1) when ANCF finite 

elements are used, the skew-symmetric matrix  converges to the Serret-Frenet 

skew-symmetric matrix in the case of small shear. This is not the case when LRVF finite 

elements are used because of the use of independent interpolation for the finite rotations; (2) 

As stated in a previous publication [36, p. 1138 with reference to Eq. 49] “Using the 

assumption that the longitudinal axis of the cross-section frame does not significantly differ 

from the tangent to the beam centerline,   in the preceding equation can be assumed to 

represent the torsion. One, however, must ensure that the definition of torsion is correctly 

interpreted when the cross-section frame is used, particularly in the case of large deformation 

problems”, which implies that if the normal to the cross section is aligned with the tangent 

vector, different ANCF frames will lead to the same definitions of  and such 

definitions converge to the Serret-Frenet skew-symmetric matrix definition; (3) The ANCF 

tangent frame leads to the same curvature definition as the Serret-Frenet frame definition in 

the planar and spatial cases; and (4) In general and in the case of large shear deformations, the 
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ANCF cross-section frame should not be used to define any curvature matrix since in this case 

the matrix  does not represent correctly the zero bending in the SWB case.  

 

5. Numerical results 

Two simple numerical examples are used in this section to examine the value of the curvature 

obtained using two distinctly different approaches: differential geometry-based curvature (referred 

to in the result figures as geometrically correct) and cross-section-based material curvature. The 

differential geometry based curvature refers to  , whereas the material curvature refers to 

Eq. 21. The two-dimensional shear deformable ANCF fully-parameterized beam element is used 

to obtain the numerical results in the examples considered in this section. 

5.1 Shear deformation without bending 

In the SWB example considered in this section, a set of prescribed nodal coordinates, as defined 

by Eq. 8, is used for the beam mesh and the curvature measures are evaluated in order to study 

their relevance in this SWB mode. For this case, the following data are used:  , 

, ,  and . This deformation mode is shown for a mesh of 1 element 

and 1000 elements in Fig. 6 and Fig. 7, respectively. It can be seen from Figs. 6 - 7 that the 

centerline remains un-deformed in this mode of deformation demonstrating the fact that this is not 

a bending mode of deformation. Figure 8 compares the geometrically correct differential 

geometry-based curvature and the material curvature as a function of the beam arc-length for the 

1 element mesh. It is clear from Fig. 8 that the geometrically correct curvature is zero along the 

beam arc-length while the material curvature is non-zero. The results of this figure show that the 

bending strain energy, if evaluated using the material curvature definition, is non-zero in the SWB 

case. Figure 9 compares the two different curvature measures for the 1000 element mesh. It can 
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be seen from Fig. 9 that the material curvature value has converged to approximately 0.785 due to 

mesh refinement that reduces errors due to FE-interpolation while the geometrically correct 

curvature remains zero. Furthermore, in order to explain analytically and confirm the results of the 

geometrically correct curvature definition that the deformation considered in this example is not 

associated with bending, the nodal coordinate vector of the 1 element mesh given by Eq. 8 is 

substituted in the element displacement field . In this special case,  and 

. Using Eq. 7, , and the fact that for this element , one 

can show that  everywhere in the element, proving that the SWB case does not produce 

bending, and the two deformation modes are indeed kinematically independent. Based on this 

simple analysis, an explanation for the curved geometry on the upper and lower boundaries when 

1000 elements are used (Fig. 7) can be provided. We note that continuity on the gradients and 

curvatures are not enforced at material points away from the beam center line. It follows that when 

, at an arbitrary point on the element remains parallel to 

 as evident by the results of the single element mesh presented in Fig. 6. When more than one 

element is used and only  and  are prescribed at the end nodes of the beam (not for each 

element) such that , , in general, does not remain parallel to  because of the FE 

approximation which leads to different shear angles at the interior nodes. This explains the results 

of Fig. 7 despite the fact that the condition  remains in effect because  remains constant 

within each element in the mesh, leading to zero curvature in the example considered in this 

section. 

