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ABSTRACT 

 
In this paper, a general procedure is used to develop new geometrically accurate infinitesimal-
rotation finite elements (FE). New spatial beam, plate, and solid elements are developed in terms 
of constant geometric coefficients obtained using the matrix of position vector gradients. The 
spatial beam, plate, and solid element shape functions are developed using the displacement field 
of the absolute nodal coordinate formulation (ANCF). These elements are suited for developing 
reduced-order models for structural and multibody system (MBS) analyses, particularly when the 
floating frame of reference (FFR) formulation is used. The initial geometry of the new elements, 
referred to as the ANCF/FFR elements, is related to B-splines and NURBS (Non-uniform rational 
B-splines) by a linear mapping, and therefore, their use does not lead to geometry distortion when 
geometry models are converted to analysis meshes. The main contribution of this technical note is 
the proposed general procedure for the development of the geometrically accurate spatial 
ANCF/FFR elements and demonstrating the use of this procedure by developing the ANCF/FFR 
displacement field of three different spatial elements.    
 
Keywords: Structural analysis; infinitesimal-rotation finite elements; absolute nodal coordinate 
formulation; floating frame of reference formulation; consistent rotation-based formulation. 
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1. INTRODUCTION 

In the classical FE literature, different displacement fields are used for straight and curved beams 

and for plate and shells [1 – 3]. Furthermore, the development of cubic shape functions for the 

representation of bending deformation of some elements such as plates can be challenging. More 

importantly, the initial geometry of existing infinitesimal-rotation-based elements is not related by 

a linear mapping to B-splines and NURBS [4]. As a result, converting solid models to FE analysis 

meshes leads to geometry distortion, resulting in significant economic loss [5]. Having 

geometrically accurate rotation-based finite elements is necessary for developing reduced-order 

models for structural and MBS applications [6 – 9]. In this paper, a general procedure is proposed 

for developing new geometrically accurate spatial infinitesimal-rotation finite elements (FE). New 

spatial beam, plate, and solid (brick) elements are developed in terms of constant geometric 

coefficients obtained using the elements of the matrix of position gradients defined in the reference 

configuration [10]. The new spatial beam, plate, and solid element shape functions are obtained 

from the ANCF kinematic description. These elements can be used for developing reduced-order 

models for structural and MBS/FFR analysis. This particularly important when the FFR 

formulation is used in MBS analysis. The new ANCF/FFR initial geometry is identical to the 

ANCF geometry, which is related to B-splines and NURBS by a constant transformation, and 

therefore, the use of the new elements does not lead to geometry distortion when computer-aided 

design (CAD) models are converted to analysis meshes [11]. The velocity transformation of the 

consistent rotation-based formulation (CRBF) is used to develop a constant velocity 

transformation that allows writing systematically the ANCF position gradients in terms of the 

infinitesimal rotations while preserving the geometry in the reference configuration [12, 13]. 
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2. GEOMETRY AND POSITION VECTOR GRADIENTS 

Three configurations are often used to describe the kinematics of continuum with complex 

geometries. These are the straight configuration, the stress-free curved reference configuration, 

and the current deformed configuration described, respectively, by the parameters or coordinates 

 1 2 3

T
x x xx ,  1 2 3

T
X X XX , and  1 2 3

T
r r rr  [10]. The position vector r of the 

material points can be written in the form  r X u , where the vector  1 2 3

T
u u uu  describes 

the displacement. The position gradient matrix J  is defined as 

   1
e o

        J r X r x x X J J , with 
1 2 3e x x x

      J r x r r r , and 

 1 2 3o o o o   J X x J J J .  

2.1 Position Vector Gradients and Finite Rotations (ANCF/CRBF Elements) 

The recently proposed ANCF/CRBF elements can have a number of finite-rotation nodal 

coordinates equal to those of the conventional elements [12, 13]. For the ANCF/CRBF elements, 

the nodal position gradients can be defined as  1 2 3e o o, ,      J r x JJ A J . In this equation, 

A  is an orthogonal matrix that depends on three finite-rotation parameters 1 2,  , and 3 . The 

matrix A  can be written as      1 1 2 3 2 1 2 3 3 1 2 3, , , , , ,            A J a a a . The columns 

1 2,a a , and 3a  of this matrix are orthogonal unit vectors.  

