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Abstract

Utilizing kinetic Monte Carlo simulations, we developed a three dimensional Ising

lattice gas model to reveal the wetting mechanism of a liquid film rising along a vertical

substrate. The model takes into account the impact of surface tension, gravity, inter-

action energy between liquid particles, and between liquid and substrate on the rise of

the liquid film. We verify that in low gravitational acceleration regime, the growth of

the liquid film follows the universal law of
√
t. As gravitational acceleration and sur-

face tension vary, the simulation results show the detailed dynamics of the solid-liquid

interface. Explicit analysis of the interface displacement and roughness under different

gravitational accelerations and surface tensions is also presented.
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Introduction

The spreading of liquid films on solid surfaces at nanometer scale plays a significant role

in numerous technologies, including but not limited to painting, coating, micro-reactor and

chemical sensors, which have received great attention over a century.1–5 Recently, it was

also shown that spreading liquids on solid surfaces can be applied to controllably position

sub-10 nm particles into lithographically defined templates.6–8 The development of these

applications requires accurate knowledge of underlying dynamics of spreading, especially on

surfaces with interfacial interactions occuring over a scale ranging from molecular distance

to capillary length. At macroscopic scales, spreading of liquid films is precisely described

by hydrodynamic theories that ignore the molecular structure of liquids.9–13 At microscopic

scale however, the origin of the universal laws that govern the spreading dynamics is not

well understood.

The appearance of a spreading liquid film has been found to start from the formation

of a molecularly thin liquid layer on the substrate.14 This thin liquid layer spreads along

the substrate faster than the rest of the liquid film. Using dynamic ellipsometry and x-ray

reflectivity measurements,15–23 it has been shown that on atomically smooth surfaces, one or

few of these thin films advance faster than the macroscopic liquid film edge. Subsequently,

this macroscopic liquid film spreads on top of such thin liquid layer, which may fuse into

macroscopic extent at sufficiently long time. For nonvolatile liquids, it has been established

that the linear extent of the thin layer grows proportional to
√
t, regardless of the nature

of the species involved.15 The law of
√
t has been verified with different substrates and

liquids in which the bottom thin liquid layer directly in contact with substrate spreads much

faster.16–18 Similar experiments performed for capillary rise geometries in which a thin liquid

layer creeps upward on a solid wall, have also shown that the height of the liquid layer

increases as
√
t within certain time domain until the thin layer is broken by gravity.19,20 As

such, the universal law of
√
t seems to be independent of the substrate, liquid, geometry as

well as the size of the liquid molecules.
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Computational approaches have been utilized to reveal the mechanism behind the rise

of the thin liquid layer, and explain the time dependence of spreading. Several theoretical

models have been proposed,24–27 and molecular dynamics and Monte Carlo (MC) simulations

have been performed.15,28–33 In particular, Burlatsky et al. have proposed a microscopic 1D

model,15 which allows mass transport from reservoir to mono-molecularly thin layer, while

its spreading is restricted by surface tension applied at the solid-liquid interface. The height

of the thin layer was found via MC simulations to follow ∼
√
t. Using kinetic MC (KMC)

simulations, Abraham et al. proposed a 3D lattice gas model predicting
√
t time dependence

of the rise.26 Above mentioned models however, ignore the impact of gravity on the vertical

spreading of the thin liquid layer.

In this paper, we present a 3D Ising lattice gas model to describe the rise of a thin liquid

film against the gravity, and explain its fine structure. In our microscopic model, we account

for the impact of gravity, surface tension, cohesive energy between liquid and substrate, and

interaction energy between liquid particles on the rise of the liquid layer. Utilizing KMC

simulations, we show that our model establishes the
√
t behavior of rising liquid layer in the

zero to low gravity regime, which is consistent with the original 2D Ising model in the absence

of gravity studied before.26 Additionally, we analyze the dynamics of spreading while varying

gravitational acceleration, and surface tension. We report the impact of above mentioned

parameters on the solid-liquid interface displacement, instantaneous interface velocity, and

roughness.

