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Abstract 

This work aims to study flows within a wedge at the inclination angles in the 5°-20° range. 

Flow within a wedge occurs when a Carbopol solution is pulled horizontally by a moving 

conveyer belt through the wedge apex opening at different speeds. The upper side of the wedge 

is fixed at the exit by a pivot joint about which it could rotate. At the wedge entrance a force 

gauge is placed so that it is pushing at the upper side of the wedge to keep it at a predetermined 

position (and thus at a predetermined inclination angle). The gauge measures the restraining 

force required to counteract the pressure build-up on the flowing Carbopol solution side and to 

keep the upper side of the wedge at its position. Visualization through the transparent vertical 

sides of the wedge was used to track seeding particles inside the solution to reconstruct the 

velocity profile, and in particular to reveal rigid-like stagnation zones characteristic of the yield-

stress liquids.  
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Introduction 

The spreading of soft materials between non-parallel plates is a widely encountered 

phenomenon, such as spreading of creams, lotions, foods, and construction materials. More 

specifically, many construction materials are hand-applied using a type of spreading knife: hawk 

and trowel, application knife, or a draw down bar. Understanding the flow field and forces within 

the wedge geometry helps companies design the material so that it yields during application but 

is un-yielded while the material is adjacent to the application tool. During the application of soft 

materials, sensory feedback is one of the major factors determined by the arising stresses. The 

spreading process is similar, in a sense, to a journal bearing or screw extruder and therefore can 

be considered as a lubrication-like process. Then the lubrication approximation can be used in 

many cases as a powerful tool to describe spreading behavior (Schlichting 1987; Tichy 1991; 

Weinstein and Ruschak 2004; Tadmor and Gogos 2006). 

 The approach to soft materials employing the Newtonian fluid model in the lubrication 

approximation has its advantages and disadvantages. As stated by Wienstein and Ruschak 

(2004), the major advantage of this approach is that it leads to the one-dimensional Reynolds 

lubrication equation and allows for a straightforward calculation of the flow field for a given 

geometry. Even though the pressure distribution is one-dimensional (depends only on the 

longitudinal coordinate), the velocity profile is two-dimensional, which is accounted for in the 

framework of this approach. Notably, the Newtonian fluid model is capable of predicting the 

reverse flow arising due to the adverse (positive) pressure gradient emerging when fluid is pulled 

under the wedge by its moving bottom side. 
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 However, soft materials, such as those mentioned above, possess a yield stress which 

might influence their flow when they are spread on a stationary plate by another moving inclined 

plate, or effectively, flowing inside a wedge. It should be emphasized that in the present article 

we take the latter point of view, i.e. always consider flows as the flows inside a wedge with an 

inclined upper side and moving lower side pulling fluid under the wedge. It was shown 

experimentally by Milne (1954) that stagnation zones arise in specific areas at a certain 

eccentricity inside a journal bearing containing a Bingham yield-stress fluid. Stagnation zones, or 

core formation, in lubrication processes have been shown to occur when the pressure gradient is 

positive (adverse), or as the film thickness increases in the vertical direction, or as the velocity 

decreases, or any combination of these (Wada et al. 1973). Wada et al. (1973) and Tichy (1991) 

identified theoretically different types of cores and the conditions necessary for their creation, 

namely, an attached core or a floating core. An attached core is defined as a plug with uniform 

velocity equal to that of the moving boundary it is attached to. A floating core is a plug that 

exists between two domains of flow, for example in the central part of a pipe flow of a Bingham 

yield-stress fluid (Loitsyanskii 1996).  

 Modeling using a Bingham yield-stress fluid model for flows inside wedge geometry has 

also revealed advantages and disadvantages. Similarly to the Newtonian fluid model, the 

Bingham fluid model can also predict reverse flow velocities under the wedge, but in distinction 

from the former, the latter can also predict core formation. For a Newtonian fluid, the flow 

profile is sketched in Fig. 1. This sketch shows the reverse flow arising due to the adverse 

pressure gradient. If the fluid has a yield stress, such as a Bingham fluid, the flow profile in the 

reverse flow region would be the most affected.  
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Fig. 1. Velocity profile of a flow within a wedge with an inclination angle α.The atmospheric 

pressure at the entrance and exit is p0. The x axis coincides with the moving bottom side of the 

wedge, which pulls fluid under it with velocity V0. 