2.2 Position Gradients and Infinitesimal Rotations (ANCF/FFR Elements) 

If the assumption of infinitesimal nodal rotations is used, one obtains the ANCF/FFR element 

formulation [10]. Using this assumption, the matrix A  is approximated as  A I θ , and θ  is the 

skew-symmetric matrix associated with the vector  1 2 3

T  θ  when the Euler angle 

sequence 1 2 3X X X   is used. One, therefore, has 
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      e o o o  J AJ J θJ      (1) 

One can write this equation in the alternate form 

   
1 2 3 1 2 3e x x x o o o o

          J r r r J J J J θ       (2) 

where 1 2,o oJ J  , and 3oJ  are the skew symmetric matrices associated with the columns 1 2,o oJ J , and 

3oJ  of oJ . Therefore, the vector r  and the position gradient vectors 
1 2
,x xr r , and 

3xr  at an arbitrary 

point, including an FE nodal point, on a continuum can be written as 

     
1

2

3

1 1

2 2

3 3

o

x o o d

x o o

o ox

     
                                 

r r I 0
r J 0 J r

r J 0 J θ

J 0 Jr





    (3) 

where or  and dr  are, respectively, the vector r  in the reference configuration and the displacement 

vector. The transformation given by Eq. 3 is used in this paper to develop the new spatial 

ANCF/FFR elements.  

 

3. SPATIAL ANCF/FFR ELEMENTS 

The ANCF kinematics and geometry is defined using the equation      , t tu x S x e . In this 

kinematic description, S  is the element shape-function matrix, e  is the vector of element nodal 

coordinates, and t  is time. Figure 1 shows the ANCF nodal coordinates in the case of a fully 

parameterized spatial beam element. The same coordinates for each node are used for the plate 

and solid elements used in this paper. Because of the use of the position vector gradients, the 

ANCF kinematic description is related to the CAD B-splines and NURBS by a linear mapping 

[11]. At a given node k , the nodal coordinates are defined by the vector 
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1 2 3

T T T T T
k k k k k

x x x
   e r r r r , which can be written as k k k k

o d e e B e , where k
oe , k

de , and kB  are 

defined, respectively, using Eq. 3 as 

    11

22

33

, ,

k
o

kk k
ok k ko d

o d kk k
oo
kk
oo

   
                     

I 0r

0 JJ r
e e B

0 JJ θ

0 JJ





    (4) 

Using these definitions and the ANCF kinematic description, one has [10] 

                 0, d dt t t t  u x S x e S x e S x e    (5) 

In this equation, d S SB  is a new element displacement shape function that will be defined in 

Section 4 for different element types,      0 dt t t e e Be , and B  is a block diagonal matrix 

whose blocks kB  correspond to the element nodes. The nodal position vector oe  in the reference 

configuration defines the initial stress-free geometry, while the element nodal vector de  describes 

the displacements. The two terms on the right-hand side of Eq. 5 are functions of oJ , which defines 

the initial element geometry. Therefore, the elements of oJ  can be used to define new geometric 

coefficients, allowing for accurately capturing the initial element shape [10]. Equation 5 differs 

significantly from the displacement field used for conventional infinitesimal-rotation finite 

elements because this equation can be used for both straight and curved elements to capture 

accurately initial curvatures using the new geometric coefficients. Using Eq. 5, there is no need to 

distinguish between plate and shell elements, which are treated differently in the FE literature. One 

can also show that the matrix d S SB  has a proper set of rigid body modes at the velocity level 

[10]. This property is important since the velocity equation      , d dt tu x S x e   is used to define 

the element inertia. One can use a procedure similar to the one used in [10] to verify that all the 
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elements presented in this paper have six rigid body modes that describe arbitrarily large 

translations and infinitesimal rigid body rotations. 