Theory

Our lattice gas model mimics the experiment in which a substrate is partially immersed

vertically into a liquid bath. Upon partial immersion, a macroscopic meniscus at the solid-

liquid interface is created, followed by formation of a very thin liquid layer climbing up the

vertical substrate against the gravity. We introduce a lattice model in which the dynamics of
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the thin liquid layer is represented by motion of particles, which consist of liquid molecules,

restricted to a 3D lattice. Every lattice site in this model can either be vacant or occupied

by a liquid particle. In addition, the edge of the thin liquid layer, which represents the

solid-liquid interface, is modeled by the dynamic boundary formed by the moving outermost

particles.

We define a square lattice with unit lattice spacing ∆x = ∆y = ∆z = 1 along x-, y-,

and z-direction, respectively. We then specify the position of particles moving on the 3D

square lattice by the position vector ~r = (x, y, z). Without loss of generality, we assume that

z can only be 1 or 2, meaning that only two layers of particles parallel to the substrate are

considered. Adding more layers will only slow our KMC simulations while it does not affect

the dynamics of solid-liquid interface.

We define the dimensionless change in total energy for a given particles configuration in

which a particle moves from site i to j by

∆Ei→j
kT

= ∆Gi→j + ∆Ji→j + ∆Ai→j + ∆Fi→j. (1)

The first term in Eq. 1 denotes the work done by the gravity

∆Gi→j = (yj − yi)g′, (2)

in which yi and yj are the y-coordinates of the site i and j, respectively, g′ = mg∆y/kT

is the dimensionless gravitational acceleration, m is the particle mass, g is the dimensional

gravitational acceleration, k is the Boltzmann constant, and T is temperature.

The second term in Eq. 1 is the contribution from particle-particle interaction denoted

by

∆Ji→j = (nj − ni)J, (3)
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where ni and nj are the total number of bonds with the nearest neighbors to be broken

and made at site i and j, respectively, and J is the cohesion strength between neighbor

particles,25,26 nondimensionalized by kT .

The third term in Eq. 1 indicates the contribution from van der Waals interaction of

liquid particles with the substrate characterized by the Hamaker constant A > 0,25,34,35

∆Ai→j = A

(
1

zj
− 1

zi

)
, (4)

where zi and zj are the z-coordinates of site i and j, respectively, which can be either 1 or

2, corresponding to the bottom or top layer, respectively.

Interfacial energy at the solid-liquid interface is expressed by the last term in Eq. 1

∆Fi→j = σ(yj − yi), (5)

where σ = γ∆x∆y/kT is the dimensionless surface tension, γ is the dimensional surface ten-

sion at the interface, and ∆x and ∆y is the lattice constant along the x− and y−direction.36

Fig. 1A illustrates the 3D lattice model, where y is the axis perpendicular to the liquid

bath (not shown). For clarity, we are not showing the underlying lattice grid. In Fig. 1A,

red particles indicate the top layer of the liquid bath, blue and gray particles illustrate the

top and bottom layers, and green particles depict the edge of the rising liquid layer where

the surface tension is applied to particles vertical hops. Fig. 1B depicts the cross section of

the rise of liquid layer, representing the four components of the energy change described in

Eq. 1.

Numerical Simulations

Now, we parameterize the KMC simulations of the rise of the wetting liquid film, and

describe the steps therein. Then, we present the statistical results for the impact of grav-

ity and surface tension on the average interface displacement, instantaneous velocity, and
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Figure 1. (A) The 3D schematics of the Ising lattice gas model, illustrating the rise of the
liquid layer on the vertical substrate. Red particles represent the bulk liquid, gray and blue
particles show the first and second layer of particles located at z = 1 and 2, respectively,
and green particles illustrate the solid-liquid interface. Numbered arrows show four in-plane
and one out-of-plane nearest neighbors.

(B) Cross section of the schematics, depicting the four component of the total energy,
gravity, van der waals interaction with the substrate, nearest neighbor particle-particle

interaction (bottom inset), and interfacial energy (top inset).

interface roughness of the liquid layer and its structure factor.

