
Jia et al. BMC Bioinformatics 2013, 14:227
http://www.biomedcentral.com/1471-2105/14/227

METHODOLOGY ARTICLE Open Access

A fast weak motif-finding algorithm based on
community detection in graphs
Caiyan Jia1,2*, Matthew B Carson2 and Jian Yu1

Abstract

Background: Identification of transcription factor binding sites (also called ‘motif discovery’) in DNA sequences is a
basic step in understanding genetic regulation. Although many successful programs have been developed, the
problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of
binding sites. State-of-the-art algorithms have their own constraints (e.g., high time or space complexity for finding
long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif
instance per sequence) which limit their scope of application.

Results: In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection
from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple
occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of
mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in
sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast
community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate
motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown
that TFBSGroup is very efficient (e.g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the
algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the
Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12
mouse transcription factors involved in ES cell pluripotency and self-renewal.

Conclusions: Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long and
weak (l, d) motifs in DNA sequences under the ZOMOPS constraint. It is also capable of finding motifs in real
applications. The source code for TFBSGroup can be obtained from http://bioinformatics.bioengr.uic.edu/TFBSGroup/.

Background
Transcription factors play an irreplaceable role in the acti-
vation and repression of gene expression by binding to
specific sites within promoter regions of target genes.
Identification of transcription factor binding sites (TFBSs)
is a basic task for elucidating the molecular mechanisms
of transcriptional regulation. Although traditional foot-
printing assays can accurately identify the precise binding
sites of any factor, this low-throughput method is highly
technical and can analyze only a single small region (< 1
kb) at a time. With the development of high-throughput
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sequencing technologies, a number of experimental tech-
niques such as ChIP-chip and ChIP-seq have been used
to identify the location of transcription factor binding
sites. However, these methods are unable to resolve DNA-
protein interactions at base pair resolution [1]. In silico
identification of over-represented DNA motifs from the
promoters of co-regulated or homologous genes as well
as ChIP-enriched regions plays a significant role in locat-
ing binding sites in a high-throughput and high-resolution
manner.

Since a DNA motif is usually highly conserved or over-
represented among DNA sequences, there are two main
approaches to its representation: (1) represent a motif
by its profile or position-specific scoring matrix (PSSM)
[ nj,k]l×4, which records the frequency of base k (k ∈
{A, C, G, T}) at position j (j = {1, 2, · · · , l}) for all aligned
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sites [2-4] or (2) characterize a motif as an l-length con-
sensus string describing a motif with the most frequent
nucleotide in each position of all aligned sites. According
to these two TFBS models, existing motif-finding algo-
rithms can be divided into two classes. The first includes
algorithms that maximize a statistical or entropy-related
score of a PSSM [ nj,k]l×4. CONSENSUS [5], MEME [6],
Gibbs Sampler [7], AlignACE [8], PROJECTION [9], and
CRMD [10] belong to this group. These algorithms use
optimization techniques from the fields of statistics and
machine learning, including the greedy strategy [5], the
Expectation-Maximization method [6], Gibbs sampling
methods [7-9], and the clustering method [10]. These
algorithms usually have a fast run time. Sometimes, how-
ever, they cannot converge to the global optimum, espe-
cially for short motifs with high levels of statistical noise or
long motifs with a large search space. The second class of
algorithms usually searches for (l, d) motifs based on the
consensus model [11] by employing heuristic methods,
but in some cases use optimal techniques. It is supposed
that each sequence contains zero, one, or multiple motif
instance(s) with up to d mutations within a true motif
[12]. A large number of algorithms have been proposed to
exactly or almost exactly extract (l, d) motifs from N input
sequences with length L. SPELLER [13], WEEDER [14,15],
MITRA-count [16], Voting [17], PMSprune [18], WIN-
NOWER [11], iTriplet [19], VINE [20], Stemming [21],
RecMotif [22], and sMCL-WMR [23] are included in this
group. These algorithms usually have a high time com-
plexity for long motifs. This limits their application, espe-
cially toward prokaryotic promoters [24,25]. In this study,
we intend to offer a highly efficient algorithm for finding
long and weak (l, d) motifs and to use this algorithm to
identify TFBSs in prokaryotic data sets.

