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Abstract 

The paper presents the structure of buoyancy-driven flow occurring in an enclosure 

with two alternately active discrete heat sources. For the analysis of the mixing of the 

fluid layer and its effect on heat transfer process, the flow information has been presented 

both in time and spectral domain. The inherent dynamics is also studied using the proper 

orthogonal decomposition (POD). POD technique is used here to assess the energy 

content in the different modes and the related coherent structures of flow considering 

different Rayleigh numbers (Ra=103-106), switching frequencies (Z-1 with Z=0.1-0.8) and 

air as working fluid of Prandtl number (Pr) of 0.71. The results reveal nonlinear 

characteristics of hydrodynamics and heat transfer at higher Ra for low frequency. Here, 

POD helps understanding the flow dynamics from information about the coherent 

structures of different energy modes. 
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1.0 INTRODUCTION 

Researchers have studied natural convection in enclosures for several decades due to its widespread 

applications, such as cooling of electronic equipment, thermal insulation, solar collector, etc. In contrast 

to steady-state study of heat transfer, relatively less work is available on the pulsatile heating from the 

bottom wall of an enclosure. Unsteady heating with a sinusoidal or other form of temperature variation 

of walls was also studied earlier [1-9]. Although some work has been reported which deal with 

intermittent heating of enclosures and the consequent flow and thermal dynamics [8], the effect of 

periodic activation of multiple heat sources in an enclosure has only recently been investigated [10]. 

This configuration assumes significance in the context of thermally aware scheduling in multi-core 

processors of modern computers where jobs are allotted to different processors with an objective of 

minimizing hot spot formation. Although such scheduling is done primarily from considerations of 

ability of the system to dissipate the generated heat, our recent work [11] shows that alternate activation 

of two discrete heat sources in a cavity can alter the flow inside the enclosure itself leading to significant 

heat transfer augmentation. The pronounced effect of the switch-over frequency on heat transfer 

augmentation motivates a more detailed investigation of the underlying physics. The objective of the 

present work is to gain insight into the transport phenomena involved from an in-depth study of the fluid 

flow caused by the buoyancy effect. 

 The effect of alternately active heating from the bottom of an enclosure on the heat and fluid 

flow characteristics is assessed in this paper utilizing well-established methodologies. For the analysis of 

the mixing of the fluid layer and its effect on heat transfer process, the flow information has been 

presented both in time and spectral domain. The inherent dynamics is also studied using the proper 

orthogonal decomposition (POD). POD is a powerful decomposition technique for identifying the 

energetic modes that correlates the physical flow field. POD is extensively used in different thermo 

fluidic problems [12-15]. Ding et al. [16] used numerical data and highlighted the advantage of 

generating faster results through POD and used this concept to interpolate results at off-design 

parameters at a substantially less computational cost. Bleris and Kothare [17] analyzed the dynamics of 

thermal transience in a micro-system using POD. Data from finite element model (FEM) has been used 

as an input for this processing technique to test the performance of a controller. Khashehchi et al. [18] 

used POD on velocity fields generated by particle image velocimetry (PIV) to analyze the instabilities in 

flow past finned and foamed circular cylinder. The POD methodology was used by different researchers 

for a host of natural convection problems [19-22]. Podvin and Le Quéré [20] used low-dimensional 
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models for representing chaotic flows in a differentially heated cavity. They observed that before the 

bifurcation point, the dynamics of the system could be reduced down to two energetic modes, although it 

is necessary to account for higher modes in the model beyond the bifurcation point. A ten-dimensional 

model successfully captured the chaotic flow dynamics far away from the bifurcation point. A turbulent 

Rayleigh-Bénard convection in a square domain was studied by Bailon-Cuba and Schumacher [21]. The 

low dimensional model based on POD of the velocity and temperature fields and the snapshot of direct 

numerical simulation (DNS) results were used to describe the temporal evolution of the large-scale 

mode amplitudes for a particular Rayleigh and Prandtl number. Podvin and Sergent [22] performed the 

large-eddy simulation (LES) of turbulent Rayleigh-Bénard convection of air in a parallelepiped cavity 

and used POD to describe the large-scale structures of the flow with their temporal evolution and found 

out their roles on the convective heat and momentum transfer.  