In our Ising lattice gas model, the mechanism of KMC simulations is to stochastically ex-

plore sequences of diffusive hops, by selecting events proportional to their transition rates.37

According to the continuous time random walk,38 the rate of transition is the particle-vacancy

exchange rate from site i to site j defined by Kawasaki dynamics:38

ri→j = ν exp

(
−∆Ei→j

2kT

)
, (6)

where ri→j is the rate of a particle hopping from site i to j, and ν is the attempt frequency,

which we set to the inverse of the number of destination sites. In our 3D model, for every

hop, the number of destination sites is 5, i.e. As illustrated in Fig 1A, the gray particle at

z = 1 has four in-plane and one out-of-plane direction whereas the blue particle at z = 2 has
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four in-plane and one into-the-plane direction to move, all indicated by arrows. In general,

the total possible destination sites is five, which is the same as number of nearest neighbors

regardless of their occupation. According to Eq. 6, the rate of a given particle moving in

a given direction certainly depends on the energy change for that move, or in essence, the

details of local particles configuration.

We follow the definition of stochastic process in KMC method, and ensure the coordinate

scale, maximum number of particles, and total KMC steps to be large enough to avoid finite-

size effect. The steps in our KMC simulations are as follows:

1. As for the initial condition, we set the occupation number of all source sites (any x,

y = 1, and z = 1, 2) to 1 (filled with particles). After a KMC hop at some later time, if

any of these source sites becomes empty, we will fill it with a particle instantly. Thus,

source sites are maintained as occupied at all times t > 0.

2. The rise of liquid layer takes place along y-direction. Therefore, we apply periodic

boundary conditions along x-direction.

3. To achieve a high degree of non-volatility, we set the non-dimensionalized particle-

particle interaction parameter, J , and van der Waal parameter, A, large enough to be

in complete wetting regime.39

4. We calculate rates for all possible hops of particles using Eq. 6. Here, ∆Ei→j is the

energy change before and after a particular hop.

5. We select a move by randomly choosing a hop from the list of all possible hops pro-

portional to the hopping rates.

6. We increment the KMC time by ∆t (in KMC time unit), which is the time that has

elapsed during one KMC step, given by:

∆t = − ln (ρ)∑
i,j
i 6=j

ri→j
, (7)
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where 0 < ρ ≤ 1 is a uniformly distributed random number.40

7. If a particle moves beyond y = Ly (top side of the simulation box), its rates will be

removed from the list of possible hops, not to be selected in the next selection cycle.

8. We update the new hopping rates, and repeat from step 5.

We define the simulation box size as Lx = 100 (i.e. 1 ≤ x ≤ 100) unless otherwise mentioned,

Ly = 300 (i.e. 1 ≤ y ≤ 300), and Lz = 2 (i.e. 1 ≤ z ≤ 2), and set the thermal energy to

kT = 1/3 throughout all KMC simulations.

Results and discussion

With the setup above, we now look at the impact of gravity, g′, and surface tension, σ,

on the growth and interface roughness of the rising liquid layer.

Figure 2. Top view of 10 snapshots, illustrating the rise of the liquid layer at different
times, t = 1× 107, . . . , 10× 107 with the interval of 107 in KMC time unit. Occupied sites at
z = 1 and 2 are shown in gray and blue, corresponding to bottom and top layer, respectively.
Empty sites are shown in white. Parameters used are A = 30, J = 3, g′ = 0, σ = 0.

Fig. 2 illustrates KMC simulation results, from left to right, depicting 10 snapshots of

the rise of the liquid layer along the vertical substrate in the absence of gravity and surface

tension. As shown in Fig. 2, the first layer illustrated in gray, which is closer to the substrate,

moves upward faster than the second layer, shown in blue. This is because as particles in
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the first layer diffuse along the solid-liquid interface, vacancy defects are generated which

diffuse downwards. Lowering van der Waals interaction, particles move from the 2nd layer

(z = 2) to the 1st layer (z = 1) to fill the vacancy defects. As such the 1st layer advances

faster than the 2nd layer. Once these vacancy defects reach to the bulk liquid at y = 1, they

are immediately filled with new particles. Therefore, the rise of the bottom layer is due to

the combined effects of vacancies advancing into the liquid bath, and the supplement from

the 2nd layer of particles.

Our results in Fig. 2 also indicate that as particles diffuse and move up vertically, they

create a connected path through their nearest neighbors from the top at solid-liquid interface

to the bottom at the bulk liquid. We also observe free particles, without nearest neighbors,

on the substrate above the solid-liquid interface, indicating the vapor phase. As these free

particles diffuse, they either move downward and eventually get absorbed at the solid-liquid

interface, or move upward and exit the simulation box in which case we remove the particles

from the group of simulating particles. Defining the 1st layer of liquid by those particles

connected through their nearest neighbors only, we now look at the average interface dis-

placement of this 1st layer of particles and its progression in time.