Motif-finding algorithms based on the consensus model
can be further divided into two categories: pattern-driven
and sample-driven approaches [16]. Using a pattern-
driven approach, one tries to enumerate all possible 4l

l-mer motifs with lexical order. When applying a sample-
driven approach, all possible (l, d) motifs generated from
the real l-mers of input sequences are often tested.
SPELLER, WEEDER, and MITRA-count are pattern-
driven approaches and Voting, PMPprune, WINNOWER,
iTriple, VINE, Stemming, RecMotif, and sMCL-WMR are
sample-driven. In general, pattern-driven approaches can
automatically find (l, d) motifs in samples without being
given the length l. However, the state-of-the-art sample-
driven approaches are usually faster than the state-of-the-
art pattern-driven approaches, and thus can be used to
extract motifs with a larger l and d.

Recently, the sample-driven approach, which trans-
forms the (l, d) motif search by extracting the maximum
clique or q-cliques (q ≤ N) from an N-partite graph,
has attracted much attention. In this graph, each vertex

is an l-mer. There is an edge between two l-mers from
two different sequences if the Hamming distance between
these two l-mers is no more than 2d. This is because
the Hamming distance between each instance of a motif
and the motif itself is assumed to be at most d. Thus,
all instances of a motif must form a maximum clique
or q-cliques in the graph. This idea was first presented
in WINNOWER, which utilizes an extendable mecha-
nism to cut off spurious edges by extending k-cliques
(k = 2 or k = 3) to larger (k + 1)-cliques. However,
the accuracy of WINNOWER cannot be guaranteed since
there is strong background noise in many sequences and
true edges may be pruned by its local extension mech-
anism. The VINE algorithm, with its rigorous pruning
steps, was proposed to speed up and increase the preci-
sion rate of WINNOWER. Similarly, iTriplet was designed
to randomly select two reference sequences and iden-
tify all triplets (3-cliques) in these as well as each of the
remaining N − 2 sequences. All discovered triplets along
with their sequence information are then inserted into
hash tables as candidate motifs. If a table has enough
instances (e.g., at least q), the motif can be identified as
‘true’. RecMotif was created to extract N-cliques by using
reference sequences as well. It takes the selected refer-
ence vertices from the first x (x = {1, 2, · · · , N}) reference
sequences in order to select new reference vertices in the
remaining sequences. As x is increased, the selection is
continued (x ← x + 1) if new reference vertices can
be selected from the remaining sequences to obtain x-
cliques. Otherwise, the algorithm backtracks to the first
x − 1 reference vertices and finds a substitute. RecMotif
has been shown to be very fast for some (l, d) cases (e.g.,
(15, 4), (18, 5) and (21, 6)). However, in tests performed
by Sun et al. [22], it failed to find some weak motifs such
as (15, 5), (18, 6), and (19, 7). Additionally, RecMotif oper-
ates under the OOPS constraint. During real applications,
some sequences may not contain any instance of a true
motif while some may contain multiple instances. With
this work, we offer a more efficient algorithm for extract-
ing long and weak (l, d) motifs from N-partite graphs
using the more biologically-relevant ZOMOPS constraint.

During our research, we made the following observa-
tions: (1) there may be too many spurious edges in an
N-partite graph to extract the q-cliques (q ≤ N) needed
to identify a weak motif (e.g., (15, 4) or (18, 6)) and (2)
if we construct the N-partite graph such that there is an
edge between two l-mers from two different sequences
if the Hamming distance between these two l-mers is no
more than x (d ≤ x ≤ 2d) instead of exactly 2d, the motif
instances in the graph may form a dense subgraph instead
of a clique. Based on this information, we present a new
algorithm: TFBSGroup. It first extracts dense subgraphs,
which are groups of candidate instances (i.e., TFBSs), by
the fast community detection algorithm BGLL [26]. It
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then greedily refines these candidate motifs towards the
true motif within their own communities. Our empirical
study shows that TFBSGroup can quickly discover long
and weak (l, d) motifs (e.g., (18, 6) and (24, 8) motifs within
30 seconds) in synthetical samples under the ZOMOPS
constraint. More importantly, it is able to rapidly iden-
tify motifs in a large data set of prokaryotic promoters
[25] generated from the Escherichia coli database Regu-
lonDB [27]. It is also able to accurately discover motifs in
12 mouse transcription factor ChIP-seq data sets involved
in ES cell pluripotency and self-renewal [28].