 Bae and Hyun [10] showed enhanced heat transfer by systematic changing of the state of the 

heaters (switching "on" and "off")inside an enclosure. Detailed heat transfer analysis of a case of 

pulsatile heating using alternately active two heaters in an enclosure is reported in authors’ earlier work 

[11], which revealed the pronounced effect of the switch-over frequency on heat transfer augmentation. 

Since the transient results of various quantities presented in our earlier work [11] suggest superposition 

of several energetic modes, the effect of switching frequency on fluid flow pattern inside the enclosure 

is analyzed using POD technique. The objective of this present work is to extract spatial flow 

information in terms of coherent structures of different energy modes. In this work, POD snapshot 

method as has been discussed by Sirovich and Kirby [23] has been utilized and energy content in 

different modes along with contours of higher modes has been explicitly shown. 

 The paper is organized as follows: In Sec. 2, overview of the physical system and the CFD 

simulation are given. The details of POD analysis of the CFD generated flow structure is given in Sec. 3. 

In Sec. 4, the flow characteristics of the system are discussed with the help of different modal structures, 

FFT of the eigenmodes and streamfunctions. The POD modes for different pulsation frequencies are 

shown. Lastly, a conclusion is given in Sec. 5. 

2.0 DESCRIPTION OF PHYSICAL SYSTEM AND CFD SIMULATION 

The schematic of the enclosure and heaters with their thermal conditions are shown in Fig. 1a, where 

two alternately active isothermal heaters (temperature HT ) are placed at the bottom wall of the enclosure. 

The assumption of constant temperature of the heat source is common in the context of electronic 

cooling e.g., [24]. Adiabatic boundary is assumed on the heater surface when the heater is switched 
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"off". Top wall and non-heated portion of bottom wall are adiabatic while a constant temperature CT  is 

maintained at the side walls ( H CT T> ). The switch-over time period (Z, dimensionless) is defined as the 

time interval between the consecutive switching "on" (or "off") of a particular heater.  

 The motion of stagnant confined fluid inside the enclosure is initiated due to density difference 

when either of the heaters is switched on. The alternate activation of the heaters generates complex 

dynamics in the flow field. After the initial transience of flow establishment, periodic circulation 

patterns are evolved consisting of two circulating cells (vortices). The characteristics of evolved 

oscillatory flow pattern (as shown in Fig. 1b) with the interrupted heating is responsible for transporting 

heat in the enclosure and found strongly dependent on Z and Ra in our earlier study [11]. This is a 

buoyancy-driven flow and was simulated considering two-dimensional, laminar and incompressible 

flow within the framework of Boussinesq approximation and assuming rigid and impermeable walls, 

and no-slip boundary conditions. CFD simulations were carried out using an extremely validated in-

house code based on the finite volume method (FVM) and SIMPLE algorithm [25], considering a set of 

dimensionless conservation equations for mass, momentum and energy as given below. 

 

. 0∇ =V             (1) 

 

2( . ) Pr RaPr  P θ
τ

∂
+ ∇ = −∇ + ∇ +

∂ y
V V V V e         (2) 

 

2( . )θ θ θ
τ
∂

+ ∇ = ∇
∂

V            (3) 

 

The last term in Eq. (2) is the buoyancy force acting antiparallel to gravity (g), along the direction of 

vertical unit vector ye , and is coupled to dimensionless velocity (V) and pressure (P) terms of Navier-

Stokes momentum equation. In above equations, L is taken as domain length scale and 
L
α as the velocity 

scale whereα is the thermal diffusivity of the working fluid. The temperature and physical time are non-

dimensionalized by ( ) / ( )C H CT T T Tθ = − − and 2/ ( / )t Lτ α= respectively. 
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 The simulated stream function (ψ ) inside the enclosure is utilized as “inputs” to the POD 

analysis that explores the underlying flow physics in terms of modal structure and power spectral 

density (PSD) function. The study is limited for the Rayleigh number ( 3 2Ra Pr( ( ) ) /H Cg T T Lβ ν= − ) in 

the range of 103 to 106 and Prandtl number ( Pr /ν α= ) of 0.71, where β and ν are respectively 

volumetric thermal expansion coefficient and kinematic viscosity of the working fluid. 

