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ABSTRACT 
 

This paper introduces a new method for the integration of localized surface geometry with fully 
parameterized absolute nodal coordinate formulation (ANCF) finite elements. In this 
investigation, ANCF finite elements are used to create the global geometry and perform the finite 
element (FE)/multibody system (MBS) analysis of deformable bodies. The localized surface 
geometry details can be described on ANCF element surfaces without the need for mesh 
refinement. The localized surface is represented using a standard computational geometry 
method, Non-uniform rational B-spline surface (NURBS), which can describe both conic surface 
and freeform surface efficiently and accurately. The basic idea of the integration of localized 
surface geometry with ANCF elements lies in the inclusion of such detail in the element mass 
matrix and forces. The integration can be implemented by overlapping the localized surface 
geometry on the original ANCF element or by directly trimming the ANCF element domain to 
fit the required shape. During the integration process, a mapping between ANCF local 
coordinates and NURBS localized geometric parameters is used for a consistent implementation 
of the overlapping and trimming methods. Additionally, two numerical integration methods are 
compared for the rate of convergence. The results show that the proposed subdomain integration 
method is better, since it is optimized for dealing with complex geometry. The proposed 
subdomain method can be used with any fully parameterized ANCF element. In order to analyze 
the accuracy of the proposed method, a cantilever plate example with localized surface geometry 
is used, and the simulation results with the proposed method are compared with the simulation 
results obtained using a commercial FE code. Two other examples that include contact with 
ground and localized surface geometry are also provided. These examples are a simple plate 
structure with surface geometry and a tire with tread details. The incompressible hyperelastic 
Mooney-Rivlin material model is used to describe the material used in the tire tread. It is shown 
through the tire contact patch that the proposed method can successfully capture the effect of the 
tread grooves. The rate of convergence and locking of fully parameterized ANCF elements are 
also discussed in this paper. 
 
 
Keywords:  Localized surface geometry; absolute nodal coordinate formulation; subdomain 
integration; multibody system dynamics; contact; tire tread; Mooney-Rivlin; NURBS. 



 3

1. INTRODUCTION 

Because detailed localized surface geometry is found in many structural and mechanical system 

applications, considering the effect of such geometry during the FE or flexible MBS analysis is 

important. An example of localized geometry that affects the behavior of a system is the tread 

details in a tire. Table 1 shows a classification of the different kinds of tread details that are 

specific to the application type of the tire they are designed for. In some cases, simplification of 

the tire model by ignoring such details may be a reasonable assumption, however in certain 

analyses like hydroplaning situations ignoring the tread details can lead to incorrect results. 

Hence, including localized geometry in the FE or flexible MBS analysis is essential in certain 

simulation scenarios. 

When classical FE methods are used with MBS dynamics codes,  difficulties are 

encountered in achieving the correct solution for problems involving large deformation and 

rotation due to the incremental-rotation assumptions used in existing FE formulations (Neto et. 

al, 2004; Shabana, 1997; Das et. al, 2010). The ANCF method which uses absolute positions and 

gradients as nodal coordinates can not only capture correct rigid body motion and large 

deformation but also has the advantages of a constant inertia matrix and zero Coriolis and 

centrifugal forces (Orzechowski and Fraczek, 2012; Orzechowski and Fraczek, 2015; Tian et al., 

2014; Shabana 2012; Shabana and Yakoub, 2001; Recuero et. al, 2014), and can describe a 

freeform surface's geometry accurately (Sanborn and Shabana, 2009; Lan and Shabana, 2010). 

Due to the fact that a non-incremental solution procedure can be used, ANCF elements can be 

easily implemented in general purpose MBS algorithms (Shabana, 2014; Shabana, 2015; 

Shabana, 2013; Patel et. al, 2015). Although ANCF has many advantages in the simulation of 

very flexible bodies as demonstrated by the already published investigations, the representation 
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of localized surface geometry, such as holes, grooves and protrusions which can play significant 

roles in the overall dynamics of the structure, without mesh refinement remains a challenge (Cho 

et. al, 2004; Gipser, 2005; Lugner et. al, 2005; Pacejka, 2006). Depending on the goal of the 

simulation, ignoring such details could potentially lead to incorrect solutions (Cho et. al, 2004). 

Capturing detailed localized geometry is a challenging research topic in the Computer 

Aided Design (CAD) field as well (Li and Ke, 2000; Schmidt, 2012). In the CAD field, the main 

methods for representing complex shapes include trimming, sewing and Boolean operations, 

wherein small surface patches or small solids are used to represent complex geometric shapes; an 

approach that can be computationally quite expensive and may cause problems such as 

geometric error or numerical instabilities (Li and Ke, 2000). In order to circumvent such 

processes in the Computer Aided Engineering (CAE) field, the FE models are often simplified 

by simply removing local geometric features from the overall body before meshing or subjected 

to mesh refinement until the desired geometry details are captured (Cho et. al, 2004; Ito, et. al, 

2009; Kagan et. al, 2003). Nonetheless as previously mentioned, ignoring some of these 

geometric details may not be allowable in certain analysis scenarios. On the other hand refining 

the mesh may cause the mesh data to increase exponentially and prolong the computation time 

greatly. Sometimes a very fine mesh can make the analysis almost impossible because of the 

limitations on the computer memory and processing capabilities. Several researchers have 

recently focused their investigations on new meshing methods or elements that enable local 

refinement (Kagan et. al, 2003; Kleiss et. al, 2012) by making use of hierarchical B-splines and 

NURBS (Bornemann, 2013), T-splines (Uhm and Youn, 2009) and PHT splines (Wang et. al, 

2011).  Such methods are effective both in reducing the mesh size and obtaining accurate results 

(Cho, 2004). These methods however are complicated to implement and their effectiveness 
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depends on the given geometry being analyzed. Furthermore, such methods that are dependent 

on a rigid recurrence scheme could pose several problems when used with ANCF elements 

(Sanborn and Shabana, 2009; Gantoi, et. al, 2013).  