Results
We first tested TFBSGroup on a series of synthetic
(l, d) samples and compared it with iTriplet (source
code: http://www.rci.rutgers.edu/∼gundersn/iTriplet/)
and RecMotif (source code provided by the authors).
iTriplet and RecMotif are both sample-driven algorithms
which heuristically extract q-cliques from an N-partite
graph (q = N for RecMotif because of the OOPS con-
straint). Meanwhile, we compared TFBSGroup with
the pattern-driven algorithms SPELLER, WEEDER, and
MITRA in order to reveal more differences between
sample-driven and pattern-driven approaches. We then
used TFBSGroup on a large data set of prokaryotic pro-
moters generated from the Escherichia coli database
RegulonDB for the purpose of finding real long and weak
motifs. Also, we showed the results of TFBSGroup in
discovering motifs in ChIP-seq data sets for 12 mouse
transcription factors involved in ES cell pluripotency and
self-renewal [28]. All experiments were performed on a
computer with an Intel 2.99 GHz processor and 2GB of
main memory running the Windows XP.

Benchmark data sets
Like the previous work of Buhler and Tompa [9], the
testing samples were generated synthetically using the
following steps:

1) A parent motif of length l was chosen by randomly
picking l bases from the nucleotide set {A, C, G, T}.

2) N i.i.d. background sequences of length L were
constructed at random.

3) q (q ≤ N) sequences were randomly selected from
these N background sequences.

4) The following steps were performed for each of the
selected q background sequences:

4.1) An instance of the parent motif was created
by randomly choosing d (d < l) positions of
the motif and randomly mutating these d
bases to one of the four nucleotides.

4.2) A consecutive substring of random length l
was selected from each background sequence.

4.3) The substring in Step 4.2 was replaced with a
newly generated instance of the motif.

In our experiments, unless otherwise specified, the
number N and the length L of sequences in an (l, d) sample
are set to 20 and 600, respectively.

Comparisons between TFBSGroup and state-of-art
algorithms using (l, d) samples
Firstly, to show the efficiency of TFBSGroup, we com-
pared it with state-of-the-art algorithms including the
pattern-driven SPELLER, WEEDER, and MITRA-count
(MITRA for short) and the sample-driven iTriplet and
RecMotif on the same testing samples (Table 1). Secondly,
we tested the effect of the maximal length L of DNA
sequences [20]. The test results are shown in Table 2.
WEEDER(q) indicates the execution time of WEEDER
given q, q/f indicates that WEEDER failed to find the true
motif for the given value q, TFBSGroup(x) indicates the
run time of TFBSGroup given x (d ≤ x ≤ 2d), s, m, and h
denote seconds, minutes, and hours respectively, and ′−′
indicates a run time of over 10h.

To demonstrate the accuracy of our algorithm, we ran
TFBSgroup on 100 randomly generated test samples for
each (l, d) pair and reported the number of samples in
which the implanted motifs were correctly reported in the
top 1/5/10, and which were correctly identified but listed
below the top 10 (denoted b10). We also reported the
number of samples in which the implanted motifs were
not correctly reported by TFBSGroup (denoted f ), since
our algorithm TFBSGroup may fail in some cases. The
accuracy of TFBSGroup for different (l, d) pairs is shown
as 1/5/10/b10/f after TFBSGroup(x) in Tables 1 and 2.
For example, we correctly found motifs ranked first in 95
samples, motifs ranked within the top 5 in 98 samples, and
motifs ranked within the top 10 in 99 samples for (15, 4).
However, we failed on one sample set. Thus, the accuracy
of TFBSGroup on 100 (15, 4) samples can be estimated as
95/98/99/0/1, where motifs were ranked by their signifi-
cance score [14,15]. Furthermore, since the run times of
TFBSGroup on different samples of the same (l, d) pair
showed negligible difference (usually < 1 second) under
the same parameter settings, we did not average the run
times of 100 samples for an (l, d) pair but instead kept the
run times of TFBSGroup on the same sample sets used in
the efficiency comparisons with other algorithms.