 

4. CHARACTERIZATION OF SPATIAL ANCF/FFR ELEMENTS 

In this section, several new spatial ANCF/FFR elements are developed, including beam, plate, and 

solid (brick) elements. It is assumed that each node of these elements has three position and nine 

gradient coordinates. For a node k  of the element, the coordinate vector is defined as 

1 2 3

T T T T T
k k k k k

x x x
   e r r r r . The procedure presented in this section can also be used for higher-

order ANCF elements since curvature coordinates can be replaced by position coordinates as 

discussed in the literature. In order to generalize the development presented in this section, we 

assume that the partition of the ANCF shape function matrix S  associated with node k  can be 

written as 

     1 2 3 4
k k k k ks s s s   S I I I I       (6) 

In this equation, , 1,2,3,4k
js j  ,  are the shape functions associated with the coordinate vectors of 

node k . The corresponding partition of the ANCF/FFR shape function matrix k k k
d S S B  

associated with the reduced number of coordinates is defined as 

     1 2 1 3 2 4 3
k k k k k k k
d o o os s s s      S S B I J J J       (7) 

The shape function dS   associated with the element coordinates 1 2T T T
nT

d d d d
   e e e e  , where  

n  is the number of nodes and 
T T T

k k k
d

   e r θ , can then be written as 

      1 2 n
d d d d   S S S S      (8) 
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This simple procedure will be used to define the shape function matrix dS  of different spatial 

ANCF/FFR beam, plate, and solid (brick) elements as shown in the remainder of this section. This 

shape function matrix as described in [10] is used to formulate a local linear problem that allows 

for systematically reducing the order of the model using component-mode synthesis methods. 

4.1 Spatial ANCF/FFR Beam Element 

The spatial ANCF fully parameterized beam element considered in this section has two nodes and 

twelve coordinates per node [11]. The shape functions of this spatial beam element are  

 
     

 

1 2 3 1 2 3 1 1
1 2 3 4

2 2 3 2 2 3 2 2
1 2 3 4

1 3 2 , 2 , ,

3 2 , , ,

s s l s l s l

s s l s l s l

        

     

          


       
  (9) 

with 1 2,x l x l   , and 3x l  . In this case, the displacement shape matrix dS  is defined 

as 1 2
d d d   S S S . Using this shape function matrix, no distinction is made between the 

displacement fields of straight and curved beams. By properly selecting the geometric coefficients, 

which are the position gradients in the reference configuration, the same shape function matrix can 

be used for both straight and curved beam elements. 

4.2 Spatial ANCF/FFR Plate Element 

Using the conventional FE approach, it is challenging to develop a plate element using a cubic 

interpolation for the bending deformation. Furthermore, in the conventional FE approach, one 

always distinguishes between the kinematics and geometries of plates and shells. These problems 

can be addressed using the approach discussed in this paper. The ANCF fully parameterized 

plate/shell element considered in this section has four nodes, each of which has twelve nodal 

coordinates. The element shape functions are defined as [11] 
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       
      

     
   
   
 

 

21 2 2 1
1 2

21 1
3 4

2 2 2 2 2
1 2

22 2
3 4

3 2 2 3 2
1 2

3 2 3
3 4

4 2
1

1 1 2 2 1 , 1 1 ,

1 1 , 1 1 ,

2 3 2 1 , 1 1 ,

1 , 1 ,

1 3 3 2 2 , 1 ,

1 , ,

1 2 3

s s a

s b s t

s s a

s b s t

s s a

s b s t

s

        

     

        

   

       

  

    

           

      

        

    

       

  

      
    

22 4
2

4 2 4
3 4

2 , 1 ,

1 1 , 1

s a

s b s t

  

    














   


       

  (10) 

where 1 2 3/ , / , and /x a x b x t     , and ,a b , and t  are, respectively, the element length, 

width, and thickness. In this case, the displacement shape function matrix dS  is defined as 

1 2 3 4
d d d d d   S S S S S . This element, which is based on a cubic interpolation for the mid-

surface bending, includes the drilling degree of freedom. Furthermore, using this element, one 

does not need to distinguish between the displacement fields of plates and shells since the 

geometric coefficients obtained using the position gradient matrix oJ  can be properly selected to 

define arbitrary geometry.  