5.2 Bending deformation without shear 
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The second numerical example considered is that of ‘inextensible’ bending deformation without 

shear. This BWS deformation mode is achieved by starting with a straight undeformed beam, and 

applying simply supported boundary conditions to the beam structure and equal and opposite 

moments at the two ends of the beam. The beam properties considered in this example are given 

as follows: , , ,  and  . The moment is selected to be 

. The general continuum mechanics approach with a plane stress assumption is used 

to obtain the solution to the static problem, and the curvature measures are evaluated using the 

obtained static solution. The  deformation for 1 and 1000 element meshes is shown in Figs. 10 

and 11 respectively. Figures 12 and 13 show the curvature field along the beam centerline as a 

function of the beam arc-length for the 1 and 1000 element meshes, respectively. There is a 

difference in the curvature distribution when the two curvature measures are used with the 1 

element mesh. Even though this mesh is considered too coarse to be used for practical problems, 

the values of both the curvature measures are within a small range of each other. As can be seen 

from Fig. 13, which shows the distribution of the curvature measures in the 1000 element mesh, 

both the geometrically-correct and material curvature definitions yield the same result. The reason 

for this is that in this specific BWS case, the beam shear angle is zero. Since the cross-section 

angle can be written as the sum of the rotation due to bending deformation (i.e. rotation of the 

normal to centerline) and rotation due to shear angle, and since the shear angle is zero, the material 

curvature is dependent on the centerline rotation and yields the same results as that of the 

geometrically-correct curvature. These results show that the material curvature converges to the 

geometrically correct curvature only when the shear deformation is not considered. 

 

6. Discussion 
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In this section, explanation and justification of the mathematical modeling, numerical 

discretization, order of interpolation, and curvature and shear definitions used in this paper are 

provided. 

6.1 Mathematical modeling and discretization procedures 

Two mathematical curvature models are used in the planar analysis considered this study. The first 

is the differential geometry definition which is obtained from the norm of the curvature vector 

defined as the second derivative of the curve position equation with respect to its arc length.  The 

second mathematical curvature model is the one provided by Simo [15] in which the curvature is 

defined as the derivative of the cross section angle with respect to the arc length. This angle defines 

the cross section orientation in the inertial frame [15, Page 851, Section 3.1 text after Eq. 3.1a]. 

The use of the relative angles will require in general the definition of the Serret-Frenet frame 

transformation and use this transformation with the transformation matrix that defines the 

orientation of the cross section to define the relative angles. This can lead to a very complex 

expression and can significantly increase the degree of nonlinearity. This approach was not 

followed in [15] to determine the shear or the curvature. Since an absolute and not a relative angle 

was used in the second mathematical model of the curvature [15], such an angle also includes the 

shear effect, and therefore, shear will possibly contribute to the curvature definition. Nonetheless, 

the shear, as defined in the Timoshenko’s beam theory, is measured as the angle between the cross 

section and the normal to the beam centerline. This angle in the classical shear definition is 

assumed to be independent from the angle that defines the orientation of the normal to the 

centerline. When formulating the stress forces, Timoshenko’s shear definition should be 

considered as an approximation when compared to the more general continuum mechanics shear 

definition. 
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 The mathematical definition of the shear adopted in this paper is the basic continuum-

mechanics definition. The shear strain is defined in terms of the dot product of two gradient 

vectors. This continuum mechanics definition clearly shows that the shear is zero and is not 

affected by the stretch as long as the two gradient vectors are orthogonal. If the gradient vectors 

are not orthogonal, the stretch will also contribute to the change in the shear strain even in the case 

in which the angle between the gradient vectors do not change. 

 The above brief introduction explains the mathematical models used in this paper. In order to 

examine these models, numerical discretization is used in this study. To this end, a fully-

parameterized ANCF planar beam element is used. The goal is not to perform a convergence study, 

but rather to use this simple element to shed light on the definition of shear and bending considered 

in this investigation. A more detailed convergence study focused on the curvature definition is 

provided in [37].  The results presented in the literature also show that the use of the derivative of 

the angle that defines the orientation of the cross section to define the curvature can lead to wrong 

solutions when the shear is dominant [37].  

6.2  Interpolation order and curvature definitions  

It is also important to note thatThere are several planar ANCF beam elements that have varying 

orders of assumed displacement field interpolation in the beam longitudinal and transverse 

directions. The original ANCF beam element proposed by Omar and Shabana [20] is cubic in the 

longitudinal beam parameter and linear in the transverse parameter. The shape functions of this 

element are provided in Appendix A. The quadratic and the linear planar ANCF beam elements 

proposed by Nachbagauer [21] have quadratic and linear interpolation in the beam longitudinal 

direction respectively and linear interpolation in the beam transverse direction. 
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 The third order interpolation in the beam longitudinal direction yields a linear curvature field 

when the geometrically correct curvature is used. As mentioned previously, linear and quadratic 

longitudinal beam interpolations lead to zero and constant curvature fields within the element. The 

partial differential equation that governs the vibration of beams has fourth order partial derivative 

with respect the beam spatial coordinate. This order of derivative ensures that that assumed 

displacement field or the eigen functions obtained from the classical solution of the bending 

vibration problem do not produce zero or constant curvature. In the conventional FE approach, 

this requirement, for the most part, has been observed when developing beam and plate elements. 