This paper proposes a new method for the implementation of localized geometry into 

ANCF surfaces. The proposed method can be used with any fully parameterized ANCF element. 

This paper is organized as follows: Section 2 reviews the three levels of including localized 

surface geometry in FE methods. Section 3 briefly introduces the concepts and methodologies 

used in the definition of fully parameterized ANCF elements. Section 4 describes two methods 

of integrating localized surface geometry with ANCF elements. Section 5 compares the results 

obtained using the global domain integration method and subdomain integration method. Section 

6 briefly describes the governing equations of motion and the contact method used in the 

numerical examples presented in this paper. Section 7 presents three examples and compares the 

results obtained using the approach described in this paper with the results obtained using a 

commercial FE code in order to demonstrate the effectiveness of the proposed approach. 

 

2. LOCALIZED SURFACE GEOMETRY MODELING METHODS 

There are three different levels in the FE analysis at which the local surface geometry can be 

implemented in the model. For level one, the geometry details are included while building the 

CAD model, for level two, these details are included while generating the FE mesh, and for level 

three, the details are included during the numerical integration process of the FE problem. Thus 

the localized surface geometry modeling approach can be classified as the geometric shape 

design level (Kagan, et. al, 2003; Bouclier, 2016; Chemin et. al, 2015), mesh level and numerical 

integration level (Wang, 2000; Nicolas and Fouquet, 2013).  
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In the CAD field, the techniques used to represent the localized geometry mainly include 

local and global refinement methods, trimming and the merging methods (Piegl and Tiller, 1997; 

Schmidt et. al, 2012). Global refinement is the simplest refinement technique in geometric design 

(Li and Ke, 2000). For example, the most useful method when B-spline and NURBS are used is 

to insert knots where the local feature exists (Kagan et. al, 2003; Yu et. al, 2016). However, the 

patches near the local geometric feature must be refined simultaneously to ensure conformity, 

and this may introduce many undesired control points. The disadvantage of this approach is that 

it leads to rapidly growing computing and storage requirements. Trimmed NURBS surface has 

become one of the most effective and widely used methods in current CAD systems for modeling 

complex surfaces because it provides a promising alternative for representing NURBS domains 

of arbitrarily complex topology (Schmidt et al, 2012). The trimmed NURBS surface approach 

makes adding localized surface geometry convenient and easy. One disadvantage of the trimmed 

NURBS surface method is that it can lead to difficulties during mesh generation, by often 

making the mesh irregular and overly fine, which may lead to highly deformed elements in the 

reference configuration, error in the FE solution due to a distorted mesh, and a higher 

computational cost in case of an overly fine mesh. In order to improve the flexibility of splines 

and enable local refinement, several new splines have been developed recently, including 

hierarchical B-splines and NURBS (Bornemann et. al, 2013, Bouclier et. al, 2016), LRB-splines 

and T-splines (Uhm and Youn, 2009; Wang et. al, 2011; Schillinger et. al, 2012). T-splines have 

attracted considerable attention in both the computational geometry and analysis communities 

since they can also represent trimmed multi-patch geometries. PHT-splines which are based on 

T-splines have been used in the framework of isogeometric analysis (Bouclier et. al, 2016). 

Forsey and Bartels (1998) introduced the concepts of hierarchical B-splines, which provide the 
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capability for local refinement of surfaces and multi-resolution surface editing. Since this method 

is not restricted to the underlying B-spline mathematics, it is applicable to any parametric tensor 

product or triangular representation. There are several methods in the CAD field for localized 

surface geometry modeling, but it is difficult to use them in conjunction with ANCF since they 

are very complicated to implement and might lead to issues regarding the continuity and 

conformity between elements which is an important aspect of the ANCF method. 

Methods for the inclusion of localized geometry at the mesh level also consist of global 

refinement and local refinement. There are several major approaches that allow adaptive 

refinement in the FE analyses including the h-refinement, p-refinement and r-refinement 

(Chemin et. al, 2015; Wang, 2000). H-refinement is considered a non-local refinement method 

because more than one element is refined at the same time. The algorithm for h-refinement is 

simple and it is easy to apply to complicated domains. There are similar refinement techniques 

based on a hierarchical split of the standard finite element which allow localized surface 

geometry modeling (Wang, 2000; Nicolas 2013). However, most adaptive mesh refinement 

methods are approximations of the original mesh to within a given tolerance, and therefore, 

conformance of the elements can be difficult to achieve. Furthermore, as finer meshes are being 

developed in order to capture fine geometry details, the computing and storage requirements and 

the number of degrees of freedom of the mesh increase. Since the ANCF method employs higher 

order displacement polynomials in order to achieve gradient continuity, conformance in some 

elements, and more detailed deformation shapes, ANCF elements normally have more degrees of 

freedom as compared to the classical FE’s which can lead to long simulation time.  

