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Materials and Methods 

 

Materials and Reagents 

Poly (ethylene glycol) diacrylate (PEG-DA) with a molecular weight of 700, glycerol, 

ethanol, 37% hydrochloric acid, malachite green carbinol base, ammonium molybdate IV 

tetrahydrate, and polyphosphate (with 45 repeating units) were purchased from Sigma-Aldrich 

(St. Louis, MO). Irgacure 2959 (2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-

propanone) (I-2959) was kindly provided by Ciba Specialty Chemicals (Basel, Switzerland). 

Water used in all experiments was de-ionized to 18.2 MΩ-cm (Nanopure II, Barnstead, 

Dubuque, IA.).  All chemicals were purchased at standard grades and used as received. 

Solution Viscosities 

The viscosities of the polymer and bulk solutions were measured using a rheometer 

(Physica MCR 301, Anton Paar, Graz, Austria) and presented in Table S1. The composition of 

each bulk solution was chosen to approximately match the viscosity of the corresponding 

polymer solution and achieve a suitable density difference. Unit viscosity ratio was previously 

found to be advantageous for the formation of TS structure.1 In the drop phase, the viscosity is 

mainly affected by the PEG-DA concentration; while in the bulk phase, the viscosity is mainly 



affected by the glycerol concentration. Ethanol and DI water were added in both phases to adjust 

the density difference.  

Table S1. Measured viscosities of polymer and bulk solutions. The composition of each bulk 

solution was chosen to approximately match the viscosity of the corresponding polymer solution. 

Polymer Solution Viscosity (Pa · s) Corresponding 
Bulk Solution 

Viscosity(Pa · 
s) 

83wt% PEG 
17wt% ethanol 

0.057 63wt% glycerol 
37wt% ethanol 

0.063 

45wt% PEG  
55wt% DI water 

0.011 50wt% glycerol 
30wt% ethanol 

20wt% DI water 

0.0098 

35wt% PEG 
65wt% DI water 

 

0.0067 40wt% glycerol 
25wt% ethanol 

35wt% DI water 

0.0059 

 

Reaction Scheme of PEG-DA Cross-linking 

Initiator, I-2959, dissolved in ethanol was added to PEG-DA to enable sub-second cross-

linking with a high intensity (~10 W/cm2) ultra violet (UV) lighting system (Bluewave 75, 

Dymax, Torrington, CT). In the experiments, UV light in the wave-length range of 280-450nm 

was used to initiate radical formation from I-2959 (Fig. S1). These free radicals cross-link the 

polymer into a dense matrix by breaking double bonds on the acrylated end groups of PEG-DA.2  

 

Fig. S1. Free radical formation from I-2959 due to UV light exposure, which can be used to 

cross-link acrylated polymers. 

Experimental Setup for Generating Drops 



 A syringe pump (PHD 2000 programmable, Harvard Apparatus, Holliston, MA) and a 5 

mL gastight glass syringe (Hamilton Company, Reno, Nevada) were used to infuse the polymer 

solution for the generation of polymer drops with controlled volume. To study the interaction of 

the two vertically displaced drops, the drops were generated sequentially. The size of the drops 

was determined by the balance of gravity and surface tension at the rim of needle. A flat-tip 

needle (22G PS3, Hamilton Company, Reno, Nevada) yielded drops of 1mm radius over a range 

of flow rates of 0.02 to 10 ml/min. The target volume of the syringe pump was adjusted to be 

0.0195 mL in order to infuse exactly two drops. The flow rate determined the time interval 

between the two drops, and thereby their separation distance during sedimentation. To ensure 

that drops experienced the same surface impact when they entered the miscible bulk solution, the 

flat surface of the bulk solution was disturbed by pre-splashing a drop of bulk solution before the 

first drop entered the interface. In order to generate drops with different solution compositions 

and properties (such as in the cases of encapsulating polyphosphate into TS particles), two sets of 

syringe pumps, syringes, and needles were used. The trailing drops containing polyphosphate 

and PEG-DA (0 – 40 wt%) were smaller compared to the leading drops containing PEG-DA (83 

wt%). To vary the sizes of the drops, two sizes of the needles were used: 22 gauge (with a 

targeting volume 0.011 mL) for the leading drop and 26 gauge (with a targeting volume 0.007 

mL) for the trailing drop. Moreover, to align the drops horizontally, the 22 gauge needle was 

beveled and attached to the flat tipped 26 gauge needle at a slightly higher tip position. The 

polymer drop was infused from the 22 gauge needle first, then clung to the 26 gauge needle and 

eventually fell from the tip of the latter. Shortly there after, the polyphosphate drop was 

dispensed from the 26 gauge needle and fell at the same position.    