 

The modified Reynold equation obtained in the framework of the Bingham fluid model in 

the cases with or without floating or attached cores does not allow for an easy analytical analysis 

of the force acting on the inclined upper side of the wedge (Tichy 1991). Other authors have used 

other analyses or assumptions to determine the velocity field inside a flat wedge-like domain 

characteristic of spreading. For example, Dorier and Tichy (1992) expressed the viscosity profile 

of the fluid as a function of a stress parameter loosely related to the yield stress and a strain-rate 

parameter. If the strain-rate parameter tends to infinity, a Newtonian viscosity is recovered. On 

the other hand, if the parameter tends to zero, the viscosity increases dramatically representative 

of a Bingham fluid. Batra (1966), who only considered attached cores, divided the journal 
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bearing flow into three distinct domains following Milne’s (1954) analysis of core formation as a 

result of the interplay between the pressure gradient, plug height, and the yield stress. Wada et al. 

(1973) were only able to establish an implicit Reynolds equation.  

 Plug flows within a yield stress fluid have been recently reviewed by Balmforth et al. 

(2014). The review shows that the lubrication theory of the yield-stress fluids is an important 

open issue and many attempts to numerically model a Bingham fluid in eccentric cylinder 

geometry have been made (Szabo and Hassager 1992; Frigaard and Ryan 2004; Putz et al. 2009). 

 The aim of the present work is to experimentally examine flows of Carbopol solutions 

within wedge geometries utilizing different inclination angles and different entrance to exit 

height ratios, and thus to procure the velocity profiles and the other flow characteristics of a 

yield-stress fluid moving within a wedge. The experimental velocity profiles are then compared 

to the theoretical velocity profiles for a Newtonian fluid (Schlichting 1987) and Bingham fluid 

(Tichy 1991). Next, the effective viscosity of the fluid is calculated using the measured force, 

moment, and wedge geometry and compared to the rheological parameters found using a 

rheometer with parallel plate geometry. A Carbopol solution is used in this experiment because it 

is known to be a yield stress fluid, mimics the soft solids mentioned above, and is ideal for 

particle image velocimetry (Pelot et al. 2013). The rheological parameters were measured using 

parallel-plate rheometer with rough and smooth plates and approximately the same results were 

found. This is an indication that the no-slip condition held in the present case on smooth plates, 

and the results for the latter are included. Moreover, in Pelot et al. (2013), flow near the 

boundaries was visualized during viscosity measurements. It was shown that the no-slip 

boundary condition holds up to the shear rates of the order of 100 1/s. Shear rates greater than 

100 1/s were not employed. Similar materials were used in the spreading experiments. 
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The experimental material, setup and image analysis method are described in detail in the 

Experimental materials and methods section. The experimental results are presented versus the 

predictions of the Newtonian and Bingham models in the Results section. A discussion of the 

results is in the Discussion section. Conclusions are then drawn.  

 

Experimental materials and apparatus 

 

Material preparation 

 

A 1.5% Carbopol-940 (Lubrizol) aqueous solution was prepared following the 

manufacturer (Noveon Inc.) specifications. First, 30 g of Carbopol powder was dissolved in 1970 

mL of water. The Carbopol was slowly added to water, while stirring on a hotplate at 50 °C, with 

a magnetic stirrer set to the highest sustainable setting. The solution was allowed stirring 

overnight. The acidic Carbopol solution was neutralized by slowly adding 1 M NaOH to the 

required amount specified by the manufacturer. This process created a gel with a yield stress in 

shear of 570 94  Pa (based on the four measurements shown in Fig. 2b), found using the 

squeezing apparatus described in Pelot et al. (2013). The squeeze-flow experiments were driven 

by a constant squeezing force applied to compress a cylindrically-shaped material between two 

large parallel plates. It should be emphasized that, as usual, the yield stress in shear is found as 

the yield stress in compression divided by 3 .  Using a TA Instruments HR rheometer with 

parallel plate geometry (smooth plates), the power-law pseudoplastic rheological behavior in 

shear flow with the exponent (the behavior index) n and the consistency index K were measured 

as n = 0.16 and K = 154 Pa s
n
 [note that these parameters were found using the Weissenberg-
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Rabinowitsch correction, since the shear rate in the radial direction within the parallel plate 

geometry is not constant, te Nijenhuis (2007) and Schramm (2000)]. During the measurement the 

gap size was 1 mm and the test was conducted using a logarithmic shear rate ramp from 1 1/s to 

200 1/s. These shear rates are representative of those found in the experiments. The rheological 

parameters are shown in Fig. 2.   