In the FE method, the inertia and elastic force coefficients in the weak form of the 

equilibrium equations are evaluated using numerical integration methods. Hence the influence of 
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a local geometric shape can also be considered by adjusting the integration domain or the 

distribution of integration points when calculating these inertia and force coefficients which are 

required in order to obtain the solution of the FE problem. The detailed localized surface can be 

described by a curve or surface which is then used to adjust the integration points. In this case, 

the original mesh does not need to be refined to the size factor of the geometric feature to be 

captured. Integration point level methods include the subdomain method and the adaptive 

integration method. In the adaptive integration method, the mesh or the geometric domain area 

can be divided into several smaller domains that use different integration methods depending on 

the accuracy requirements or shape representation (Bouclier et. al, 2016; Schillinger et. al, 2012). 

Recently, a large number of investigations have been focused on virtual domains and meshless 

methods which can be considered as numerical methods developed for inclusion of details and 

features that cannot be easily captured using the traditional FE shape functions (Schillinger et. al, 

2012). When ANCF elements are used, it is more practical to use the integration point level 

method to model localized surface geometry because this method does not require any kind of 

mesh refinement and it is easy to implement. 

 

3. ANCF GEOMETRY 

In MBS applications, the method used to create the model geometry as well as to analyze the FE 

mesh developed using this geometry must ensure the consistency and accuracy of the results. 

ANCF has shown its versatility in dealing with complex geometry such as tires, leaf springs, 

tank cars etc. (Patel, et. al, 2015; Yu et. al, 2016). This section briefly reviews the ANCF 

equations that will be used in other sections of this paper. 
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Flexible bodies that undergo large deformation do not always have uniform dimensions 

throughout the body. For example, the geometric shape and transverse deformation in the 

thickness cannot always be ignored. Considering this modeling complexity, fully parameterized 

ANCF elements are good choices for the analysis of large deformation problems. Amongst the 

collection of fully parameterized ANCF elements, the conforming plate element, which ensures 

gradient continuity on the element edges, is selected for the development presented in this 

investigation (Mikkola and Shabana, 2003). The global position vector of an arbitrary point on 

an ANCF plate element j  on body i can be defined using the element generalized coordinates 

ije  and the element shape function matrix ijS  as ( , , ) ( , , ) ( )ij ij ijx y z x y z tr S e , where t is time, and 

 , ,x y z are the element local coordinates. The vector of nodal coordinates ije  can be written as 

1 2 3 4( )
Tij ijT ijT ijT ijTt    e e e e e , where the subscript refers to the node number. The generalized 

coordinates at a given node k  include absolute position and three gradient vector coordinates, 

which can be written as ( ) ( / ) ( / ) ( / )
Tij ij T ij T ij T ij T

k k k k kx y z        e r r r r  for 1, 2,3, 4k  . 

When fully parameterized ANCF elements are used to represent the flexible bodies, the 

parameter z  can be expressed as a function of x  and y , allowing the thickness of the element to 

vary with the other two local coordinates. Using this concept, the position vector of an arbitrary 

point on the element can be defined as ( , , ) ( , , ( , )) ( )ij ij ijx y z x y f x y tr S e , this equation is 

obtained by simply substituting the local coordinate z  using a function  ,f x y  (Gantoi et. al, 

2013). Using this simple method, any given localized surface geometry can be described in the 

ANCF element without the need for further mesh refinement. By writing one parameter, z , in 

terms of the other two parameters, x  and y , a surface with an arbitrary shape can be defined 



 10

using the function relationship  ,z f x y . The function  ,f x y  can be used to represent 

complex geometry and can also be defined analytically or numerically. 

 

4. INTEGRATION OF LOCALIZED SURFACE 

This section introduces the integration of localized surface geometry with the global ANCF 

surface geometry. The concept of NURBS which is used to describe localized surface geometry 

is also briefly introduced. 

4.1 The Definition of Localized Surface 

In this investigation, the localized surface geometry to be integrated with the fully parameterized 

ANCF elements is defined using the NURBS representation, which is a generalized version of 

the B-spline method and has become a standard geometric modeling method in CAD and 

computer graphics industries. Unlike general Lagrange polynomials, NURBS can describe a 

circle and sphere exactly and will be briefly reviewed in this section. Let  1 2 1, ,..., n pu u u  U , 

called the knot vector, be a non-decreasing sequence of parameter values, where p is the degree 

of the NURBS curve, n  is the number of control points, and iu  is the knot value and the set of 

all knot values makes up the knot vector U . The i-th B-spline basis function of degree p , 

denoted by , ( )i pN u  is defined as (Piegl and Tiller, 1997) 

  1
,0

1
, , 1 1, 1

1 1

1    

0  otherwise

( ) ( ) ( )

i i
i

i pi
i p i p i p

i p i i p i

u u u
N u

u uu u
N u N u N u

u u u u



 
  

   

  
  
 

     

   (1) 

 

B-spline curves are defined as follows: 
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,
0

( ) ( )
n

i p i
i

u N u


 c P                                                     (2) 

where P  is the vector of control points of the B-spline curve. NURBS curve, which is the 

weighted and rational form of B-spline, can be expressed as follows (Piegl and Tiller, 1997): 

,
0

,
0

( )
( )

( )

n

i p i i
i

n

i p i
i

N u w
u

N u w










P
c                                                   (3) 

where iw  is the weight of i-th control point. A NURBS surface of degree p  in the direction u  

and degree q in direction v  is represented as follows (Piegl and Tiller, 1997): 

, ,
0 0

, ,
0 0

( ) ( )

( , )
( ) ( )

n m

i p j q ij ij
i j

n m

i p j q ij
i j

N u N v w

u v
N u N v w

 

 






P

p                                        (4) 

where the size of control points matrix ijP  and weights ijw  is n m . 

