Supporting Information

Fluorination of Boron-doped Diamond Film Electrodes for Minimization of Perchlorate Formation

Pralay Gayen^a and Brian P. Chaplin^{a, *}

^aDepartment of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

* Corresponding author: Phone No.: +13129960288, E-mail: chaplin@uic.edu (Brian P. Chaplin)

1. Mass Transfer Coefficient.

The Levich equation (S1) was used to calculate the mass transfer coefficient for the i^{th} species $(k_{m,i})^1$, and was used to calculate the mass transfer rate (r_i) (equation S2).

$$k_{m,i} = 0.62 \, D_i^{2/3} \omega^{1/2} \nu^{-1/6} \tag{S1}$$

$$r_i = k_{m,i} C_i \tag{S2}$$

where D_i is the diffusion coefficient for the *i*th compound, ω is the rotation speed per sec., *v* is the kinematic viscosity of water (1.0 x 10⁻⁶ m² s⁻¹), and C_i is the initial bulk concentration of the *i*th species. Diffusion coefficients for phenol and terephthalic acid (TA) were 9 × 10⁻¹⁰ m² s⁻¹ and 4 × 10⁻¹⁰ m² s⁻¹, respectively^{2,3}. The electrode rotation rate was 523.6 s⁻¹ (5000 rpm). The mass transfer rates of phenol (1mM) and TA (0.1mM) were calculated as 7.99 mmole m⁻² min⁻¹ and 0.463 mmole m⁻² min⁻¹, respectively.

2. XPS Characterization.

Figure S1. Deconvoluted results of C 1s XPS spectra of a) BDD-O, b) BDDF-plasma, c) BDDF-PFOA, d) BDDF-aliphatic, e) BDDF-aromatic, f) BDDF-PFOA-aged and g) BDDF-aliphatic-aged. Legend: C1: =C=C=; C2: \equiv C-C \equiv ; C3: \equiv C-OH; C4: =C=O; C5: \equiv C-F; C6: -COOH; C7: =CF₂; C8: -CF₃

Table S1. Comparison of Atomic Ratios (F:Si, F:C and Si: $CF_2:CF_3$) of an Aliphatic Silane molecule with BDDF-aliphatic (from XPS) and BDDF-aliphatic-aged (from XPS) and Si:CF of an Aromatic Silane molecule with BDDF-aromatic (from XPS).

Atomic Ratio →	F:Si	F:C	Si:CF ₂ :CF ₃	Si:CF
Aliphatic Molecule	17	1.7	1:7:1	-
BDDF-aliphatic	15.6	1.88	0.51:8.3:1	-
BDDF-aliphatic-aged	14.7	1.78	0.54:8.63:1	-
Aromatic Molecule	-	-	-	1:5
BDDF-aromatic	-	-	-	1:4.8

3. Electrochemical Characterization.

The electrochemical response changed after plasma treatment of the BDD electrode. The CV scans (scan rate = 100 mV s⁻¹) in the presence of Fe(CN)₆^{3-/4-} showed a decrease in peak currents for oxidation (I_{peak,anodic,BDD-O}= 593 μ A to I_{peak,anodic,BDDF-plasma}= 255 μ A) (Table S2). The plasma treatment also increased the anodic to cathodic peak separation (ΔE_i) from ΔE_{BDD-O} = 212 mV for the BDD-O electrode to $\Delta E_{BDDF-plasma}$ = 1032 mV for the BDDF-plasma electrode (Figure S2a). CV scans in the presence of Fe^{2+/3+} showed an increase in current response (I_{peak,anodic,BDD-O} = 350 μ A and I_{peak,anodic,BDDF-plasma}= 390 μ A) and a decrease in peak separation (ΔE_{BDD-O} = 357 mV and $\Delta E_{BDDF-plasma}$ = 182 mV) for BDDF-plasma compared to BDD-O (Table S2 and Figure S2b).

The PFOA modified electrodes and aliphatic silanized BDD electrodes were characterized using the same redox couples. The CV scans (scan rate = 100 mV s⁻¹) in the presence of Fe(CN)₆^{3-/4-} showed a decrease in peak current (I_{peak,anodic,BDD-O}= 521 μ A and I_{peak,anodic,BDDF-PFOA}= 328 μ A) and an increased peak separation after fluorination (Δ E_{BDD-O}= 309 mV and Δ E_{BDDF-PFOA} = 941 mV) (Table S2 and Figure S2c). CV scans in the presence of Fe^{2+/3+} showed a decrease in peak current (I_{peak,anodic,BDD-O}= 507 μ A and I_{peak,anodic,BDDF-PFOA}= 290 μ A) and an increase in peak separation (Δ E_{BDD-O}= 225 mV and Δ E_{BDDF-PFOA}= 1110 mV) after fluorination, as shown in Table S2 and Figure S2d.