3.0 POD PROCEDURE 

POD executes a linear analysis in terms of optimal basis functions and a fluctuating entity, which can 

be any flow field data or image intensities from an experiment. In this work, the analysis has been 

performed on stream function data obtained numerically as described earlier. For this process, the stream 

functions at all spatial locations (row size, m and column size, n) for a particular time instant are 

reshaped into a vector (u). Such vectors for N successive time instants are arranged in adjacent columns 

to form a snapshot matrix, U of dimensions mn × N such that: 

[ ]1 2 3, , ,......, NU u u u u=           (4) 

In POD, the flow field is decomposed into a set of basis functions (spatial functions, ϕ ) and mode 

coefficients (temporal functions, a) which gives: 

1
( , ) ( ) ( )

mN

k k
k

u r t a t rϕ
=

=∑            (5) 

where Nm is the finite number of modes and mN N≤  and r denotes direction. The snapshot matrix, U is 

used to calculate the N dimensional symmetric and positive semi-definite temporal correlation matrix C 

given by: 
TC U U=             (6) 

The solution of linear eigenvalue problem, k k
kCσ λ σ= allows the construction of eigenvectors kσ  

(k=1,…,Nm). The symmetry of the correlation matrix demands the eigenvalues kλ to be real, the 

magnitude of which provides a measure of the energy content of the corresponding eigenvectors. Hence, 

the eigenvectors are ordered by the magnitude of their corresponding eigenvalues.  

The assumption of the snapshot version of POD used in this analysis is that the spatial 

eigenfunctions or eigenmodes (ϕ ) are linear combinations of the snapshots with eigenvectors of the 

temporal correlation matrix as the coefficients such that: 
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1
( ) ( , )

N
k

k n n
n

r u r tϕ σ
=

=∑            (7) 

which, in matrix representation, implies pre-multiplication of the eigenvectors with the data matrix, U. 

Thus, the eigenfunctions satisfies spatial orthogonality condition. We normalized the spatial 

eigenfunctions using their respective norms. The temporal coefficients (a(t))are analytically obtained by 

projecting the flow fields onto each eigenfunction [16] such that: 

( ) ( ( , ), ( )) 1,2,,,, ; 1,.....,k n n k ma t u r t r k N n Nϕ= = =        (8) 

 The presence of multiple frequencies in a problem generally corresponds to a superposition of 

frequencies of these modes which is evident from their waveform [26]. In particular, when these modes 

are exactly out-of-phase with one another, they correspond to a circular structure in the phase space of 

the corresponding two modes [27]. Certain energy coefficients have been defined in the literature [16] 

that provide a quantitative estimate of the energy content in the POD modes: 

The participating energy coefficient ( nξ ) which represents the fractional energy in n-th mode and the 

cumulative energy coefficient ( nη ) are defined as, 

1
/

N

n n n
n

ξ λ λ
=

= ∑             (9) 

1 1
( ) /

mN N

n n n
n n

η λ λ
= =

= ∑ ∑            (10) 

Here λn represents the energy content of the nth mode. 

In this work, POD helps to understand the complexities of thermally induced flow phenomenon by 

studying the different modes. 

 

4.0 RESULTS AND DISCUSSIONS 

The heat and fluid flow during natural convection in a square cavity with alternately active heat 

sources from the bottom of the enclosure as shown in Fig. 1a has been studied numerically for a Prandtl 

number of 0.71. Detailed heat transfer analysis has been reported in the authors’ earlier work [11], and it 

was found that for a very high pulsation frequency the condition approaches a state of two steadily 

active heaters. With the increase of the switchover frequency, the thermal boundary layer formation over 

the active heater changes rapidly and the destruction of the thermal boundary layer leads to the improved 

heat transfer. At a low Z value or higher frequency, the heaters are being switched "on" and "off" very 
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fast and the system gets less time to respond fully to this sudden alternation so that the effects of both 

the heaters prevail in a quasi steady manner. 

 

Figure 1: (Color online) (a) Schematic of the computational domain. The vortical structures formed 
inside the enclosure for Z=0.1 and Ra=106 at two different time instants (b) τ =1, 1.1 and (c) τ =1.05.  

 

Two primary vortices are formed due to bottom heating as shown in Fig. 1b. The vortices grow and 

shrink periodically depending upon the switching frequency of the heaters. At higher Z the inertia of the 

circulating cell introduces nonlinear effects in the system. It is worth mentioning here that this 

nonlinearity dies down with the decrease of the convection strength of the circulating cell as Ra 

decreases. At low Ra of 103 periodic characters are observed in all the flow variables with only one 

dominating frequency of external perturbation whereas, at higher Ra the waveform gets distorted. In this 

work we used POD to explore the dynamics at higher Ra which shows increased nonlinearity. In POD 

analysis, the eigenvalues represent the energy content in the corresponding eigenmode. The first 

eigenmode, denoting the mean non-fluctuating mode, is expected to contain the maximum energy. The 
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fractional energy content is significant until the third mode. The higher modes are primarily contributed 

by the noise.  