4.2  Localized Geometry and ANCF Elements 

In this section, two methods for integrating the localized geometry with ANCF elements are 

described. The global geometry of the structure is represented by the ANCF shape functions and 

the element nodal coordinates, whereas the shape of localized geometry is described using the 

NURBS representation. As mentioned earlier the basic ANCF geometry that the localized 

geometry is superimposed on can be defined as ( , , ) ( , , ) ( )x y z x y z tr S e . In this section, r  refers 

to the ANCF element geometry that accounts for the local geometry features, whereas r  refers 

to the ANCF geometry without localized geometry modifications. When a local feature such as a 

protrusion is added in an element domain l , its shape can be defined by overlapping a height 
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value on the basic element shape along a direction normal to the surface. Accordingly, the 

modified position field with the groove in the element can be denoted as 

     
     

, ,                          ,
, ,

, , ,        ,
l

l

x y z x y
x y z

x y z h x y x y

   

r
r

r n
                                    (5) 

where n  is the normal to the basic ANCF mid-surface calculated as ( ) /x y x y  n r r r r , 

( , )h x y  is the thickness of the localized geometry, which may be represented by a NURBS 

curve or surface, and l  is the domain on which localized geometry is defined. As shown in Fig. 

1(a), if the height is set to a positive value, a protrusion can be defined in the ANCF element. 

This method can also be used to define other localized geometries by defining different NURBS 

curves and surfaces. 

Another method that is quite useful in defining localized surface geometry, especially 

when dealing with features like a groove, can be implemented by trimming a given ANCF 

domain with a boundary curve described by NURBS as is illustrated in Fig. 1(b). This method 

can be more general than the overlapping method particularly when multiple curves or surfaces 

are used to define the boundary. However, for the fully parameterized ANCF elements 

considered in this investigation, we mainly focus on the simple situation of a single type of 

localized geometry, so only one NURBS curve or NURBS surface is used to define the trimming 

boundary. The easiest way to implement this method is to augment the original thickness domain 

of the element from  0 0.5,0.5z    to either  ,0.5minz z  or  0.5, maxz z   where the upper 

and lower surface of the element can be locally defined by the dimensionless coordinates maxz  

and minz  respectively which may be controlled by a function ( , )f x y , and  ,  refers to a closed 

interval. 
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Since during the numerical integration process  , ,x y z are the local coordinates in the 

element straight configuration and the parameters of NURBS are commonly based on the arc 

length of the curve or the isoparametric curves, a mapping, ( , ) ( , )x y u v , is required between 

the ANCF local coordinates and NURBS localized geometric parameters, which is shown in Fig. 

2. For example, if the localized geometry is defined on the top surface of the ANCF element, the 

domain of this geometry can be defined along the element longitudinal and lateral directions as 

 0,1x  and  ,a by y y  respectively. However the range of the function defining the geometry 

may only vary with y . For such geometry and for the overlapping and the trimming methods 

described in this section, the mapping process between ANCF and NURBS can be summarized 

as follows: 

Step 1:  If  ,a by y y ,    a b ay y y y y   , go to Step 2; otherwise go to Step 5.2 

Step 2:  Initialize 0u y  

Step 3:  Carry out Newton iteration: 1 ( ) ( )T T
k k k ku u u u   B c B c , where  0 1 0

TB  

Step 4:  If 1k ku u    , where   is a specified tolerance, go to Step 3, otherwise go to step 

5.1 

Step 5.1:   max 1, , ( )kx y z u  c  

Step 5.2:     max, , , ,0.5x y z x y  

Step 6:  Calculate numerical integration points and weights in vertical domain  max0.5, z  

Step 7: Calculate actual element global coordinates by either overlapping or domain 

trimming method 
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Using the procedure described in this section, the mapping between the NURBS parameters and 

the ANCF local coordinates can be achieved, and the localized geometry can be superimposed 

on the ANCF surface. 

 

5. NUMERICAL INTEGRATION METHOD 

The basic idea of the FE method is to approximate the governing differential equations of the 

flexible body by mesh discretization and numerical integration. Mesh refinement is currently the 

only way to define detailed geometry using ANCF elements. A very fine mesh of ANCF 

elements without parallel computation could lead to long simulation run times. Since the 

computational implementation of the finite element method as well as the new concepts 

proposed in this paper heavily rely on numerical integration, this section will discuss the 

numerical integration method used and its accuracy. 

5.1        Global Domain and Subdomain Integration Method 

The number and distribution of the integration points has a significant influence on the 

simulation accuracy. The Gauss integration method is the standard method used in the FE 

analysis since it is the most accurate numerical integration method for a given number of 

integration points. Therefore, the Gauss integration method is used in this investigation as well. 

In order to integrate the localized geometry in this investigation, two methods: the global domain 

and the subdomain methods are used and compared. 

In the global domain integration method, there is only one integration domain g  for 

every element, and an integration point can be identified by its coordinates in the element as 

    , , , , ,i i i i i i i ix y z x y f x y q . A function  , ,i i ix y z can be numerically integrated using 

the global domain method as 
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    
1 1

, , , , ,
g gn n

g i i i i i i i i i
i i

x y z w x y f x y w 
 

                                     (7) 

where gn  is the total number of integration points, and iw  is the weight corresponding to that 

integration point. The weights are usually dependent on the orthonormal functions used in the 

integration scheme.  