The CV scans on the BDDF-aromatic electrode with the redox couples $(Fe(CN)_6^{3-/4-}$ and $Fe^{3+/2+}$) showed a similar behavior to the BDDF-PFOA electrode (Figure S2e,f and Table S2). The CV scans in the presence of $Fe(CN)_6^{3-/4-}$ showed a decrease in peak current ($I_{peak,anodic,BDD-O}$ = 517 μ A and $I_{peak,anodic,BDDF-aromatic}$ = 299 μ A) and an increase in peak separation ((ΔE_{BDD-O} = 217 mV and ($\Delta E_{BDDF-aromatic}$ = 971 mV) after fluorination, as shown in Table S2 and Figure S2e. CV scans in the presence of $Fe^{2+/3+}$ showed a decrease in the peak current ($I_{peak,anodic,BDD-O}$ = 510 μ A and $I_{\text{peak,anodic,BDDF-aromatic}}$ = 324 µA) and an increase in peak separation ($\Delta E_{\text{BDD-O}}$ = 213 mV and $\Delta E_{\text{BDDF-aromatic}}$ = 997 mV) after fluorination, as shown in Table S2 and Figure S2f.

The CV scans were also performed on the BDDF-aliphatic electrode to show the effect of silanization on the electron transfer rates. The CV scans (scan rate = 100mV s^{-1}) in the presence of Fe(CN)₆^{3-/4-} did not show any peaks associated with redox reactions (Table S2 and Figure 2a). However, after ageing small peaks were observed (Figure 2c,d).

Figure S2 CV scans of: a) BDD-O and BDDF-plasma: 5 mM $Fe(CN)_6^{3-/4-}$; b) BDD-O and BDDF-plasma: 5 mM $Fe^{3+/2+}$; c) BDDF-PFOA and BDDF-PFOA-aged: 5mM $Fe(CN)_6^{3-/4-}$; d) BDDF-PFOA and BDDF-PFOA-aged: 5mM $Fe^{3+/2+}$; e) BDD-O and BDDF-aromatic: 5mM $Fe(CN)_6^{3-/4-}$; f) BDD-O and BDDF-aromatic: 5mM $Fe^{3+/2+}$; f) BDD-O and BDDF-aromatic: 5mM $Fe^{3+/2+}$.

Electrode	I _{peak,anodic} (μΑ) (Fe(CN) ₆ ^{3-/4-})	I _{peak,anodic} (μΑ) (Fe ^{2+/3+})	∆E (mV) (Fe(CN) ₆ ^{3-/4-})	∆E (mV) (Fe ^{2+/3+})
BDD-O1*	593	350	212	357
BDDF-plasma	255	390	1032	182
BDD-O2*	521	507	309	225
BDDF-PFOA	328	290	941	1110
BDDF-PFOA-aged	291	202	1041	1052
BDD-O3*	533	316	195	223
BDDF-aliphatic	00	00	-	-
BDDF-aliphatic-aged	58	30	951	1060
BDD-O4*	517	510	217	213
BDDF-aromatic	299	324	971	997

Table S2. CV data of BDD-O, BDDF-plasma, BDDF-PFOA, BDDF-aliphatic, BDDF-aromatic, BDDFaliphatic-aged and BDDF-PFOA-aged with $Fe(CN)_6^{3-/4-}$ and $Fe^{2+/3+}$ redox couple.

*BDD-O1 = BDD-O before plasma, BDD-O2 = BDD-O before PFOA treatment, BDD-O3 = BDD-O before aliphatic silane treatment and BDD-O4 = BDD-O before aromatic silane treatment

4. Density Functional Theory Optimized Structures

Figure S3. DFT optimized structures of different fluorinated groups for a) BDDF-aliphatic, b) BDDF-PFOA and c) BDDF-aromatic on a 10 carbon atom cluster that represents the BDD surface. Atom key: C (grey); F (teal); O (red); H (white); Si (blue-grey)

5. Additional Experimental Results

Figure S5. Bulk oxidation of a) 1mM phenol and b) 0.1mM TA for BDD-O, BDDF-PFOA and BDDFaliphatic at 22⁰C.

Figure S6. Perchlorate formation rates for BDD-O, BDDF-PFOA & BDDF-PFOA-aged.

6.0 References

- Bard, A. J.; Faulkner, L. R. Fundamentals and Applications: Electrochemical Methods, 2nd ed.; Wiley: New York, 2001.
- Loh, W.; Tonegutti, C. A.; Volpe, P. L. O. Diffusion Coefficients of Aqueous Phenols Determined by the Taylor Dispersion Technique. Evidence for Solute Adsorption on the Walls of Teflon Tubing. *J. Chem. Soc., Faraday Trans.* 1993, 89.1, 113-118.
- Papaspyrides, C. D.; Vouyiouka, S. N. Solid State Polymerization; Wiley: New Jersey, 2009.