 
Figure 2: (Color online) Eigenvalues and cumulative energy coefficient for different modes at 

different Ra and Z. (a) for Ra = 106 and Z= 0.1 and 0.2 (b) for Ra = 106 and Z= 0.4 and 0.8 (c) for Ra = 

105 and Z= 0.1 and 0.2 (d) for Ra = 105 and Z= 0.4 and 0.8. For all Ra and Z the cumulative energy 

coefficient is ~100 % after mode 3. 

 

 The first six eigenvalues )(λ  of the stream function contours, in the descending order of 

magnitudes, are presented in Fig. 2 for Z = 0.1 to 0.8 at Ra = 105 and 106. The corresponding cumulative 

energy coefficient nη is also shown in the secondary axis of each subfigure along with the eigenvalues. 

From Fig. 2 it is observed that the cumulative energy reaches ~100 % within first three modes with the 

first eigenvalue expectedly having the largest magnitude and hence the most participant energy. At 

Ra=106 it alone captures 60.41 % and 50.64 % of the total energy for Z=0.1 and 0.2 respectively. The 

magnitude of the eigenvalue for Z=0.2 decreases sharply from 1.06×108 in the first mode to 1.02×107 in 

the third mode and further to 1.5×106 in the sixth mode. Eigenvalue and energy distribution of stream 
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function at Z=0.4 for Ra=106 is shown in Fig. 2b. Figure 2b demonstrates that the first eigenvalue has 

the largest magnitude and the most participant energy, and it alone captures 61.64 % of the total energy. 

It should be noted that the energy content of the first mode increases 11 % with the increase of Z from 

0.2 to 0.4 at Ra=106. With the increase of Z the system tends to reach the quasi steady-state situation of 

single heater placed asymmetrically at the bottom wall of the enclosure. The energy content of the first 

mode increases with the decrease of Ra. The energy content of the first mode for Ra=105 and Ra=104 at 

Z=0.2 are 70.20 % and 87.91 % respectively. As the energy content of the first mode increases 

significantly with the decrease of Ra, the first mode contains the main contribution of forming the 

coherent structures. With the decrease of energy content in the eigenmodes, increasingly smaller 

structures are observed in the higher modes. Similar conclusions have also been drawn by Feng et al. 

[28] where they observed that the first few modes dominates the global flow field. It should be noted 

that, at very small Z almost all the energy (>99 %) are contained in the first mode. At Z=0.01 the 

magnitude of the eigenvalue decreases sharply from 5.69×107 in the first mode to 1.06×10-7 in the 

second mode. 

 
Figure 3: Energy content in different modes for Ra=105 and Ra = 106. As demonstrated in (a), at Ra= 

106 the energy content of mode 1 is minimum at Z=0.2 and at the same point the energy content of mode 

2 is maximum. For Ra=105 as shown in (b), the minimum energy of mode 1 and maximum energy of 

mode 2 is observed at Z=0.4.  

 The energy content in the first two energetic modes for different switch-over time period Z is 

shown in Fig. 3. The energy content in the first mode is minimum and maximum for mode 2 at Z = 0.2 

for Ra=106. The minimum energy in the first mode at Z=0.2 denotes that the mean strength of the 

circulating cell is weaker than that of the first mode structure corresponding to Z=0.4. The energy 

content in the second mode is highest at Z=0.2, which signifies the stronger fluctuating energy 
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distribution through the second mode. A similar point of minimum energy content in mode1 is observed 

at Z=0.4 for Ra=105 (cf. Fig. 3b). Thus, higher modes tend to show dominance at higher Z for lower Ra. 

For analysis of the modal structures, we concentrate on three Z values for each of Ra=105 and 106: the 

period with minimum first mode energy and two of its neighbouring periods.  