Conventional beam elements that employ infinitesimal rotations are based on cubic interpolation 

for the transverse deformation. This requirement is also ensured when using the ANCF element 

considered in this study. The element is based on a cubic interpolation in the longitudinal direction. 

When lower-order of interpolations is used, accurate definition of the curvature can be difficult to 

obtain. For example, in [15], linear interpolation was used, and as a consequence, the curvature is 

zero within the element. Furthermore, when lower order elements are used, a finer mesh will be 

required compared to higher order elements, due to the deficiency in correctly capturing the 

curvature field. Moreover, several locking phenomena might exist in lower order elements that 

will require dealing with in addition to using a finer mesh. However, on a more fundamental note, 

zero and constant element curvature fields can be more important issues as compared to mesh size 

and locking issues. Additionally, higher order elements can also assist in better capturing the 

geometry being analyzed while using a much smaller mesh. 

 

7. Summary and conclusions 
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This paper is concerned with the interpretation of the geometric invariants, such as the curvature, 

in the FE large displacement analysis. This study is motivated by the fact that the definition of 

curve and surface invariants is fundamental for the accurate formulation of the stress forces in 

beam and plate problems, particularly in the case of large displacement analysis. The fact that 

shear and bending are independent modes of deformation implies that there is no kinematic 

coupling between these two modes despite the fact that kinetic coupling may exist. Using simple 

examples, the paper clearly demonstrates how higher-order finite elements can be used to obtain, 

at an arbitrary point and along a certain direction, shear without bending and bending without 

shear. Such a demonstration is necessary in order to shed light on some of the curvature definitions 

used in computational mechanics. The FE representation of the two kinematically-uncoupled 

modes of deformation (shear and bending) was evaluated in order to examine the effect of the 

order of the polynomial interpolation on the accuracy of representing these two independent 

modes. It is also demonstrated that not all the curvature vectors contribute to bending deformation. 

Curvature vectors that define the change of the orientation of vectors tangent to a coordinate line 

along the same coordinate line contribute to bending. The analysis presented in this paper is used 

to shed light on the definition of the material curvature used in the literature. The problems 

associated with the use of the material curvature matrix, obtained using the rotation of the beam 

cross-section, are discussed. The fundamental differences between the material curvature and the 

Serret-Frenet curvature are also highlighted. The results obtained in this investigation show that 

the material curvature definition can lead to significant errors when shear is dominant, and the 

material curvature converges to the geometrically correct curvature only when the shear 

deformation is not considered. This paper is focused on the planar case in order to avoid the 
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complexities of the three-dimensional analysis which will be considered in future investigations 

aimed at extending and generalizing the conclusions drawn from this study. 
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Appendix 
 

The displacement field of the planar shear-deformable ANCF element used in this investigation 

can be written as , where  is the global position vector of an arbitrary point on the element, 

 is the element shape function matrix, and  is the vector of the element nodal coordinates 

defined as , where superscripts refer to the node number. 

The shape function matrix  is defined as 

               (A.1) 

where the functions  are defined as 

    (A.2)   
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Figure 1. Non-uniform shear deformation using the elements of Ref. 20 (  x coordinate 

lines;  y coordinate lines) 

 

 

Figure 2. Total deformation contours in the SWB example defined by Eq. 8 for  and  
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Figure 3. Total deformation contours in the bending example defined by Eq. 12 for  and  

 

 

Figure 4. Axial strain contours in symmetric bending without shear 
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Figure 5. Constant  contours in the SWB example defined by Eq. 8 for  and  

 

 

 

Figure 6. Total deformation contours in 1 element mesh in the SWB case 
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Figure 7. Total deformation contours in 1000 element mesh in the SWB case 
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Figure 8. Comparison of curvature measures in 1 element mesh in the SWB case  

( Geometrically correct curvature; Material curvature) 
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Figure 9. Comparison of curvature measures in 1000 element mesh in the SWB case  

( Geometrically correct curvature; Material curvature) 
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Figure 10. deformation contours in 1 element mesh in the BWS case 

 

Figure 11.  deformation contours in 1000 element mesh the BWS case 
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Figure 12. Comparison of curvature measures in 1 element mesh in the BWS case  

( Geometrically correct curvature; Material curvature) 
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Figure 13. Comparison of curvature measures in 1000 element mesh in the BWS case (

Geometrically correct curvature; Material curvature) 
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