In the subdomain integration method, on the other hand, the whole domain   of an 

element is divided into dn subdomains 1 2, ,...,
dn   where this set of subdomains satisfies 

1 2 ,...,
dn       and k l     when k l . There are in  integration points in each 

subdomain j , and the function ( , , )i i ix y z can be numerically integrated on   using the 

subdomain method as 

  
1 1

, , ,
d in n

l ji ji ji ji ji
j i

x y f x y w
 

                                            (8) 

where jiw  is the integration weight related to the corresponding integration point defined by jiq . 

Figure 3 shows the distribution of integration points generated by the two integration 

methods in the same integration domain that includes localized geometry. One major difference 

between the two methods is that the subdomain method allows for much more flexibility and 

control of integration points in the domain that is being integrated since the regular single 

domain or global domain integration is constrained by the abscissa of the integration points 

which are the roots of the Legendre polynomial, whereas with the subdomain integration the 

subdomains can be adjusted based on the configuration of the local geometry. As can be seen in 

Fig. 3, the global domain integration method leads to 3 integration points capturing the localized 

geometry, whereas the use of the subdomain method would lead to 9 integration points capturing 

the effect of the localized geometry and leading to more accurate results. 
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5.2        Comparison of the Two Integration Methods 

Figure 4 compares the two integration methods described previously in this section. Figure 4(a) 

shows the discretization of the element in the y  direction using the subdomain method. The 

element thickness is varied using the function ( )z f y  defined on the domain  1 6,y y , wherein 

the local geometry feature of interest is located in the middle of the given domain. The whole 

domain is divided into five subdomains, of which subdomains  2 3,y y ,  3 4,y y  and  4 5,y y  are 

used to define the local feature. Figure 4(b) shows the detailed localized geometry shape, which 

is represented by a NURBS curve and its control points, which are also shown in the figure. In 

order to compare between the global and subdomain integration methods, the norm of the mass 

matrix is evaluated for a plate element with the localized geometry given in Fig. 4(a) and 4(b) 

superimposed on its lower surface. Figure 4(c) shows the results of the norm of the mass matrix 

evaluated using the two numerical integration methods. The mass matrix of ANCF elements is 

defined as T
o

V

J dV M S S , where   is the mass density, V  is the volume in the straight 

configuration, and oJ  is the determinant of the matrix of position vector gradients that define the 

curved geometry in the reference configuration. In this example, the density   is assumed to be 

31500 /kg m , the length and width both are taken to be 1m  , and the thickness is 0.05m  . As can 

be seen in Fig. 4(c), while using the subdomain integration method, increasing the number of 

integration points to more than 3 in every subdomain leads to faster convergence in the norm of 

the mass matrix. However when using the global domain integration method, even increasing the 

number of integration points to more than 40 does not lead to satisfactory convergence of the 

norm of the mass matrix. These results show that local and more dense distribution of the 
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integration point mesh using the subdomain method is a better choice considering the balance 

between solution accuracy and computational cost. 

 

6. ANCF GOVERNING EQUATIONS 

In this investigation, the dynamic equations of motion are formulated using ANCF elements. 

This formulation leads to a constant mass matrix and nonlinear elastic force vector. Regardless 

of the complexity of the geometry superimposed on the ANCF elements, the mass matrix 

remains constant and the Coriolis and centrifugal forces are identically zero vectors. Using the 

expressions of the kinetic energy, strain energy and the virtual work of external forces, the 

dynamic equations of the ANCF element can be defined in the form  k e Me Q Q , where M  is 

the mass matrix, e  is the vector of nodal coordinates, kQ  is the vector of elastic forces, and eQ  

is the vector of generalized external forces including the gravity force and contact force cQ . 

Using the continuum mechanics approach, the virtual work of the elastic forces of fully 

parameterized elements can be written as = :p2k V
W dV   σ ε  where p2σ  is the second Piola-

Kirchhoff stress tensor conjugate to ε  which is the Green-Lagrange strain tensor defined as 

1
( )

2
T ε J J I , where J  is the matrix of position vector gradients. In case of a curved reference 

configuration 1
e o

            
r r x

J J J
X x X

 where r  and X  are, respectively, the position 

vector of a material point in the current configuration and reference configuration, and 

 Tx y zx is the vector of element spatial coordinates. For generality, p2σ  can be derived 

from the strain energy function as 2p2 rU  σ C , where U  is the strain energy potential 
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function, and rC  is the right Cauchy-Green deformation tensor defined as T
r C J J  (Ogden, 

1984; Shabana, 2012). In the case of the hyperelastic nearly incompressible Mooney-Rivlin 

material model used in one of the examples in this investigation, 

     2

10 1 01 2

1
3 3 1

2
U I I k J        where 10 01,     are material coefficients, 1 2,  I I are the 

invariants of the deviatoric part of the rC tensor, k  is the penalty term and J  J  (Ogden, 1984; 

Shabana, 2012; Orzechowski and Fraczek, 2015). 