In addition, Table 1 and Table 2 describe the results
of VINE (Huang et al. [20]) and sMCL-WMR (Boucher
and King [23], sMCL for short) in order to compare
these sample-driven algorithms, which extract cliques
from N-partite graphs, to our work. ′∗′ indicates that
no result was available from literature. The experiments
using VINE were performed on a PC with an Intel Pen-
tium IV 3.40 GHz processor and 1GB of main memory
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Table 1 Comparisons of TFBSGroup with state-of-art algorithms on (l, d) samples

(l,d) SPE- WEEDER MI- iTri- Rec- TFBSGroup(x)- VINE sMCL
LLER (q) TRA plet Motif 1/5/10/b10/f

(10, 2) 18.83s 3.7s (20) 1.98s 0.17s 0.64s 17.2s(3) * 15s

29/30/30/0/70

(11, 2) 17.33s 3.47s (20) 2s 0.28s 0.13s 14s(3)-1 8s *

99/100/100/0/0

(11, 3) 4.52m 20.02s (17) 22.95s 9.78s 1.56m 14s(3)-1 * *

76/86/87/6/7

(12, 3) 4.5m 6.63m (16) 22.92s 4.89s 0.59s 15.8s(4)-1 7s 24s

68/72/72/0/28

(13, 3) 4.54m 2.77m (18) 22.73s 1.28s 0.22s 15.6s(4)-1 * *

97/100/100/0/0

(14, 4) 1.04h 34.97m (19) 4.3m 1.09m 18.3s 17s(5)-1 * 1.63m

88/94/94/1/5

(15, 4) 1.04h 7.2m (19) 4.28m 5.79s 0.70s 15.9s(5)-1 5.6m *

95/98/99/0/1

(15, 5) - 4.09h (19) 43.86m 11.5m - 18.8s(5)-1 6.8m *

70/94/94/0/6

(16, 5) - 4.2h (19/f ) 44.53m 3.78m 24.34m 18s(6)-1 6.8m 4.22m

8.19h (18) 96/100/100/0/0

(17, 6) - - 7.0h 4.58h - 18.6s(7)-1 7.5m *

81/90/92/2/6

(18, 6) - 1.39h (20/f ) 7.46h 27.86m - 19.2s(7)-1 * 10.53m

4.26h (19) 94/100/100/0/0

(19, 7) - - - - - 19.6s(8)-1 8.3m *

83/100/100/0/0

(21, 8) - - - - - 21.4s(9)-2 10.6m *

90/100/100/0/0

(23, 9) - - - - - 20.2s(10)-1 12.1m *

86/100/100/0/0

(24, 8) - - - - - 21.3s(11)-1 * *

97/100/100/0/0

(25, 10) - - - - - 22.1s(12)-1 13.4m *

90/100/100/0/0

(40, 14) - - - - 4.28h 27.2s(21)-1 * *

98/100/100/0/0

running Windows. Those for sMCL-WMR were per-
formed on a Linux machine with a 2.6 GHz processor
and 1Gb of RAM running Ubuntu Linux. We also tested
iTriplet and found that the run times of two implemen-
tations of this algorithm on the same (l, d) sample were
greatly different due to its random mechanism for select-
ing two reference sequences and an l-mer within a refer-
ence sequence. Taking five runs of iTriplet on the same
(15, 4) sample as an example, the minimum execution

time was 0.859 seconds and the maximum was 9.156 sec-
onds. We have reported the average run time of 5 runs of
iTriplet.