To study the dynamics of average interface displacement of the rising liquid layer, we

record the maximum local height of connected sites, h(x, t), for x = 1, 2, . . . , Lx at all times,

t > 0. Averaging over independent simulations, we find the average interface displacement,

s̄(t), measured from initial configuration (y = 1), written as:

s̄(t) =
1

Lx

Lx∑
x=1

〈h(x, t)〉 − 1, (8)

where 〈...〉 stands for average over 200 independent KMC simulations for every x value while

all other parameters (g′, A, J , and σ) are unchanged.

In Fig. 3A, we present the results for the dynamics of the rising liquid layer for different

gravitational acceleration constant, g′. In the absence of gravity (red curve, g′ = 0), our

results exhibit an initial ballistic dynamics, approximately varying linearly with time, i.e.
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Figure 3. Log-log plot of evolution of the (A) average interface displacement, (B) instan-
taneous interface velocity, and (C) interface roughness of the rising liquid layer with time,
t, in KMC time unit. Solid lines are averages over 200 independent KMC simulations with
A = 30, J = 3, σ = 0, and g′ = 0, 0.01, 0.05 and 0.25, from red to blue, respectively.
Dashed lines are the guide for the eye.
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s̄(t) ∼ t, followed by a diffusive dynamics, s̄(t) ∼
√
t. We note that our results slightly

deviate from true ballistic motion in which s̄(t) is exactly proportional to t. We attribute

this deviation to the confinement along z-directions as we have considered only two layers

at z = 1 and 2. Overall, this result is in agreement with the experimental results performed

for capillary rise geometries.19,20

As gravitational acceleration, g′, increases, the long time dynamics deviates from uni-

versal law of
√
t. The results suggest that gravity slows down the rate of upward wetting

with average interface displacement s̄(t) ∼ tα, where α < 1/2. Furthermore, we notice that

gravity does not change the rate of wetting (ds̄(t)/dt) at shorter times while it reduces the

rate at longer times. Although there is a small shift in s̄(t) at short time (blue curve in

Fig. 3A compared to the red curve has shifted towards longer times), the rate of wetting

has not changed at small time scales. This means that the rate of increase in average inter-

face displacement is not affected by the gravity since the average interface displacement still

advances linearly with time, i.e. s̄(t) ∼ t. One can also see this impact of gravity on the

dynamics of wetting by looking at the instantaneous velocity of the edge of the liquid layer

at z = 1.

The instantaneous velocity of the edge of the liquid layer (interface velocity) is subse-

quently calculated from time derivative of the average interface displacement, s̄(t):

v̄(t) =
ds̄(t)

dt
. (9)

Fig. 3B, illustrates the interface velocity as time progresses for the same values of gravi-

tational acceleration, g′, shown in Fig. 3A. According to Fig. 3B, one can clearly see the

deviation of interface velocity from universal law of 1/
√
t as the gravitational acceleration

increases. We also notice that the interface velocity at small time scales (t < 103) slightly

deviates from the constant v̄(t) for true ballistic motion. As discussed above, we attribute

this deviation to the artificial confinement along z-direction applied to our Ising lattice gas

model where particles can only hop between z = 1 and 2 planes.
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The time dependent interface roughness is the standard deviation from average interface

displacement, s̄(t), given by

w̄(Lx, t) =

√√√√ 1

Lx

Lx∑
x=1

〈(h(x, t)− s̄(t))2〉. (10)

Fig. 3C illustrates the evolution of interface roughness in time, calculated from Eq. 10 for the

same values of gravitational acceleration shown in Fig. 3A and B. In the absence of gravity,

our result in Fig. 3C is in clear qualitative agreement with the previous study conducted by

Abraham et al.26 As predicted by others,26,41 in the absence of gravity, we also observe the

cross over in v̄(t) from t(1/6) at intermediate times to t(1/8) at longer times shown by dashed

lines in Fig. 3C. We also find that as gravitational acceleration, g′, increases from 0 to 0.25,

depicted from red to blue in Fig. 3C, respectively, the growth of interface roughness starts

deviating from t(1/6) and t(1/8), at intermediate and longer times, respectively. In particular,

when g′ = 0.25 (blue curve in Fig. 3C), our result seems to suggest that there will be no

overall growth in interface roughness.