The first three dominant modes obtained from the streamline data are shown in Fig. 4 for Ra=106 and 

Z=0.1. Eigenmodes with large eigenvalues take the shape of large scale smooth structures. The 

streamline contours clearly show the presence of two counter rotating vortices at mode 1. At higher 

frequency (Z≤0.1) the system gets lesser time to respond during alternate heating and the system tends 

to reach a two active heater situation. The two circulating structures are not symmetric as the energy of 

mode 2 is also significant (34.7 %). The structure of mode2 further breaks down into smaller structures 

at higher modes. First three modes contains around 97.2 % of energy where the first mode represents the 

steady state character of two circulating cells in the domain and the second and the third modes 

represent the fluctuating modes that transfer the energy from one circulating cell to other. The first three 

modes show large-scale structures and in the further higher modes the presence of small-scale structures 

increases. The FFT of the eigenmodes are shown in Fig. 4d. The first dominant frequency is observed in 

mode 2, which is ~Z-1. At this frequency, mode1 shows the lowest power. 
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Figure 4: (Color online) Modal structure and FFT of eigenmodes and maximum stream function for 

Z=0.1 and Ra=106. Three modal structures of the eigenmodes are shown in (a), (b) and (c) respectively. 

In (d) the FFT of the eigenmodes is shown. The power of mode 2 is maximum and this corresponds to 

the switching frequency ~ Z-1. The temporal coefficients of the three modes are shown in (e). The time 

series and FFT of maximum stream function is shown in (f). 
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B 

Figure 5: (Color online) Modal structure and FFT of eigenmodes and maximum stream function for (A) 

Z=0.2 and (B) Z=0.4 for Ra=106. Two modal structures of the eigenmodes are shown in (a) and (b) 

respectively. In (c) the FFT of the eigenmodes is shown. The power of mode 1 is maximum and this 

corresponds to the switching frequency ~ Z-1. The time series and FFT of maximum stream function is 

shown in (d). 

 

Higher frequencies are the harmonics of the dominant one. The first mode with two large-scale coherent 

structures appears at a frequency, which is the first harmonic of the switch-over frequency. Each such 

structure represents a circulation with a singularity at the center. Since each roll spans approximately 

half the enclosure, their turnaround time is about half of the single rolls and hence the occurrence of the 

peak at the first harmonic is physically intuitive. In addition, the first and third modes have one and three 

circulations showing frequencies that are the fundamental and third harmonic respectively. However, the 

frequencies of all the modes are harmonics, and their superposition leads to a complex waveform as seen 

from Fig. 4e. The time series and the FFT of the maximum stream function are shown in Fig. 4f. Since 

the eigenvalues of the first two modes are of comparable orders of magnitude, the effect of superposition 

of the two modes is evident in both the waveform (distortion of the waveform) and its FFT (presence of 

the fundamental and the first harmonic of comparable strength). 

 At Z=0.2, as shown in Fig. 5c, mode 1 shows one dominant frequency ~ Z-1. Thus, the single 

structure in the eigenfunction plot (Fig. 5a) of this configuration shows up at this frequency. In mode 2, 

this structure breaks up into two counter-rotating vortical structures. As in the previous case, the mode 
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with a single roll has the dominant peak ~ Z-1 while that of the one with two rolls is the first harmonic of 

the switch-over frequency. Two such structures in mode 2 further break down into smaller structures at 

higher modes. First three modes contain around 95 % of energy. The shift of the single structure to the 

first mode makes it the most dominant power spectrum in the FFT in Fig. 5c and thus this mode shows 

the dominant frequency of ~ Z-1. The structure of eigenfunctions in mode 3 is similar for Z=0.4 and 

Z=0.2 for Ra=106. The large separation in the magnitudes of the first two eigenvalues at Z =0.4 leads to 

a clear dominance of a single frequency in the FFT of the maximum stream function. On the other hand, 

at Z =0.1 and Z =0.2, similar orders of magnitude of the first two eigenvalues lead to the existence of 

strong multiple peaks in the FFT. As shown in our earlier paper [11], at low values of Z, the solution 

approaches that of an enclosure with two steady discrete heat sources. On the other hand, at high values 

of Z, the solution moves towards that of a cavity with a single heat source placed asymmetrically. Thus 

the observation of a single roll structure as the dominant mode at Z = 0.2 and 0.4 and a symmetric 

double roll structure at Z = 0.1 is consistent with the earlier result [11]. These differences in flow 

structures have a significant impact on the heat transfer rates as discussed in our earlier paper [11]. 

However, a detailed discussion is beyond the scope of the present paper. 