As shown in Table 1, the sample-driven algorithms
run faster than the pattern-driven variety. However,
except for MITRA, we used only q and d as input
in all implementations of the pattern-driven algorithms.
The length l of planted motifs can be predicted by
these algorithms while all the sample-driven types tested
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Table 2 The influence of sequence length L on (15, 4)

L SPELLER WEEDER(q) MITRA iTriplet RecMotif TFBSGroup(x)- VINE
1/5/10/b10/f

300 10.9m 23.45s (20) 1.46m 1.18s 0.08s 4.8s(6)- *

100/100/100/0/0

400 23.13m 1.88m (19/f ) 2.38m 1.02s 0.19s 8.1s(6)- *

3.55m (18) 100/100/100/0/0

500 40.89m 3.54m (19) 3.33m 4.88s 0.36s 11.3s(6)- *

98/100/100/0/0

600 1.05h 7.5m (19) 4.3m 4.11s 0.74s 16.1s(5)- 11.7m

95/98/99/0/1

700 1.48h 13.83m (19/f ) 5.21m 9.77s 1.16s 21.8s(5)- 19.6m

34.17m (18) 98/100/100/0/0

800 2.03h 24.56m (19) 6.25m 16.53s 2.03s 28.5s(5)- 27.0m

99/100/100/0/0

900 2.78h 37.24m (19) 7.48m 43.92s 3.17s 36.5s(5)- 25.3m

98/99/100/0/0

1000 3.62h 51.47m (19/f ) 8.8m 45.52s 4.86s 44.8s(5)- 43.5m

1.67h (18) 99/100/100/0/0

above and MITRA require l, d and q to be specified
in advance. TFBSGroup can find all long and weak
(l, d) motifs within 30 seconds under the ZOMOPS
constraint. Most planted motifs in the synthetic sam-
ples (with the exception of (10, 2)) were correctly
reported in the top 1/5/10. TFBSGroup performed
with high accuracy when identifying exact matches for
long and weak (l, d) motifs such as (15, 4), (16, 5),
(18, 6), and (19, 7). However, TFBSGroup failed to find
exact planted motifs in many cases involving conserved
motifs (e.g., (10, 2)). This may be because the networks are
too sparse to form good communities. For hard (l, d) motif
search problems such as (15, 5), (16, 5), (17, 6), and (18, 6),
TFBSGroup is much more efficient than iTriplet, RecMo-
tif, VINE, and sMCL-WMR. In addition, it is not easy to
tune the parameter q in WEEDER since, with the decrease
of q, the run time is dramatically increased. Moreover,
according to our experiments, iTriplet cannot be guaran-
teed to find true inserted motifs in all cases because of its
random mechanism. Also, the memory usage of iTriplet is
much higher and can freeze the computer during searches
for long and weak motifs such as (19, 7).

Table 1 and Table 2 show that the sample-driven algo-
rithms are more sensitive to the length L of DNA
sequences, which influences the scale and the noise
ratio of an N-partite graph given x. The pattern-driven
approach is much more sensitive to l and d, which dom-
inate the scale of the search space. These results are
consistent with the time complexity of these algorithms
collected from [21,22] and shown in Table 3. According
to Table 1 and Table 2, the value of q has a strong influ-
ence on the efficiency of WEEDER. For instance, when
L = 700, the true motif could not be found when we set
q = 19. We then let q = 18 and ran WEEDER again. The
run time when q = 18 was two to three times longer than
when q = 19. We also observed that a shorter length L
of sequences led to a more accurate TFBSGroup result.
This is consistent with the theoretical results in Zia and
Moses [29].

Mining for transcription factor binding sites in Escherichia
coli K-12
In order to further evaluate TFBSGroup, we used the
algorithm on a large data set (ECRDB70-10) to find the

Table 3 Algorithmic complexity

Pattern-D TimeO(·) Space O(·) Sample-D Time O(·) Space O(·)
SPELLER O(N2LN(l, d)) O(N2L/w) iTriplet O(NL3p(l, 2d)l3d2) O(N(l, d))

WEEDER O(N2LN(l, d)) O(N2L/w) RecMotif ≤ O(NL7p(l, 2d)10) O(N2L)

MITRA O(NLlN(l, d)) O(NLl) VINE O(N4L4) O(N2L2)