The impact of gravity on the interface displacement, and roughness of the rising liquid

layer can also be explained using the energy change of the MC hops in Eq. 1. According to

this equation, gravity lowers the energy barrier for downward hops; hence, rates of downward

hopping increase, leading to an overall directional diffusion downwards. Further increase in

gravitational acceleration will completely hinder upward hopping, resulting to almost no

growth in the interface displacement (not pictured). As for the interface roughness, gravity

helps dampen fluctuations at the solid-liquid interface by lowering rates of upward hops,

which will be energetically costly for large values of gravitational acceleration. In particular,

for g′ = 0.25 shown blue in Fig. 3C, interface roughness ceased to increase in time, leading

to an overall constant value.

To better understand the extent of dimensionless gravitational acceleration, we compare

different dimensionless and dimensional gravitational acceleration values. For this compari-
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son, we assume the lattice spacing used in KMC simulations to be equal to the diameter of

the simulating particles. This assumption is consistent with our particle representation in

Fig. 1A. Furthermore, taking the particle diameter to be ∆x = ∆y = ∆z = 447 nm, and

the rising liquid to be water with density of 1000 kg/m3, we find the particle mass to be

4.68 × 10−17kg. We also nondimensionalize the energy by kT = 4.11 × 10−21J. Using the

relation for dimensional gravitational acceleration in Eq. 2, we present the mapping between

dimensionless and dimensional gravitational acceleration, g′ and g, respectively, in Table 1.

It is noteworthy that g can be tuned experimentally using a centrifugal adhesion balance

(CAB) equipment developed by Tadmor et al.42–45

In CAB, a centrifugal arm holds the substrate at one end while rotating perpendicular

to the gravitational field. With a setup in which the substrate is hanging from a hinge

like a pendulum, and 0 ≤ α ≤ 180o being the counter clockwise angle between the vertical

line going through the hinge (axis of rotation) and substrate, the gravitational acceleration

along the substate will be Rω2 sin(α) + g cos(α). Here, ω is the angular velocity, and R is

average distance of the liquid film from the axis of rotation. With this definition of R, we are

assuming variation of R along the liquid film is negligible. Obviously, depending on α being

smaller or larger than 90 degrees, one would increase or decrease g with ω, respectively. With

this setup, the force perpendicular to the substate, which is Rω2 cos(α)−g sin(α), is mapped

on to the Hamaker constant A in Eq. 4. These are the steps we envision for experimental

verification of the KMC simulations. However, additional work is still warranted to perform

above experiment and verify the simulation results shown in Fig. 3, which is left for a future

research.

Table 1. The mapping between dimensionless and dimensional gravitational acceleration

g′ g (m/s2)
0 0

0.01 1.97
0.05 9.83
0.25 49.2
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Now, we turn into the impact of surface tension, in the absence of gravity (g′ = 0), on the

dynamics of the rising liquid layer. In rising liquid layer, dynamics of solid-liquid interface

is directly impacted by the surface tension as formulated in Eq. 1 and 5. According to this

dynamics, the surface tension only affects the particles at solid-liquid interface. Essentially,

interfacial tension tends to minimize the length of solid-liquid interface; therefore, interfa-

cial perturbations with large wave lengths become energetically costly to form. In KMC

simulations, surface tension will penalize the total energy change associated with hops that

create perturbation in positive y−direction; thus, making upward movement energetically

unfavorable. This leads to lowering the likelihood of selecting interface particles tending to

move along positive y−direction, rendering a delay in the rise of the liquid layer. We observe

this delay (a shift in time) in the progression of interface displacement by increasing dimen-

sionless surface tension parameter, σ, from 0 to 3.2, corresponding to red to blue curves in

Fig. 4A, respectively.