A simple contact model based on a penalty approach and coulomb friction is used in this 

investigation. The contact forces are treated as point forces where the normal component is 

defined as =( )n p pk d c df n , where nf is the normal component of the contact force, pk  is the 

ground stiffness coefficient, pc  is the ground damping coefficient, d  and d  are the penetration 

and the rate of penetration respectively, and n  is the unit normal to the ground surface at the 

contact point. The penetration is calculated as ( )g
P Pd   r r n  , where Pr  is the global position 

of the contact point on the flexible body, and g
Pr  is the global position of the corresponding 

contact point on the ground (Patel, et. al, 2015; Gantoi et. al, 2013). For the tangential contact 

forces, each contact point is detected for its relative velocity with respect to the ground in order 

to apply the tangential force that depends on the coefficient of friction  . The expression for the 

generalized contact forces associated with the ANCF generalized nodal coordinates can be 

obtained by using the virtual work of the contact forces and is given by ( )T
c cQ S x f , where 

c n t f f f , where subscripts n  and t  refer to normal and tangential directions, respectively. 

 

7.     NUMERICAL RESULTS 
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Three numerical examples are presented in this section to demonstrate the method of adding 

localized surface geometry. In the first example, a plate-like structure with localized geometry 

meshed with ANCF plate elements is used in the simulation of contact with a ground. Different 

numbers of subdomains and integration points are used to compare their influence on the 

accuracy of the results. In the second example, the deformation of a cantilever plate with grooves 

under a concentrated force at a corner of the free end is simulated and the results are compared 

with the results obtained using a commercial FE code (ANSYS, 2013).  In the third example, 

ANCF plate elements with a nearly incompressible Mooney-Rivlin rubber material are used to 

model a tire with tread details, and the convergence of this model is demonstrated by refining the 

tire mesh.  

7.1 Plate Contact Example 

In this example, localized surface geometry is overlapped on the ANCF elements and the 

structure is allowed to free fall and contact with a ground. The length and width of the plate 

element are both 1m and the thickness is 0.05m. The localized geometry that is defined between 

 0.4,0.6  of the non-dimensional y  coordinate of the element is shown in Fig. 5(a). The material 

and contact properties are given in Table 2 and 3, respectively. There is one integration domain 

in the vertical and longitudinal directions of the element with 3 and 7 integration points, 

respectively, whereas the integration domain in lateral direction is divided into several 

subdomains according to the shape of the localized geometry, and the number of integration 

points in the lateral subdomains is varied from 2 to 5 in order to examine the effectiveness of the 

subdomain integration scheme. Figure 5(b) shows the contact patch of one ANCF plate element 

with localized surface geometry. 
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In order to analyze the effect of the subdomain division and number of integration points 

per subdomain, the vertical position of the center point at the plate lower surface is shown. First 

the influence of the number of integration points per subdomain is analyzed by dividing the 

element lateral domain into 3 subdomains. As shown in Fig. 6, as the number of integration 

points per subdomain is increased from 2 to 5, the solution converges. However, it can be seen 

from the enlarged drawing in Fig. 6 that 3 integration points per subdomain are sufficient for 

obtaining a converged solution when compared against the computation time taken by 5 

integration points per subdomain. The effect of the number of subdomains per element is 

investigated using the same example. It can be seen from Fig. 7 that increasing the number of 

subdomains from 2 to 4, with 3 integration points per subdomain yields converged results as well. 

Furthermore, it can be seen from the enlarged plot in Fig. 7 that 3 subdomains lead to sufficiently 

converged results. The number of integration points per subdomain and the number of 

subdomains per element may have to differ for more complicated geometry; however this 

example shows that the subdomain method is a viable and relatively computationally efficient 

method for including localized geometry details in an ANCF mesh without further mesh 

discretization. 

Figures 8(a), (b) and (c) show the results of the aforementioned contact example with a 

2 2  mesh of ANCF plate elements with two grooves representing the localized surface 

geometry. The localized geometry shape, overall structure dimensions and the material 

properties are the same as one element mesh. Figure 8(a) shows the time evolution of the vertical 

position of the center point at the plate lower surface. Figures 8(b) and 8(c) show the contact 

force distribution at 1t s , which clearly shows the effect of the grooves is captured in the 

contact force distribution. 
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7.2 Cantilever Plate Validation 

In order to show that the method proposed in this investigation is able to capture the effect of the 

local surface geometry, a validation example in the form of a cantilever plate with a tip force at 

its free end is provided. The ANCF results are compared with those obtained from a commercial 

FE code (ANSYS, 2013). The conforming fully parameterized plate element is used for the 

ANCF mesh whereas SOLID186 element which has a quadratic displacement field is used in the 

commercial FE code. Figure 9 shows the reference configuration of the cantilever plate. The 

material model is assumed to be linear elastic and the material properties are given in Table 4. 

The overall length, width, and thickness of the structure is taken to be 1 1 0.05 m  . Each ANCF 

element in its lateral direction is divided into 3 subdomains with 3 integration points per 

subdomain in order to account for the localized geometry. The loading function at point P which 

is the tip of the free end shown in Fig. 9 is linearly dependent on time and reaches its maximum 

value of 50N  at 1st  . Figures 10 and 11 show the convergence of the classical FE mesh and 

ANCF mesh for the given geometry, respectively, and Fig. 12 shows the error in the ANCF 

results against the converged classical FE solution. There is a small difference in the converged 

solutions of classical FE method and ANCF. This difference can be attributed to the way how 

each method accounts for the localized geometry in a different manner, however when compared 

to the total deformation of the structure, the difference in the vertical displacement of the tip 

point P is approximately 2.79%. Furthermore, Table 5 compares the ANCF solution for the same 

cantilever plate problem with and without the localized geometry details against a converged 

classical FE solution. Table 5 gives the vertical position of the tip point P shown in Fig. 9 at 

t=1s. Accounting for the localized geometry has a softening effect on the structure since 

removing material in the longitudinal and lateral directions of the structure will reduce its 
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bending stiffness as can be seen from the ANCF and classical FE solutions with and without the 

local geometry. Thus the method proposed in this paper can successfully capture the effect of the 

localized geometry in a given ANCF mesh. 