  

Fig. 2. (a) Viscosity of Carbopol 940 during the shear rate ramp-up (open circles) and shear rate 

ramp-down (open squares) found using a parallel plate viscometer with smooth plates. (b) Yield 

stress, τ0, for different mass loads measured using the squeezing apparatus. The dashed line was 

drawn using the fitted rheological parameters mentioned in the text. 

 

Experimental procedure 

 

In the experimental setup shown in Fig. 3 a layer of Carbopol gel was transported on the 

lower surface moving to the right, while the inclined spreading plate was stationary. The 

spreading plate was made of acrylic which was 15 cm long, 10 cm wide, and 0.95 cm thick. The 

moving lower surface was an “infinitely” long polystyrene sheet. It was pulled at different 

velocities by an AC motor (Leeson M1145033). The force gauge, Imada DS2-11, was connected 
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to a fixed stand and was always strictly perpendicular to the inclined plate at any inclination. Due 

to the Carbopol gel pressure, it could partially escape from the wedge-like gap sidewise. To 

prevent such deviations from the two-dimensional flow, vertical walls were fixed on both sides 

of the wedge.   

 The preliminary experiments on Carbopol spreading revealed that bubbles inevitably 

entrapped inside the gel may serve as seeding particles. However, it was found that washed 

coffee blended in the Carbopol gel are better seeding particles because of their size 

commensurate with the image resolution. They are also preferable given their availability, 

contrast, and non-hazardous nature. The images with these seeding particles being visible are 

shown in Fig. 3(b). 

 

Fig. 3. Sketch (a) and image (b) of the experimental setup with the 20° angle of inclination of the 

spreading plate. In the image black seeding particles are seen inside Carbopol. 

 

(a) (b)

 1H

0H

L
0V
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The wedge-like gap of the spreading setup shown in Fig. 3 was adjusted by varying the exit 

height and the angle of inclination of the spreading plate, which pivots freely about the exit 

point. A wet film thickness gauge was used to measure the thickness of the layer gel after it 

exited from the wedge-like gap. It appeared to be equal to the exit height H1 since practically no 

swelling was found (which means that the gel was inelastic). It should be emphasized that in the 

present experiments (and in our previous works with Carbopol 940) the viscous forces are much 

greater than the elastic forces (if any) at the shear rates relevant to the wedge geometry. In this 

study the exit height H1 ranged between 0.6 mm and 1.5 mm at the three inclination angles, 5°, 

10°, and 20°. The velocity of the moving surface was either 0.167 m/s or 0.240 m/s. The range of 

the parameters chosen is characteristic of the applications. The length of the material ribbon 

applied onto the moving surface varied between 1 m and 1.25 m creating a steady-state flow in 

the wedge-like gap for approximately 5 to 6 s.  

 

Image analysis 

 

Images were captured using a Phantom Miro eX4 high speed camera at a rate of 100 fps 

with a screen size of 800 pixels by 600 pixels capturing an image approximately 15 cm by 11 cm 

giving each pixel a size of 0.019 cm
2
. The frame speed produced a minimum of 50 images for 

processing one particle when the moving surface was traveling at 0.24 m/s. Particles in the fluid 

approximately ranged from 33 pixels to 75 pixels or 0.57 mm by 0.57 mm to 1.33 mm by 

0.95 mm, respectively. Identifying the particles position was done manually with assistance from 

a computer code. The user would identify a particle (using a zoomed image) and click on it, the 

program would then note its position and time. Next, the user would skip a number of frames 
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until the particle moved a significant amount, then the user would again click on the particle and 

the program would note its new position and time. Since the particles were tracked manually, no 

general error calculation can be made. As an example highlighting the maximum error, if a 7 

pixel particle moved 1 cm between marked locations and time, the largest error would be 13%. 

However, zooming in on the image greatly decreased the possible error because the center pixel 

of each particle was easily visible. In some cases it was difficult to gather data in regions near the 

top plate and the exit; therefore, these regions were left blank.   

 

  

Results  

 

Velocity profiles 

 

Since Carbopol gels reveal pseudoplastic power-law rheology in shear flow, it is expected 

that there should be practically no flow inside such domains where the shear rate is relatively 

low. Indeed, effective viscosity of the gels corresponding to these domains should be very high, 

or alternatively the shear stress there should be lower than the yield stress. Therefore, with 

Carbopol being the working fluid it might be found that inside the boundaries of these domains 

one would expect to see a stagnation zone, rather than a reverse flow for Newtonian fluids, 

which is, indeed, corroborated by the experimental data on the left as panels (a) in Figs. 4 – 11.  
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Fig. 4. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 5° and 

H1 = 0.6 mm versus the corresponding theoretical velocity fields for: (b) Bingham fluid with a 

floating core from x = 0 to x = 0.92, and no core, or Newtonian profile, from x = 0.92 to x = 1; 

and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). The notation x  corresponds to the longitudinal coordinate x 

rendered dimensionless by L [cf. Figs. 1 and 3(a)]. Panel (d) shows the theoretical velocity 

profiles at x 0.2  (for the Bingham fluid-by solid line, and for the Newtonian one- by dashed 
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line), as well as the experimental data for the velocity profile at x 0.2 0.015   shown by 

symbols. The dashed lines in panel (b) outline the region of the floating core. 