Results in Fig. 4A suggest that the surface tension does not alter dynamics of the liquid

layer as it still exhibits an initial rise slightly larger than t, followed by a diffusive dynamics

with interface displacement proportional to
√
t. We speculate that this small deviation of

interface displacement from linearly varying at short time might be due to the confinement

considered along the z-direction in our 3D model. Nonetheless, these results from our 3D

Ising lattice gas model are in qualitative agreement with the previous work reporting the

growth of liquid film height using a one dimensional Ising model.15

Interface velocity profile of the rising liquid layer is shown in Fig. 4B for the same range

of surface tension depicted in Fig. 4A. The small deviation in interface displacement from

ballistic move at short time exhibits small deviation in the interface velocity illustrated in

Fig. 4B as well. According to Fig. 4B, we estimate this deviation in the interface velocity to

be in the order of ∼ 10−3. Our results also suggests that increasing surface tension, shown

from red to blue in Fig. 4B, lowers the interface velocity at short time. This impact is more

pronounced compared to that at long time as the shifts of interface velocity in time is larger
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Figure 4. Log-log plot of growth of the (A) average interface displacement, (B) instanta-
neous interface velocity, and (C) interface roughness of the rising liquid layer with time,
t, in KMC time unit. Solid lines are averages over 200 independent simulations with
A = 30, J = 3, g′ = 0, σ = 0, 0.8, 1.6, 2.4, and 3.2, from red to blue, respectively.
Dashed lines are the guide for the eye.

15



at short time.

Interface roughness, w̄(Lx, t), is also affected by the surface tension in that as surface

tension increases, evolution of perturbation at the interface is retarded, leading to a delay

in growth of interface roughness. This delay is manifested by a shift toward larger time, as

illustrated in Fig. 4C with σ being the same as those in Fig. 4A and B, increasing from red to

blue, respectively. In particular, we observe the kinetic roughening of the interface26,41 in the

transition from t(1/6) at intermediate times to t(1/8) at long times, as σ increases. However,

to verify whether or not interface roughness grows with t(1/8) at long time for large values of

σ, KMC simulations need to be run for at least an order of magnitude longer than 106 KMC

time unit performed in this work. We leave this verification to a future work.

Table 2 represents the mapping between dimensionless and dimensional surface tension

used in Fig. 4. For this mapping, we utilize above-mentioned lattice spacing and thermal

energy (kT ) and invoke the surface tension definition in Eq. 5. We are hypothesizing that

by using different liquids and substrate materials one could potentially tune the surface

tension. We notice that the dimensional values for surface tension in Table 2 is rather small.

To work with these dimensionless values for surface tension yet model larger dimensional

surface tension, one would need to consider smaller lattice spacing. However, surface tension

only slows the rise by affecting the interfacial particles upward hops. Therefore, increasing

γ and consequently σ will only cause KMC simulations to spend a lot of time on moving

bulk particles as opposed to interfacial particles, manifesting a shift along the time axis in

the interface displacement, velocity, and roughness, as shown in Fig. 4C.

Table 2. The mapping between dimensionless and dimensional surface tension

σ γ (mN/m)
0 0
0.8 1.65× 10−5

1.6 3.29× 10−5

3.2 6.58× 10−5

It is important to note that the interface roughness is also affected by the size of the
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simulation box, Lx, which is an upper bound for the size of the largest wave length that

can be presented by our KMC simulations. To gain more information on the impact of the

size of the simulation box (largest wave length) on the interface roughness, we look at the

variation of structure factor of interface roughness with size of simulation box in the presence

of gravity and surface tension. The structure factor of interface roughness is calculated from

S(k, t) = 〈ξk(t)ξ−k(t)〉 (11)

where 〈...〉 stands for average over 200 independent KMC simulations, and ξk(t) is the Fourier

transform of the difference of interface displacement from the average, i.e.