7.3 Tire Tread Contact Example 

In this numerical example, a tire meshed with 240 ANCF plate elements is dropped on ground 

and the resulting contact patch is examined. NURBS is used to create the tire tread details, which 

are the grooves in the tire. This type of detail in the tire surface geometry is known as the rib 

type tread as shown in Table 1. The tire is based on the 45/65 R45 tire size and a nearly 

incompressible hyperelastic Mooney-Rivlin material is used to represent the rubber in the tread. 

Figure 13 shows the overall shape and cross section of the tire without any tread details. The 

material and contact parameters used for this example can be found in Tables 6 and 7 

respectively. The NURBS method using parameter mapping is used to superimpose the localized 

tread geometry on the outer surface of the tire. Figure 14(a) shows the control points and the  

shape of the NURBS curve used for representing the grooves in the tire, whereas the contact 

patch from the tire-ground contact is shown in Fig. 14(b). Figure 14(b) clearly shows that the 

contact force is zero in the groove regions of the tire and the tire is supported on the rib regions 

that are in contact with the ground. Figure 15 shows the determinant of the Jacobian (matrix of 

position vector gradients) at the center point of the tire tread lower surface, clearly illustrating 

that the material stays nearly incompressible during the large deformation of the tire. This 

example clearly shows the effectiveness of the subdomain method in capturing the localized 

surface geometry in the case of tires in contact with ground using the ANCF framework.  

Furthermore, in order to demonstrate the convergence of the model, the tire mesh is 

refined and the convergence of the model against results acquired from a commercial FE code is 
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shown in Fig. 16 through the evolution of the vertical position of node 1 on the tire mesh. The 

mesh code provided in Fig. 16 follows an n m  format where n  refers to the number of 

elements in the tire radial direction, whereas m  refers to the number of elements in the tire 

lateral direction. The commercial FE code mesh consisted of 22,631 quadratic tetrahedral 

elements in order to be able to correctly capture the localized geometry on the surface of the tire.  

The material and contact parameters used for this convergence analysis are provided in Tables 6 

and 7 respectively. For the ANCF results, selectively reduced integration was used on the 

volumetric term of the Mooney Rivlin material model, whereas full integration was used on the 

deviatoric terms. The small difference between the converged ANCF result and the commercial 

FE code results can be attributed to the presence of some shear locking in the model since the 

deviatoric term of the Mooney Rivlin model used full integration in the x and y element 

directions. The reason for this is the usage of subdomain integration in the element lateral 

direction which adds more integration points in that domain in order to capture the localized 

geometry. Reduced integration with subdomain integration would lead to 1 integration point in 

every subdomain which might lead to spurious modes, potential hourglassing in the elements and 

a very crude approximation of the localized geometry. The study of reduced integration with 

subdomain integration requires more investigation and will be a considered as a topic of research 

in the future. These results also lead to the conclusion that special attention must be paid to the 

tire mesh discretization as well as element locking phenomena in order to have a good ANCF 

model that yields accurate results. Further validation is required to ensure the correlation with a 

physical model; however this study shows that the continuum-based fully parameterized plate 

element can achieve convergence with mesh refinement and locking alleviation techniques. 
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8. SUMMARY AND CONCLUSIONS 

In this investigation, a method for the integration of localized surface geometry with fully 

parameterized ANCF elements is proposed. ANCF finite elements are used to create the global 

geometry and perform the FE/MBS analysis of the bodies. The surface geometry details can be 

added without refining the mesh to the scale of the detailed features. The localized surface may 

be represented by NURBS and can accurately describe complex geometric shapes such as a 

conic surface and freeform surface. The basic idea lies in the integration of the localized surface 

with the global surface by augmenting the geometry during the numerical integration process. 

Two methods for including the localized geometry in the ANCF elements are proposed. The 

overlapping method simply changes the thickness of the element using a function that is 

dependent on the lateral and longitudinal coordinates of the element. The domain trimming 

method takes advantage of the powerful NURBS geometry as a tool to trim the domain of 

original ANCF element according to the shape of the localized geometry. While using NURBS 

to define the localized geometry, a mapping between ANCF local coordinates and NURBS 

localized geometric parameters is used in both geometric integration methods.  Furthermore, a 

comparison of two numerical integration methods, the global domain and the subdomain 

methods is presented in this investigation. The results show that the subdomain method is better 

suited for integrating complex geometry in ANCF elements since it has more flexibility in the 

distribution of the Gauss integration points. Using the subdomain method, any kind of geometry 

can be superimposed in the case of fully parameterized ANCF elements without the need for 

further mesh refinement during dynamic simulations. A cantilever plate example with localized 

surface geometry is provided to validate our method by comparing the simulation results 

obtained with the proposed methods against a commercial FE code. A model of a flexible ANCF 
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plate contacting with rigid ground is used to study the effect of the number of subdomains and 

the number of integration points per subdomain used in accounting for the localized geometry. 