 

 

Fig. 5. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 5° and 

H1 = 1.5 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid with an 

attached upper core from x = 0 to x = 0.80, and no core, or Newtonian profile, from x = 0.80 to 

x = 1; and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 
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respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.33 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.33 ± 0.02 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 

 

Fig. 6. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 10° and 

H1 = 0.8 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid with a 

floating core from x = 0 to x = 0.95, and no core, or Newtonian profile, from x = 0.95 to x = 1; 

and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 
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velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.17 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.175 ± 0.015 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 

 

Fig. 7. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 10° and 

H1 = 1.5 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid with a 
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floating core from x = 0 to x = 0.90, and no core, or Newtonian profile, from x = 0.90 to x = 1; 

and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.21 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.21 ± 0.01 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 
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Fig. 8. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 20° and 

H1 = 0.6 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid with a 

floating core from x = 0 to x = 0.98, and no core, or Newtonian profile, from x = 0.98 to x = 1; 

and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.16 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.155 ± 0.015 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 



17 

 

 

Fig. 9. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 20° and 

H1 = 1.3 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid with a 

floating core from x = 0 to x = 0.96, and no core, or Newtonian profile, from x = 0.96 to x = 1; 

and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.167 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.29 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 
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experimental data for the velocity profile at x̅ = 0.295 ± 0.015 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 

 

 

Fig. 10. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 20° 

and H1 = 0.65 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid 

with a floating core from x = 0 to x = 0.98, and no core, or Newtonian profile, from x = 0.98 to 

x = 1; and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.240 m/s. Arrows in panel (a) point to representative velocities in the 
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respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.29 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.295 ± 0.015 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 

 

Fig. 11. Experimental velocity fields measured for Carbopol gel (a) under a wedge at α = 20° 

and H1 = 1.5 mm versus the corresponding theoretical velocity fields for a (b) Bingham fluid 

with a floating core from x = 0 to x = 0.95, and no core, or Newtonian profile, from x = 0.95 to 
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x = 1; and (c) Newtonian fluid. Legend shows the dimensionless velocity values where the wall 

velocity used as a scale is 0.240 m/s. Arrows in panel (a) point to representative velocities in the 

respective region of flow and in panels (b) and (c) the theoretical velocities are given at the same 

respective location as in (a). Panel (d) shows the theoretical velocity profiles at x̅ = 0.29 (for the 

Bingham fluid-by solid line, and for the Newtonian one- by dashed line), as well as the 

experimental data for the velocity profile at x̅ = 0.295 ± 0.015 shown by symbols. The dashed 

lines in panel (b) outline the region of the floating core. 

 

 Experimentally found velocity profiles were observed for a number of the inclination 

angles (for some of them the lubrication approximation does not necessarily hold). The 

experimentally found velocities are contrasted to the theoretically predicted velocity profiles of a 

Bingham fluid and a Newtonian fluid at the inclination angle and exit height of 5° and 0.6 mm, 

respectively, in Fig. 4, 5° and 1.5 mm in Fig. 5, 10° and 0.8 mm in Fig. 6, 10° and 1.5 mm in Fig. 

7, 20° and 0.6 mm in Fig. 8, 20° and 1.3 mm in Fig. 9, and at a higher velocity of the moving 

surface at 20° and 0.65 mm in Fig. 10 , as well as 20° and 1.5 mm in Fig. 11. The experimental 

velocity is rendered dimensionless by the speed of the conveyer belt pulling the fluid. In each of 

the experimental plots, arrows pointing to two positions in the reverse flow region identify a 

representative velocity in the respective area. Furthermore, the same positions are identified in 

the theoretical Bingham and Newtonian fluid velocity fields, which are labeled with the 

respective theoretical velocity in panels (b) and (c) in Figs. 4-11. 