ξ(x, t) = h(x, t)− s̄(t). (12)

The Fourier transform is written as

ξk(t) =
n∑
j=1

ξ(xj, t)e
−2π(j−1)(k−1)/n, k = 1, ..., n (13)

in which xj = j∆x = j, and n = Lx/∆x = Lx. In the absence of gravity and surface tension,

the Fourier transform of interface roughness is expected to behave

S(k, t) ∼ k−(2α+1) (14)

at long times, where α is the roughness exponent.26,41 It can be shown that α is linked to

the order of correlation of interface roughness with the largest wave length via

w̄(Lx, t) ∼ Lαx (15)

at long times.26,41 We verified this behavior in S(k, t) measured at 5 logarithmically spaced

KMC times between t = 103 and 106 with Lx = 512 averaged over 200 independent KMC

simulations, as shown in Fig. 5A, indicating α ≈ 0.50, which is in reasonable agreement with
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the previous report.26

Figure 5. Structure factor of the interface roughness at 5 logarithmically spaced KMC time
unit between t = 103, and 106, from red to blue, respectively, averaged over 200 independent
KMC simulations for (A) g′ = σ = 0, (B) g′ = 0, σ = 3.2, (C) g′ = 0.05, σ = 0 and (D)
g′ = 0.25, σ = 0. Other parameters are A = 30, J = 3, Lx = 512, and Ly = 300. Dashed
lines are the guide for the eye, illustrating k−2, k−1.7, k−1.6 and k−1.2 behavior in panels A,
B, C and D respectively.

Our results suggest that in the absence of gravity, as dimensionless surface tension in-

creases from σ = 0 to 3.2, roughness exponent decreases from α = 0.5 to 0.35, as shown

in Fig. 5B. We rationalize the dependence of interface roughness on the largest wave length

as follows. Surface tension tends to flatten the interface, making large wave lengths ener-

getically prohibitive to form. Formation of such long wave modes require concerted motion

of points along the interface, rendering a rise in the interfacial energy. As such, impact

of surface tension on the dampening of the largest wave mode becomes more pronounced.
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According to Eq. 15, increasing the surface tension lowers interface roughness, and hence α.

Similarity of Fig. 5A and B reveals that the underlying dynamics of rising liquid layer is only

retarded once surface tension is applied at the interface. Hence, in the presence of surface

tension, dynamics similar to that in the absence of surface tension will be observed yet at

some longer time.

Likewise, in the absence of surface tension, we found that gravity has similar impact on the

interface roughness. Fig. 5C and D illustrates the decay of structure factor as time increases

in the presence of gravity, g′ = 0.05 and 0.25, rendering the roughness exponent α ≈ 0.35

and 0.1 (see Supporting Information for g′ = 0.01). Small α implies that interface roughness

is nearly independent of the longest interfacial wave mode that can be formed theoretically

during the rise of liquid layer, which indicates that interface roughness correlation in Eq. 15

may no longer hold. The fact that structure factor for large enough gravitational acceleration

at different KMC times almost overlap, as illustrated in Fig. 5D, is also indicative of interface

roughness being nearly independent of time as well as the longest wave mode, justifying

the possible break down of interface roughness correlation mentioned above. Furthermore,

smaller value of α extracted from Fig. 5C and D compared to that from Fig. 5B, suggests

that the impact of gravity on dampening interface roughness is more evident than that of

surface tension. We conjecture that is because gravitational force is a distributed force field,

applied to every point in the bulk fluid; consequently, affecting every upward hop in KMC

simulation. However, surface tension is a force applied to every point along the interface.

Thus, concentrating only on the interface displacement, and so less effective.

Conclusions

We developed a 3D Ising lattice gas model to understand the impact of surface tension

and gravity on the dynamics of a very thin liquid layer rising along a flat substrate. Utilizing

our 3D lattice gas model in KMC simulations, we have shown that in the presence of surface
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tension alone, interface vertical displacement follows the
√
t universal law; however, the

dynamics of liquid motion is retarded, leading to a delay in transition from ballistic to

diffusive motion (t to
√
t) in interface displacement. We have demonstrated that in the

presence of gravity, interface displacement deviates from
√
t universal law to the extent

that at large value of gravitational acceleration, the interface will cease to rise. While in

the presence of surface tension, spatiotemporal fluctuations of interface roughness can be

dynamically rescaled at long times, we found that in the presence of large gravitational

acceleration, these fluctuations cannot dynamically be rescaled.

Overall, our work has allowed us to address how surface tension and gravity affect the

interfacial dynamics. Here, we only considered single component fluid. However, additional

work is warranted to show the interface as well as flow dynamics during rising (wetting) and

falling (dewetting) of complex liquid films where nanoparticles are suspended. Understanding

this dynamics will help unravel mechanisms of directed self-assembly of nanoparticles during

dewetting of such complex liquid films.
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