The horizontally displaced drops were generated by using an array of glass capillaries 

(ID: 536.2 µm, OD: 658.3 µm). The glass capillaries were embedded in an epoxy plug inside one 

end of a section of polyurethane tubing (ID: 2.4 mm, OD: 4.0 mm). The other end of the tubing 

was connected to a gastight glass syringe. The device was assembled by fixing the position of the 

glass capillaries under the stereoscope. To ensure that the glass capillaries were completely 

parallel, they were tacked onto two plastic bars with epoxy (Fig. S2). The flow rate was set to be 

15 ml/min. The glass capillaries were buried below the surface of the bulk solution. For a given 

device, the distance between the glass capillaries was fixed. However, the dimensionless distance 

could be varied by changing the sizes of the drops. Target volumes ranged from 0.02mL to 

0.13mL to produce dimensionless distances from 2 to 4.5 as presented in Fig. 5.  

 

Fig. S2 Device consisting of three glass capillaries. 

 To illustrate that multiple compounds can be encapsulated into one TS particle, we 

placed four smaller drops surrounding a relatively bigger polymer drop. The injection device was 

constructed in a similar way as above, except with the capillaries in a five-spot pattern. The 

center capillary was fed by one syringe pump with target volume (0.03 mL), while the other four 

capillaries were fed by a pair of syringes driven by a second pump with target volume (0.003 

mL). Therefore, the dispensed volume for each surrounding drop was 0.0015mL.  



Acquisition of High-Speed Camera Images 

All the time sequences of drops were obtained by using a high-speed camera (Prosilica 

GX 1050, Allied Vision Technology, Germany) with a magnification lens (MLH-10X, 

Computar, Commack, NY). The capture speed was set to a nominal speed of 67 frames per 

second. Exposure was set to 1 milli-second.  

Definition of Dimensionless Groups 

Reynolds number (Re) represents the ratio of inertial forces to viscous forces. It is 

calculated from the expression, νUR=Re , where U (m•s-1) and R (m) are the velocity and 

radius of the sedimenting leading polymer drop (for vertically displaced drop interaction) or the 

center polymer drop(s) (for horizontally displaced drop interaction), and ν  (m2•s-1) is the 

kinematic viscosity of the bulk solution. The radius of the polymer drop and its sedimentation 

distance were measured from the images captured by the high-speed camera. The time was 

measured by the number of frames and the recording speed of the camera. The average velocity 

of the sedimenting drop was then calculated by the distance divided by the time.  

Weber number (We) represents the ratio of the kinetic energy to surface-tension energy 

during splashing impact. It was calculated from the expression, σρ RUWe 2= , where ρ  (kg•m-

3), U (m•s-1), and R (m) are the density, velocity, and radius of the polymer drop, and σ (N•m-1) 

is the surface tension at the interface between the bulk solution and air. By neglecting the air 

resistance, kinetic energy can be converted from potential energy and , where h (m) 

is the height of the needle above the surface of the bulk phase and g (m•s-2) is the gravitational 

acceleration.  

ghU ρρ 22 =



Bond number (Bo) represents the ratio of gravitational forces to surface tension. It is 

defined as: σρ 2gRBo Δ= , where ρΔ (kg•m-3) is the density difference between the drop phase 

and the bulk phase, g (m•s-2) is the gravitational acceleration, R (m) is the radius of the polymer 

drop and σ (N•m-1) is the interfacial tension between the drop phase and the bulk phase. 

The Flory-Huggins parameter ( χ ) represents the polymer/solvent solvation interaction. It 

is defined as: RTz ωχ Δ= , where z is the lattice coordination number, ωΔ  (J•mol-1) is the 

change in the internal energy from mixing, R (J•mol-1•K-1) is the gas constant and T (K) is the 

absolute temperature. 