The theoretically predicted shear rate fields (Schlichting 1987) for Newtonian fluid are 

shown in Fig. 12. The domains with the low shear rate would be prone to stagnation in the case 
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of Carbopol due to either high effective viscosity or the shear stress lower than the yield stress, 

as is seen in Figs. 4 – 11 on the left [in panels (a)]. 

 

Fig. 12. Shear rate fields du / dy  for Newtonian fluid for: (a) 0H =18.4, and (b) 0H = 86.5. The 

notation u  is used for the longitudinal velocity rendered dimensionless by the wall velocity, and 

y  for the transversal coordinate rendered dimensionless by H1. 

 

Fig. 13 reveals the presence of the reverse flow near the inclined plate, with particle 1 

moving backward, while particle 2 moving forward. 
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Fig. 13. Two consecutive images of seeding particles 0.5 s apart. The inclination angle is 20°, the 

exit height is 0.65 mm, and the velocity of the moving surface is 0.24 m/s. Solid arrows in panel 

(a) point to two specific particles, and dashed arrows in panel (b) point to the same particles in 

0.5 s.  

  

Figs. 14 and 15 illustrate the presence of an attached upper core and a floating core in the 

flow. In the two consecutive images in Fig. 14 particles 1 and 2 are at rest relative to the 

motionless spreading plate. On the other hand, in Fig. 15 at a higher inclination angle it is seen 

that all three highlighted particles move in the reverse flow region, with particles 2 and 3 being 

faster than particle 1.  

 

Fig. 14. Stagnation zone close to the inclined spreading plate. The inclination angle of the plate 

is 5° with the exit height of 1.5 mm; 0H = 6 [rendered dimensionless by H1-cf. Fig. 3(a)]. The 

two consecutive images are taken 3 s apart. Arrows point to two seeding particles (encircled) that 

reveal no motion.  
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Fig. 15. Plug flow within the reverse flow region. The angle of the spreading plate inclination is 

20° with the exit height of 0.650 mm; 0H = 79.9. The two consecutive images are taken 4 s 

apart. All three particles (encircled) move in the reverse direction, with particle 1 being slower 

than particles 2 and 3. 

  

Rheological properties 

 

If one assumes a Newtonian-like behavior, the restraining force expF  applied to the 

inclined plate to keep it in the position measured in the experiment can used to evaluate the 

effective viscosity of the gel pulled by the moving wall through the wedge-like gap using the 

available Newtonian solution in Schlichting (1987). The corresponding values are listed in Table 

1.  

 For a Bingham fluid model, the theoretical velocity profiles in the case of a floating core 

(Tichy 1991) are sensitive to the dimensionless yield stress, 0 0 0τ τ H μV . The dimensional 

yield stress, 0τ , is a fixed parameter, the wedge geometry, H, and conveyer belt velocity, V0, are 
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known in each experiment. Therefore, the viscosity, μ, was adjusted accordingly so that the 

theoretical velocity at the points indicated by the arrows in Figs. 4-11 closely matched the 

velocities found experimentally. The corresponding values are presented in Table 1. 

 

Table 1. Experimental parameters and the calculated viscosity found using the Newtonian model 

inSchlichting (1987), and the Bingham model in Tichy (1991). The shear rate at the cross-section 

where the pressure gradient is zero, 
dp/dx=0

γ , is calculated from the pressure distribution using the 

Newtonian model. 

Angle 

(deg) 

Exit 

height, 

H1 (mm) 

0H
 

Velocity 

(m/s) 

Force 

(N) 

Newtonian 

viscosity 

(Pa s) 

dp/dx=0
γ

(1/s) 

Yield 

stress 

(Pa) 

Bingham 

viscosity 

(Pa s) 

5 0.6 22.8 0.167 19.1 4.8 101 570 43 

5 1.5 9.6 0.167 15.0 6.0 41 570 ≤ 50** 

10 0.8 33.6 0.167 13.5 11.8 79 570 83 

10 1.5 18.4 0.167 7.9 8.6 41 570 89 

20 0.6 86.5 0.167 8.1 22.5 103 570 155 

20 1.3 40.5 0.167 6.8 21.8 50 570 155 

20 0.65 79.9 0.240 9.8 19.2 143 570 130 

20 1.5 35.2 0.240 9.7 22.5 59 570 130 

** The dimensionless theoretical Bingham velocity profile for an attached upper core is 

independent of the yield stress; therefore the viscosity value was obtained by identifying the 

yield stress which set such a core.   