TFBSGroup O(p(l, x)2N4L4) O(p(l, x)N2L2)
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binding sites within promoters of Escherichia coli K-12
DNA. This data, collected by Hu et al. [25], is stored in
RegulonDB [27] and contains groups of sequences with
experimentally-determined binding sites in the middle
regions of the sequences. We selected sequence sets with
more than five DNA sequences. We used published motif
consensuses in the literature, especially the results in Li
et al. [30], as a guide for inferring the values of l and d.
We listed the motif consensuses, which were similar to
the consensuses published in the literature. If no exact
match or similar result was found in the literature, we
listed the top ranked motif consensuses with the most
binding locations in the middle regions of the sequences.
The test results (obtained within 1 minute by running
TFBSGroup) are shown in Figures 1 and 2, where ‘TF’
indicates the name of the transcription factor, ‘#’ indi-
cates the number of sequences in the corresponding set,
‘Consensus’ indicates the motif consensus of the corre-
sponding TFBSs given a TF, ‘Logo’ indicates the sequence
logo of all TFBSs for a specified TF (created using the web-
based application tool Weblogo [31]), ‘Rank’ indicates the
ranking number of the significance score [14,15] for the
motif consensuses, ‘Lit.’ indicates that similar motif con-
sensuses have been published in the literature while ‘*’
means no similar motif consensus was found in the litera-
ture, and (l, d) and x are represented in the same way as in
Table 1.

As shown Figures 1 and 2, TFBSGroup can efficiently
find over-represented long motifs from prokaryotic pro-
moters. We illustrate this point using the well-studied
TFs CRP, FNR, and LexA as examples [21]. Binding site
data for the CRP protein includes 138 DNA sequences
of length 219 with the consensus TGTGAnnnnnnTCACA
(consensus model: (18, 7)) and 138 actual binding sites.
The FNR data includes 50 DNA sequences of length
222 with the consensus TTGATnnnnATCAA (consensus
model: (14, 4)) and 50 actual binding sites. The LexA data
includes 10 DNA sequences of length 222 with the con-
sensus CTGTnnnnnnnnnnCAG (consensus model: (16,
6)) and 10 actual binding sites. For all three sets, the
expected motifs are ranked first by TFBSGroup in terms
of their significance score: CRP is reported to have 121
sites (63 true), FNR is predicted to have 46 sites (23 true),
and LexA is reported to have 12 sites (8 true). The pre-
cision on the site level (precision = TP

TP+FP ) is close to or
greater than 50% on these three data sets, where TP is the
number of true positive sites and FP is the number of false
positive sites. It should be pointed out, however, that some
results marked with an ‘*’ in Figures 1 and 2 may not be
satisfactory due to the low specificity of binding sites for
the TFs, insufficient number of sequences from which to
a draw statistical conclusion, or a lack of knowledge of the
proper (l, d) models. Compounding the problem is the fact
that the true consensuses in these data sets are unknown,

a difficulty which exists for all consensus model-based
algorithms.

Motif discovery in 12 mouse ES CELL ChIP-seq data sets
To further evaluate the accuracy of motifs predicted
by TFBSGroup, we analyzed the ChIP-seq data sets for
12 DNA-binding TFs (CTCF, cMyc, Esrrb, Klf4, Nanog,
nMyc, Oct4, Smad1, Sox2, STAT3, Tcfcp2I1, and Zfx)
involved in mouse embryonic stem cell pluripotency
and self-renewal [28]. To prepare the data sets for use
with motif discovery algorithms, we first extracted peak
regions from ChIP-seq data using MACS [50] with a FDR
(false discovery rate) threshold of 0.2. We then mapped
the centers of the ChIP-seq peaks to the mouse mm10
assembly and extracted 100-bp of genomic sequence cen-
tered around each peak. To compare motifs identified by
TFBSGroup with motifs found in Chen et al. [28], we
ran TFBSGroup on hundreds of peaks with low p-values.
The results of Chen et al. and TFBSGroup are shown
in Figure 3, where all sequence logos predicted by TFB-
SGroup, including those in Figure 4, were also created
using the web-based application tool Weblogo [31]. We
found motifs matching those identified in Chen et al. [28].
Specifically, motif logos predicted by Chen et al. [28] and
TFBSGroup for each TF in Figure 3 (with the exception
of Klf4 and Zfx) are exactly or ‘almost’ exactly the same.
However, it is well known that Klf4 is able to recognize
GC-rich regions. ZFX has no known published consensus
sequence, but its predicted motif agrees to some extent
with the result of Chen et al. and the result predicted by
cEMRMIT [51].