In Vitro Release of Polyphosphate 

TS particles encapsulating polyphosphate were generated by employing vertically 

displaced drop interaction. The leading drop solution containing 83wt% PEG-DA 700, 14.2wt% 

ethanol and 2.8wt% I-2959 formed the main body of the particle with dense pores. The trailing 

drop containing approximately 1 mg/mL polyphosphate was entrained to form the TS layer. The 

PEG-DA concentrations in the trailing drop were varied from 0 – 40 wt% to maintain different 

size pores in the TS layer, and thereby different release kinetics. Glycerol was also dissolved in 

the trailing drop to achieve a sufficiently high density for the trailing drop to catch up with the 

leading drop. Ethanol was added to dissolve the photoinitiator (I-2959) in it in order to crosslink 

the internal TS layer. Furthermore, DI water was needed to dissolve the polyphosphate in it. 

Various suitable compositions of the trailing drop are listed in Table S2.  

 

 



Table S2. Various compositions of a trailing drop. 

Solution Polyphosphate 
(wt%) 

PEG-DA 
700 (wt%) 

Glycerol 
(wt%) 

DI water 
(wt%) 

Ethanol 
(wt%) 

I-2959 
(wt%) 

1 0.1 0 28 71.9 0 0 

2 0.1 5 33 58.9 2.5 0.5 

3 0.1 10 30 54.9 4.17 0.83 

4 0.1 15 28 51.9 4.17 0.83 

5 0.1 20 23 51.9 4.17 0.83 

6 0.1 30 16 46.9 5.8 1.2 

7 0.1 40 12 42.9 4.17 0.83 

 

 After solidification at various evolutionary stages, the release of polyphosphate was 

monitored by using malachite green assay as previously described.1 The remaining unreleased 

polyphosphate trapped in the particles was measured by dissolving the particles in 12.1 M HCl 

for two weeks. In this way, we obtained the total amount of polyphosphate originally 

encapsulated. Thus, we could convert the cumulative release to a percentage release. Moreover, 

this measured value of phosphate encapsulated in TS particle compared reasonably with the 

estimated value based on the size of the trailing drop and its polyphosphate concentration.  

 

Simulation 

 Computer simulations of drop sedimentation, deformation and interaction were based on 

the assumptions of viscous-dominated flow (low Re) and equal viscosities  of all drops and the 

bulk liquid. Both assumptions were satisfied, at least approximately, in the experiments. Details 

of the numerical method and supporting references have been given before;1 the following 



explanation focuses on those aspects most relevant to drop interactions. For a set of time-

evolving volumetric domains  representing  hydrodynamically interacting 

drops, the Stokes velocity field  is obtained from the convolution integral  

  (1) 

where   is the density difference between the th drop and the bulk liquid,  is the 

gravitational acceleration vector, and  is the Green’s function for creeping flow (Stokeslet 

tensor field),3 

  (2) 

As time progresses, the flow field (1) moves and deforms the drop domains  that in turn 

determine it, resulting in nonlinear dynamics. For numerical computations, each drop domain 

 is replaced with a statistically uniform swarm of many Lagrangian particles of the 

appropriate mass. The integral (1) is then approximated, in what amounts to a Monte Carlo 

method, with a sum over all particles from all drops.4 This leads to a coupled, nonlinear system 

of ODEs for the coordinates of the particles, which is solved numerically with a fourth-order 

Runge-Kutta method.5 If we use a total of  particles to represent the  drops, a direct 

summation over all  particles to calculate the velocity of each of these  particles leads to 

order  operations. A particle-mesh method6 is combined with the fast Fourier transform7 to 

reduce the operation count to order  with only minor losses in accuracy.8 

 

 

 

 



 

Fig. S3 Numerically simulated dependence of critical catch-up distance on R1∆ρ1/R2∆ρ2 and 

∆ρ1/∆ρ2. 

 



 

Fig. S4 Release kinetics of polyphosphate from early-stage TS particles with various 

concentrations of PEG-DA in the TS layer. Numbers 0-40 correspond to wt% of PEG-DA in the 

internal layer. 

 



 

Fig. S5 Comparison of the experimental observation and numerical simulation of drop 

interaction for four parallel droplets sedimenting in a miscible solution. 

 

Fig. S6 Sedimentation of close packed six parallel drops investigated by simulation. 



 

Fig. S7 Sedimentation of close packed seven parallel drops investigated by simulation. 
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