 

Discussion  

 

When a yield-stress fluid is pulled into a wedge, there are three regions of flow that are of 

interest. The first region exists near the moving wall (the conveyer belt) where the shear stress is 

high and fluid is pulled forward albeit an adverse pressure gradient. The second region is near 
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the exit where the pressure gradient is no longer positive (no longer adverse) causing fluid 

motion forward in addition to the pull provided by the moving wall. The third region is far from 

moving conveyer belt (toward the inclined wall) where the adverse pressure gradient is dominant 

causing reverse flow to occur. In other words, fluid moves against the direction of the conveyer 

belt motion in the third region. 

 

Comparison of velocity profiles 

 

Near the moving wall, the shear rate is high and the Bingham fluid and Newtonian fluid 

models result in approximately the same theoretical velocity profiles. It should be emphasized 

that the forward flow regions, designated by colors from green to red in Figs. 4 – 11, found from 

the experiments are in good agreement, in magnitude and position, with both the Bingham and 

Newtonian theoretical results also depicted in these figures. The agreement is better when 0H  is 

small. As 0H  increases the experimentally found forward velocity region is smaller in height 

compared to the predicted value in either model, although it still shows similar magnitudes. This 

discrepancy is likely due to comparing a shear-thinning fluid in experiment to theoretical 

Bingham and Newtonian models.  

 At the location, on the horizontal axis, where the pressure gradient becomes zero, the 

flow is in a state of pure shear. In the Bingham model, it means that at this location the flow of a 

yield-stress fluid is similar to that of a Newtonian fluid; i.e. it has no plug zone, as the shear rate 

is high in this zone. This location is stated in the caption of each Fig. 4-11. After this location, 

the negative pressure gradient and the moving bottom wall both propel the fluid towards the exit. 
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Note that in this region a plug can occur but since this region represents such a minute part of our 

experiment, and it is difficult to resolve in the images, the plug (if any) could not be resolved and 

the flow is modeled using the Newtonian velocity profile. In Figs. 7, 8, and 10 the velocity near 

the exit is found experimentally and agrees with both theoretical models.  

 Far from the moving bottom wall, the shear stress decreases and the adverse pressure 

gradient is able to push the fluid backwards creating a region of reverse flow. It is in this region 

where the greatest distinction between a Newtonian and Bingham fluid models occurs. 

 As in any pressure-driven flow, if the same pressure gradient is applied to push a 

Newtonian fluid and a Bingham fluid of comparable viscosity, it is expected that the Newtonian 

fluid will have a higher velocity. This is the case for the reverse flow region of the wedge. In the 

theoretical Newtonian model the velocity profile shows strong reverse flow which intensifies as 

0H  increases. In the experiments, the reverse velocity does increase with increasing 0H  but not 

nearly as dramatically as the Newtonian model predicts. At the lowest entrance height used 

shown in Fig. 5, 0H 9.6 , the experimental velocity profile shows that fluid above y  4  has 

zero velocity (confirmed by the images in Fig. 14). However, the Newtonian model predicts the 

velocity values at the coordinates designated by the arrows in the image as u = -0.167  and 

u = -0.160 . In the experiments where there exists a reverse flow velocity, Figs. 4 and 6-11, the 

Newtonian model overpredicts the magnitude of the velocity, sometimes by an order of 

magnitude. Comparing the experimental velocity fields to the theoretical Newtonian ones 

emphasizes the role that the yield stress plays in the development of the reverse flow profile. 

 Despite the discrepancy in the theoretical velocity flow field predicted by the Newtonian 

fluid model compared to the experimental data, relevant information from the measured force 
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can be obtained using this model. This is especially important since the pressure profile cannot 

be explicitly obtained in the case of a Bingham fluid. 

 The measured force gauge data in Table 1 reveals three trends found in the experiments 

with Carbopol gels that agree with the predictions of the Newtonian fluid model for the 

restraining force. The first trend is observed when keeping the exit height, H1, constant; then, the 

force decreases as 0H  increases. The second trend is that the force decreases when keeping 0H  

constant, but increasing H1. The third trend was observed when the velocity of the moving 

surface increased, where both H1 and 0H  being kept constant: the force increased.  

  The theoretical velocity field predicted using the Bingham fluid model illustrates how the 

yield stress of the fluid can arrest or slow down the flow in the reverse flow region. An example 

of the fluid motion in the reverse flow region being arrested can be seen in Fig. 5 where 

0H 9.6 . This agrees with the velocity profile for a Bingham fluid shown in Fig. 5(b) which has 

an attached upper core. The viscosity value, shown in Table 1, for this case was determined by 

identifying the lowest viscosity value at which the criteria for a floating core case (cf. Tichy 

1991) is not met at the entrance of the wedge. In other words, a viscosity value less than or equal 

to 50 Pa s satisfies the condition for an attached upper core and a viscosity value greater than 50 

Pas would make the criteria for a floating core to be true.  