In [28], Chen et al. used WEEDER and then refined and
extended the motifs with an Expectation-Maximization
method. This second step was necessary because the sup-
plied version of the WEEDER algorithm limited the motif
search to a maximum of 12 bps. As discussed in the pre-
vious sections, WEEDER operated with low efficiency for
long motifs and was difficult to tune for the parameter q.
On the contrary, TFBSGroup was able to find both long
and weak motifs. We obtained the motifs and their TFBS
locations in sequences within 1 minute for all data sets
with just one run of TFBSGroup.

In addition, we found alternative motifs for some TFs
such as OCT4, Esrrb and CTCF, which were also reported
in a previous study [52]. One significant alternative motif
for each of the three TFs is shown in Figure 4. The TFBS
sequences of this alternative motif were complementary to
those of the main motif in Figure 3 for each of three TFs.

Conclusions and discussion
In this work, we have developed a novel and efficient
algorithm (TFBSGroup) for identifying (l, d) motifs under
the ZOMOP constraint. It extracts dense subgraphs from
an N-partite graph using a fast community detection
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Figure 1 Motifs in Escherichia coli K-12 promoter regions. This figure shows the motifs predicted by TFBSGroup in the first part of Escherichia coli
K-12 promoter regions ordered by alphabet [21,30,32-42].
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Figure 2 Motifs in Escherichia coli K-12 promoter regions (cont’d). This figure shows the motifs predicted by TFBSGroup in the remaining part
of Escherichia coli K-12 promoter regions ordered by alphabet [21,30,33,38,43-49].

algorithm designed for processing large-scale networks
(BGLL). Based on these extracted communities, TFB-
SGroup heuristically refines candidate motifs and their
instances towards the true motifs. Experimental tests on
synthetical samples have shown that TFBSGroup can very

quickly discover long and weak (l, d) motifs and their
instances. More importantly, TFBSGroup has achieved
good performance in rapidly identifying motifs in a large
data set of promoters generated from Escherichia coli and
in accurately discovering motifs in ChIP-seq data sets
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Figure 3 Motifs in 12 mouse ES CELL ChIP-seq data sets. This figure shows the motifs predicted by TFBSGroup in 12 mouse ES CELL ChIP-seq
data sets and compares these motifs with those identified in Chen et al. [28].

for 12 mouse transcription factors involved in ES cell
pluripotency and self-renewal. Still, TFBSgroup may not
work well in the extreme case that the number of muta-
tions between each motif instance and the motif itself is
exactly d, since the graph will be too dense to be parti-
tioned sufficiently. Fortunately, this case seldom occurs in
real applications. In the future, we plan to improve the
algorithm by combining structure- and sequence-based
methods in order to address this issue. Also, we plan
to improve the algorithm’s ability to process large-scale
ChIP-Seq data sets.

Methods
(l, d) motif search and dense subgraph extraction
Given a set of sequences S={s1, s2, . . . , sN } over a symbol
set �={A,C,G,T} and positive integers l and d (|si| ≤ L,
1 ≤ i ≤ N , 1 ≤ l ≤ L and 0 ≤ d < l), an (l, d) motif
search finds a string t ∈ �l such that for at least q (q ≤ N)
sequences {si1, si2, · · · , siq} ⊆ S there exists a substring tij
in each sij (j = 1, 2, · · · , q) with d(t, tij) ≤ d, where d(t, tij)
indicates the Hamming distance between the two strings t
and tij.

Since the Hamming distance between each instance of
a motif and the motif itself is at most d, the Hamming

distance between two instances is no more than 2d and all
instances of the true motif must form a q-clique. There-
fore, we can obtain (l, d) motifs by extracting q-cliques
from an N-partite graph where each vertex is an l-mer in S
and there is an edge between two l-mers li and lj (li and lj
are l-mers of si and sj, respectively, i 	= j) if the Hamming
distance between the two l-mers is no more than 2d.