Finally, a tire model meshed with ANCF plate elements and described by a hyperelastic 

incompressible Mooney-Rivlin material with four grooves integrated as localized surface 

geometry is considered. The results from the tire simulation that capture the effect of the grooves 

in the tire contact patch show the effectiveness of the proposed methods whereas the 

convergence study performed with the tire model helps support the basis of the proposed 

concepts by demonstrating that the model can achieve convergence with mesh refinement and 

reduced integration techniques which help alleviate locking.. In summary, the proposed method 

does a good job of capturing surface geometry without significantly increasing the computational 

cost that comes from mesh refinement. Future studies can be focused on eliminating the 

limitations of the method that include the fact that very localized deformations of the more 

intricate geometry cannot be easily captured since the element deformation field is still governed 

by its basis functions, and that the method will be challenging to use with very complex three 

dimensional changes in the structure’s  geometry. Studying the effects of reduced integration 

within the subdomain integration scheme can also be considered as a topic of future 

investigations. 
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Table 1: Tread classification for commercial tires [https://www.yokohamaotr.com/otr/tires-

101/otr-technology/tread-designs] 

Type Pattern Properties 

Rock 

 

 Application: Off-the-road 
vehicles (OTR) 

 Excellent cut resistance 
 Large ground contact area 

Traction 

 Application: High traction 
vehicle (OTR, truck) 

 Directional tread pattern 
 Excellent traction 

Block/Lug 

 

 Application: Trucks, OTR 
vehicles 

 Wide tread and rounded 
shoulders 

 Low contact pressure 
 Good on soft and muddy 

terrains 
 Excellent traction 

Rib 

 Application: Automotive, 
trucks 

 Grooves running parallel to 
direction of motion 

 High directional stability 
 Excellent fuel economy 

Smooth 

 

 Application: Underground 
mines, construction 

 High wear and cut resistance 
 Used for compaction and 

leveling 
 Narrow groove on edge used 

to measure tread wear 
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Table 2: Material properties used in the plate contact example 
Linear Elastic  

Density (kg/m3) 7860 
Modulus of Elasticity (MPa) 0.2 
Modulus of Rigidity (MPa) 0.1 

 

 

Table 3: Contact parameters used in the plate contact example 
Parameter Value 

Ground Stiffness (N/m) 8500 
Ground Damping (N˖s/m) 20.0 

Friction Coefficient   0.75 

 

 

Table 4: Material properties used in the cantilever plate example 
Linear Elastic  

Density (kg/m3) 2000 
Modulus of Elasticity (MPa) 2.0 
Modulus of Rigidity (MPa) 1.0 

 

 

Table 5: Comparison of the cantilever plate tip vertical position with and without localized 

geometry 

Mesh With Local Geometry (m) Without Local Geometry (m) 

ANCF 

2 2   -0.4098 -0.3763 

3 3  -0.4649 -0.4332 

4 4  -0.5030 -0.4654 

5 5  -0.5232 -0.4774 

6 6  -0.5335 -0.4853 

8 8  -0.5412 -0.4928 

12 12  -0.5469 -0.4966 

16 16  -0.5511 -0.4981 
Classical FE converged mesh -0.5669 -0.5022 
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Table 6: Material properties used in the tire example 
Mooney-Rivlin 

Density (kg/m3) 1500 
Coefficient  (MPa) 2.5 

Coefficient   (MPa) 2.0 

Penalty coefficient k 81.33 10   
 

Table 7: Contact parameters used in the tire example 
Parameter Value 

Ground Stiffness (kN/m) 70 
Ground Damping (N˖s/m) 160 

Friction Coefficient   0.75 
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(a) Overlapping method 

 

(b) Domain trimming method 

Figure 1.  Integration of localized geometry with ANCF geometry 
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Figure 2.  Mapping between the localized geometry parameters and ANCF element coordinates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36

y

z

ya yb

z = f(y)

 
(a) Global domain method           

 

y

z

ya yc yd yb

z = f(y)

 

(b) Subdomain method 

Figure 3.  Distribution of integration points using the global domain and subdomain methods 
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(c) Comparison of mass matrix norm using the two integration methods 
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Figure 4. Comparison of global domain and subdomain integration method 
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(a) The definition of localized geometry 

(     Control point) 
 

 
(b) Contact force at t=1.0s  

Figure 5.  One-plate contact example 
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Figure 6. Vertical displacement using different numbers of integration points 
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Figure 7.  Vertical displacement using different numbers of subdomains 
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(a) Vertical displacement of contact point 
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(b) Contact force distribution at the structure mid-section at 1.0t  s 
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  (c) Contact force at t = 1.0s 

Figure 8.  2 2  ANCF plate element mesh with localized geometry 
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Figure 9. Cantilever plate reference configuration and cross section 
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Figure 10. Convergence of classical FE code solution for plate structure with local geometry 
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Figure 11. Convergence of ANCF solution for plate structure with local geometry 
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Figure 12. Difference between ANCF solution and classical FE solution 
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Figure 13. ANCF tire geometry and tread shape 
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(a) Localized surface geometry of the tire tread 
                                                          (     Control point)  
 

 
(b) Tire tread contact patch 

Figure 14.  Tire tread with four grooves  
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Figure 15.  Value of J  at the middle point on the bottom of the tire tread surface 
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  (                ) 

Figure 16. Position convergence of ANCF solution for tire contact example 
 

 
  

 