 At higher angles of inclination of the spreading plate, the adverse pressure gradient is 

sufficient to generate reverse flow illustrated by the motion of particles 2 and 3 in Fig. 15 relative 

to the spreading plate which is at rest. The respective position of these two particles does not 

change, which reveals that there is a plug flow core in the reverse flow zone. Examples of fluid 

being slowed due to the yield stress in the reverse flow region are shown in Figs. 4, and 6 – 11. 
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The images highlighting a floating core in Fig. 15 correspond to the experimental data in Fig. 10. 

The experimental velocity profiles [Figs. 4(a), 6(a) – 11(a)] show that the reverse flow velocity 

at the points indicated by the arrows ranges from u = -0.015  to u = -0.077 , albeit when 

0H = 18.4 there is u = -0.002 . The theoretical velocities for the Bingham fluid model [Figs. 4(b), 

6(b) – 11(b)] at the indicated points show velocity values ranging from u = -0.009  to u = -0.081

, albeit when 0H = 79.9  the theoretical reverse velocity at one point is u = -0.182 . In general, the 

magnitude and location of the theoretical velocity values found for the Bingham fluid model are 

in very good agreement with the experimental velocity values. 

The values of the dimensionless velocities revealed in Figs. 13-15 are listed in Table 2. 

 

Table 2. Velocity of highlighted particles in Figs. 13-15. 

Figure number Particle number   Dimensionless velocity, u   

13 1 -0.041 

13 2 0.653 

14 1 0 

14 2 0 

15 1 -0.032 

15 2 -0.048 

15 3 -0.051 

  

However, there is one consistent discrepancy between the experimental velocity data and 

the predictions of the Bingham rheological model. That is, the predicted maximum reverse flow 

nearer to the exit, designated by the dark blue color in Figs. 4-11, was never obtained in the 

experiment.   
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 Unlike the Newtonian model, the pressure distribution for the Bingham fluid model is not 

fully realizable. Therefore, calculating the viscosity from the Bingham model, as was done for 

the Newtonian fluid, is impossible.   

  The comparison of the predictions of the Newtonian and the Bingham models to the 

experimental data has elucidated the advantages and disadvantages of both models. Near the 

moving wall, where the shear stress is high and no core is formed, both types of the velocity 

profiles predicted by these models agree with the experimental data. Also, near the wedge exit 

both models agree with the experiment because the shear stresses cause the fluid to act 

Newtonian like and theoretically the Bingham model reduces to the Newtonian model since the 

conditions necessary to create a core are not fulfilled (i.e. the shear stresses are high). Only in the 

reverse flow region does the difference between the two models become evident. 

Experimentally, two rigid core types were identified, namely the attached upper core and the 

floating core. These cores had a dramatic influence on the reverse flow domain and were 

correctly predicted by the Bingham model. Although the theoretical Newtonian model was 

unable to reveal core formation, its closed form of the Reynolds equation (cf. Schlichting 1987) 

makes finding the pressure profile simple. With the pressure profile available, trends in the force 

acting on the wedge from the fluid under different wedge opening angles and the moving wall 

velocity were correctly predicted in the framework of the Newtonian model. 

 

Comparison of viscosity values 

 

The viscosity values listed in Table 1 present the results for the Newtonian fluid model 

found by from the measured restraining force. From Table 1, the evaluated Newtonian viscosities 
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were in the 4.8 Pa s to 22.5 Pa s range. The data obtained using parallel plate geometry with 

smooth plates, shown in Fig. 2, revealed Carbopol rheological parameters as n = 0.16 and K = 

154 Pa s
n
. Using these parameters, the viscosity range found using the Newtonian model 

corresponds to the 88 s
-1

 and 13.6 s
-1 

shear rate range. At the location where the pressure gradient 

is zero, the shear rate, 
dp/dx=0

γ , is calculated and shown in Table 1. The calculated shear rates at 

the location where dp/dx = 0 are in agreement with the shear rates found using the parallel plate 

geometry. Furthermore, the shear rate near the moving plate can be calculated employing a rough 

estimate based on the predictions of both Newtonian and Bingham models that the shear rate 

below y = 0.2  is roughly the same. Taking  u y= (1-0.5)/(0.2-0)=2.5  , the wall velocity V0 = 

0.167 m/s, and evaluating H1 ≈ 0.01 m, the dimensional shear rate is 
-1u y 42 s   , and it 

increases nearer to the moving wall. It is then clear that near the exit and near the moving wall, 

the stress acting on the fluid must be greater than the yield stress, and thus the fluid flows as a 

Newtonian-like fluid. 