4.3 Solid (Brick) Element 

The ANCF solid element considered in this paper has eight nodes. Each of the nodes has twelve 

nodal coordinates. The ANCF solid element shape functions are defined as [14, 11] 

     
         
       
       
       

1

1

2 1 11
2

1 2 1

3

1 1 21
4

1

1 1 1 1

1 1 2 1 2 1 2

1 1 1 1

1 1 1 1

1 1 1 1

k k k

k k k k kk k

k k k k kk

k

k k

k k k k kk kk

k
k k k

k k k

k

k

k

S

S a

S b

S c

  

     

     

     







     

        

    

    

    

  

   

   

   



        

        

    

    

    





 , 1, ,8k
 





   (11) 
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where ,a b , and c  are, respectively, the element dimensions along the 1 2,x x  and 3x  directions, 

1 2 3/ , / , /x a x b x c     ,  ,  ,  0,1    , and k k k, ,    are the dimensionless nodal 

locations for node k . In this case, the displacement shape function matrix dS  is defined as 

1 2 8
d d d d   S S S S . 

4.4 Implementation Issues 

Preliminary results have shown that the mass matrices obtained for the ANCF/FFR plate and solid 

elements can have very small determinants, making these mass matrices close to singular. This is 

despite the fact that the ANCF element mass matrix, associated with the ANCF position vector 

gradients, does not suffer from this problem for the ANCF plate and solid elements. Therefore, 

more research is needed in order to better understand the problems associated with transforming 

the gradients to infinitesimal rotations. Because this problem is not encountered with the beam 

elements, it is important to understand the issues involved when infinitesimal rotations are used at 

four nodal points to define the deformation of a surface, particularly when a drilling degree of 

freedom is used.   

  

5. SUMMARY AND CONCLUSIONS 

A general procedure is used in this investigation to develop new geometrically accurate spatial 

infinitesimal-rotation finite elements. Using this procedure, new spatial beam, plate, and solid 

elements are developed in terms of constant geometric coefficients obtained using the matrix of 

position gradients in the reference configuration. The geometrically accurate ANCF/FFR elements 

allow for developing reduced order models in structural and MBS applications. Because of their 

compatibility with B-splines and NURBS, their use does not lead to geometry distortion when 

CAD models are converted to analysis meshes. The feasibility of using the approach proposed in 
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this paper has been examined using a planar ANCF/FFR beam element [15]. The approach 

presented in this paper will allow for preserving the geometry in the reference configuration, and 

therefore, the CAD geometry is not distorted when converting the solid models to an analysis 

meshes. This conversion, using existing approaches, is very costly and time consuming and costs 

the U.S. automotive industry alone more than $600/year as reported in the literature [5]. Therefore, 

the development of the new ANCF/FFR elements has important practical implications for the 

industry. As mentioned in this paper, more research is required in order to better understand the 

transformation between the gradients and the infinitesimal rotations. Preliminary results showed 

that such a transformation can lead to very small determinant for the ANCF/FFR plate and solid 

elements, making the ANCF/FFR inertia matrix near singular. This is despite the fact that the 

ANCF element mass matrix associated with the position vector gradients does not suffer from this 

problem which is not encountered with beam elements that employ two nodal points. The use of 

infinitesimal rotations at four nodal points to describe the deformation of a surface including the 

effect of the drilling degree of freedom needs to be further investigated in the case of plate and 

solid elements.  

 

Acknowledgments 

This research was supported by the National Science Foundation (Project # 1632302). 

  



12 
 

REFERENCES 

1. Noor, A.K., 1990, “Bibliography of monographs and surveys on shells”, Appl. Mech. Rev., 

Vol. 43, pp. 223 – 234. 

2. Noor, A. K., Belytschko, T., and Simo, J. C. (eds.), 1989, “Analytical and Computational 

Models of Shells”, Vol. 3, ASME CED, New York. 

3. Specht, B., 1988, “Modified Shape Functions for the Three-node Plate Bending Element 

passing the Patch Test”, Int. J. Numer. Methods Eng., 26(3), pp. 705-715. 