 With the decrease of switching frequency the amplitude as well as the time period of the 

maximum stream functions increases as in case of lower switching frequency the system gets more time 

to react to the external perturbation. At very high Z of 0.8, the maximum stream function pattern is 

almost like a square wave. At Z=0.1 the amplitude of maximum stream functions is small whereas, at 

Z=0.2 more vigorous fluctuations are observed. At lower Ra due to weak momentum source the fluid 

flow becomes less intense, and with the increase of switching frequency (lower Z) the maximum stream 

function shows a sinusoidal variation. 
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Figure 6: (Color online) FFT of the first three dominant eigenmodes for different Z at Ra=105. In (a) 

the dominant mode is observed for mode 2 at Z=0.2. All the dominant modes frequency corresponds to 

the switching frequency ~ Z-1. (d, e, f) shows FFT of maximum stream function. The dominant 

frequency in (d) corresponds to that of mode 3 in (a) while the dominant frequency in (e) and (f) 

corresponds to that of mode 1 in (b) and (c) respectively. 

 

 In Fig. 6 the FFT of first three eigenmodes at different Z for Ra=105 is shown. At Z=0.2, mode 2 

and 3 have peaks at the frequency Z-1, while mode 1 is least dominant at this frequency. Similar to the 
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dynamics of Z=0.1 and Ra=106 (Fig. 4), mode 1 shows two large scale structures and appears at 

frequency which is the first harmonic of the switch-over frequency. The dominant frequency for mode 1 

at Z=0.4, as shown in Fig. 6b, changes to Z-1. Simultaneously, the modal structure also changes. Similar 

to the Ra=106, the modal structure of mode 1 changes from the two rotating cells to one vortical 

structure from Z=0.4. As in the case of Ra = 106, the dominant frequency for mode 1 switches to Z-1 at 

the value of Z for which the fractional energy content of mode 1 is minimum. The complex waveforms 

and their FFTs obtained from the maximum stream function shown in Fig. 6d, e, f clearly shows 

superposition of modes 1 and 2. This is particularly evident for Z=0.4 where the first and second 

eigenvalues are of similar order of magnitude whereas influence of mode 2 is least for Z=0.8 because of 

its lower eigenvalue. At such higher Z, the square type waveform of the maximum stream function 

seems to be dominated by the dynamics of mode 1.  Further increase of Z does not change the pattern of 

the dominating modal structure and power. Thus, using three dominant POD modes, the spatio-temporal 

flow dynamics in the enclosed domain can be clearly understood which proves the power of proper 

orthogonal decomposition as a modal analysis technique. 

5.0 CONCLUSIONS 

In this paper, the dynamics of the flow structure caused by natural convection due to alternate heating 

of two heat sources is analyzed using proper orthogonal decomposition (POD). The heat transfer 

analysis of the said problem was reported earlier and it was found that heat transfer increases with the 

increase of pulsation frequency. However, in this work, we show the inherent dynamics of the flow 

inside the domain using POD and compare the modal dynamics with the temporal variation of maximum 

stream function obtained from FVM solution.  

The energy content in each mode is presented which provides a measure of fluctuations in the flow. A 

mean non-fluctuating mode has been shown that contains the maximum energy. The first three POD 

modes contain ~97% energy and hence the dynamics can be completely understood from the analysis of 

these modes. For each Ra, the temporal dynamics in the domain show interesting variation with the 

switching frequency. There exists a critical value for this frequency at which mode 1 changes from a 

structure with two circulating cells to one with single vortical structure. In addition, below this critical 

frequency (which depends on Ra), mode 1 (with single structure) shows the dominant frequency which 

is the switching frequency and modes 2 and 3 occur at harmonics. However, increased heat transfer 

occurring at higher switching frequencies correspond to mode 1 occurring at harmonics with modes 2 

and 3 appearing at dominant frequency of the switching frequency. For a lower Ra, the system shows 
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increased non-linearity both in heat transfer and fluid flow only when it gets sufficient time to respond 

to the external perturbation i.e. at high values of Z. Also at this frequency, the energy content in the first 

mode shows a minimum, which depends on the strength of the heat source. This implies the increased 

significance of higher modes in the dynamics. The complex waveform of the stream function showed a 

temporal dynamics similar to superposition of the modes at switching frequencies where higher modes 

have energy content comparable to the first mode. 
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