 Alternatively, the viscosity values for the Bingham fluid model were found by adjusting 

the viscosity (and thereby adjusting the dimensionless yield stress), so that the predicted velocity 

profile matched the experimental data. The viscosity values found using the Bingham model 

range from 43 Pa s to 155 Pa s. Again using the rheological parameters found from the parallel 

plate geometry (Fig. 2), the viscosity values found for the Bingham model correspond to shear 

rates of 6.2 s
-1

 and 1.3 s
-1

, respectively. The only region where this range of shear rates exists is 

in the reverse flow region near the core. Since the region near the plate has a similar shear rate to 

that of the Newtonian model and in the region near the exit the Bingham model coincides with 

the Newtonian model, adjusting the viscosity value had little effect in these high shear regions. 
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Therefore, the focus in fitting the Bingham model to match the experimental data was on the 

reverse flow region.  

 The regions near the exit and the moving wall represent the areas with the highest shear 

rates within the wedge where, accordingly, the fluid behaves as a Newtonian one. As one moves 

towards the reverse flow region, the shear rate decreases. When a varying shear rate exists, the 

power-law behavior of the fluid heavily influences the velocity profile (Tadmor and Gogos 

2006). It is well known that Carbopol is a shear-thinning fluid (Curran et al. 2002; Coussot et al. 

2009). Therefore, as the fluid is subject to lower shear rates farther from the moving surface 

where the adverse pressure gradient dominates, the viscosity of the fluid will increase and 

influence the flow behavior.  

 In the velocity profile corresponding to the Bingham fluid, the viscosity of the fluid had a 

direct impact on the configuration of the yield surface in the reverse flow, since the yield stress is 

a fixed parameter. In this reverse flow region, if a shear-rate dependence exists, it is relatively 

small compared to that near the moving wall and near the exit where the flow is practically 

Newtonian. Then, it is expected that the viscosity values for a pseudoplastic power-law fluid in a 

region of low shear reveal higher values of viscosity. Therefore, the viscosities found using the 

Bingham model are likely to represent the viscosity of Carbopol solution in the region of low 

shear. Furthermore, it seems that the combination of the two models (the Newtonian and 

Bingham ones) allows for a comprehensive understanding of how the viscosity of a power-law 

fluid changes due to the changing shear rate within the wedge flow. 

 

Conclusion 
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The experimental and analytical velocity profiles for a Newtonian fluid are similar near the 

moving plate and near the exit where the shear stress overcomes the yield stress, while those 

predicted by the Bingham fluid model reduce to them in those regions. The corresponding 

viscosity values are found to be in agreement with the values measured using a parallel-plate 

viscometer. However, near the inclined wedge surface the yield stress dominates and creates a 

domain with a plug flow typical of the yield-stress materials, as predicted by the Bingham 

model. Two types of core formation, attached and floating, were visualized in the present 

experiments.  

Carbopol gels exhibit pseudoplastic power-law fluid behavior in simple shear flows, as 

well as possess a yield stress revealed by squeeze flows. The general flow structure in the 

wedge-like flow can be characterized using a Newtonian fluid model in domains of high shear 

near the moving surface, albeit the Bingham fluid model must be used in lower shear domains. 

The latter reveals the characteristic reverse flow zone containing a rigid core, which is confirmed 

in the experiments with Carbopol solutions. 

 The agreement of the viscosity values measured in the wedge-like flow experiments 

based on the Newtonian fluid model with the one measured in the simple shear flow at the shear 

rate corresponding to the shear rate near the entrance of the wedge-like gap is quite remarkable. 

Furthermore, in the domains of low shear it was found in the framework of the Bingham fluid 

model that the viscosity increases, as expected for a shear-thinning fluid. Overall, it appears that 

using both Newtonian and Bingham models in conjunction elucidates more information than 

only for a single model. 

Note also that during the experiments, it was observed that trapped air bubbles would 

recirculate within the fluid and would periodically exit the front of the wedge-like gap. 
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Furthermore, air bubbles were formed at the contact line between the rolling edge at the back of 

the wedge and the moving surface. These bubbles would typically stay near the moving surface 

and exit the wedge. This deserves exploration in future.  
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