4. Piegl. L., Tiller. W., 1997, The NURBS Book, Second Edition, Springer, New York.  

5. Mackenzie, D., 2011, “Curing Ill Surfaces”, SIAM News, April.  

6. Amabili, M., Sarkar, A., and Paidoussis, M.P., 2003, “Reduced-Order Models for Nonlinear 

Vibrations of Cylindrical Shells via the Proper Orthogonal Decomposition Method”, J. Fluids 

Struct., Vol. 18(2), pp. 227–250. 

7. Epureanu, B.I., 2003, “A Parametric Analysis of Reduced Order Models of Viscous Flows in 

Turbomachinery”, J. Fluids Struct., Vol. 17(7), pp. 971 - 982. 

8. Craig Jr., R.R., and Bampton, M.C.C., 1968, “Coupling of Substructures for Dynamic 

Analyses”, AIAA J, Vol. 6(7), pp. 1313-1319. 

9. Guyan, R.J., 1965, “Reduction of Stiffness and Mass Matrices”, AIAA J, Vol. 3(2), pp. 380. 

10. Shabana, A.A., 2018, “Geometrically Accurate Floating Frame of Reference Finite Elements 

for the Small Deformation Problem”, Proc IMechE, Part K: J Multi-body Dynamics, accepted 

for publication, DOI: 10.1177/1464419317731392.  

11. Shabana, A.A., 2018, Computational Continuum Mechanics, Third Edition, Wiley & Sons, 

Chichester, UK. 



13 
 

12. Shabana, A.A., 2016, “ANCF Consistent Rotation-Based Finite Element Formulation”, ASME 

J Computat Nonlinear Dynam, Vol. 11, DOI: 014502-1 - 014502-4. 

13. Zheng, Y., and Shabana, A.A., 2017, “A Two-Dimensional Shear Deformable ANCF 

Consistent Rotation-Based Formulation Beam Element”, Nonlinear Dyn., Vol. 87, pp. 1031 - 

1043. 

14. Olshevskiy, A., Dmitrochenko, O. and Kim, C.W., 2013, “Three-Dimensional Solid Brick 

Element Using Slopes in the Absolute Nodal Coordinate Formulation”, ASME J Computat 

Nonlinear Dynam, Vol. 9(2), 021001, (10 pages), doi:10.1115/1.4024910. 

15. Zhang, Z., Wang, T., and Shabana, A.A., 2018, “Development and Implementation of 

Geometrically Accurate Reduced-Order Models: Convergence Properties of Planar Beams”, J 

Sound Vibrat, submitted for publication. 

 

 

  



14 
 

Notation 

A     Transformation matrix 

B     Velocity transformation matrix for the element 

kB     Velocity transformation matrix at node k  

e     Vector of element nodal coordinates 

oe     Vector of element nodal coordinates in the reference configuration 

de     Vector of element nodal displacements 

J     Matrix of position vector gradients 

eJ  Matrix of position vector gradients with respect to the straight 

configuration coordinates 

oJ     Matrix of position vector gradients in the reference configuration 

1 2,o oJ J , 3oJ    Columns of the matrix of position vector gradients oJ  

 1 2 3

T
r r rr   The global position vector of an arbitrary point on the element 

dr     Displacement vector 

or     The nodal position vector in the reference configuration 

S     Shape function matrix 

dS     Displacement shape function matrix 
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 1 2 3

T
u u uu   Displacement vector 

 , tu x     Assumed local position field 

 1 2 3

T
X X XX   Element parameters in the reference configuration 

 1 2 3

T
x x xx   Element coordinates in the straight configuration 

 1 2 3

T  θ   Vector of orientation parameters 

, ,       Dimensionless parameters 

 

List of Abbreviations 

ANCF   Absolute nodal coordinate formulation 

CAD   Computer-aided design 

CAE   Computer-aided engineering 

CRBF   Consistent rotation-based formulation 

FE   Finite element 

FFR   Floating frame of reference 

I-CAD-A  Integration of CAD and analysis 

MBS   Multibody system 

NURBS  Non-uniform rational B-splines 
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Figure 1.  ANCF element nodal coordinates  