As far as synthetic samples randomly generated by the
method mentioned in the above section are concerned,
the probability of two random l-mers with a maximum
distance of x is

p(l,x) =
x∑

i=0

(
i
l

)
3
4

i
· 1

4

(l−i)
. (1)

Thus, for a set of N sequences with length L, there are
0.5×N ×(L− l+1)×(N −1)×(L− l+1)×p(l,2d) random
edges in the background sequences. For example, there
are an estimated 18.2 million random edges in the back-
ground sequences for an (18, 6) sample when N = 20 and
L = 600. There are also some spurious edges around the
vertices of motif instances, especially for long and weak
(l, d) motifs, since the neighbor vertices of a motif instance
may have links to the neighbor vertices of other motif

Figure 4 Alternative motifs for OCT4, Esrrb, and CTCF. This figure shows alterative motifs predicted by TFBSGroup for TFs OCT4, Esrrb and CTCF.
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instances. Still, only q ∗ (q − 1)/2 ≤ N ∗ (N − 1)/2 edges
are true positive links forming an expected q-clique.

Suppose there is an edge between two vertices in an N-
partite graph if the Hamming distance of the vertices is no
more than x (d ≤ x ≤ 2d) instead of 2d. In this case, the
number of spurious edges may be dramatically reduced.
For example, if we set x = 7 for a real (18, 6) sample,
there are only 82,343 edges in the N-partite graph (there
are an estimated 80,335 edges using Eq. 1). However, the
instances of a motif in this situation may not form a q-
clique but rather a densely connected subgraph. We can
obtain an (l, d) motif by detecting dense subgraphs in an
N-partite graph where the distance of two vertices is at
most x.

Community detection and dense subgraph identification
In recent years, complex network analysis has been high-
lighted in the research community. It is a powerful tool
used to describe the structure of many complex systems
in nature and society and has many potential applications.
A network is usually represented by a graph G = (V , E),
where V is a set of n vertices and E is a set of m edges
representing relationships between pairs of vertices.

Community structure is one of the most important
topological characteristics in a network. A community
structure is a subgraph of a network whose vertices are
more highly connected with each other than with ver-
tices outside the subgraph. Therefore, the problem of
community detection requires the partition of a network
into communities of densely connected nodes such that
∀u, v, u 	= v, Cu ∩ Cv = ∅ and ∪uCu = V , where Cu
(or Cv) is one of the partitioned communities. It should
be apparent that community structure is a type of dense
subgraph. The current algorithms for identifying com-
munities in complex networks can be used to find dense
subgraphs within graphs. Many methods to identify com-
munity structures in complex networks have been devel-
oped [53,54]. As mentioned above, however, an N-partite
graph of input sequences with a long and weak (l, d)
motif may be a large network with millions of edges. Fast
community detection methods are required to partition a
large-scale graph. In the field of complex network analysis,
algorithms including Infomap [55], BGLL [26], LPA [56],
and RG [57] are designed to efficiently detect communi-
ties in very large networks. In this study, we use the BGLL
algorithm [26] to find dense subgraphs in an N-partite
graph. This algorithm is best for our purposes since we
only need a coarse partition and BGLL is very fast and easy
to use. The source code for this software can be obtained
from http://findcommunities.googlepages.com/.

BGLL: a near linear time algorithm for community detection
BGLL is a heuristic method for optimizing modular-
ity (Eq. 2), which measures the difference between the

empirical distribution of in-community connections of a
partition and the expected distribution of in-community
connections of a partition in a randomly generated graph
with the same vertex degree distribution [58].

Q = 1
2m

∑
i,j∈V

[ Aij − kikj

2m
] δ(Ci, Cj), (2)

where Aij is the weight of the edge (i, j). If a network is
unweighted, Aij = 1 for (i, j) ∈ E, otherwise Aij = 0.
ki = ∑n

j=1 Aij is the sum of the weights of the edges
attached to vertex i or the degree of the node i for an
unweighted network. Ci is the community to which the
node i is assigned and δ(·, ·) is the Kronecker function. A
larger Q yields a better partition.

The BGLL algorithm can be divided into two iterative
phases. Firstly, it assigns a different community to each
node of a network. Then, for each node i, it considers the
neighbors j of i ((i, j) ∈ E) and evaluates the gain of modu-
larity �Q (Eq. 3) that would take place by removing i from
its community and placing it in the community of j.

�Q =
[∑

in + 2ki,in
2m

− (

∑
tot +ki
2m

)2
]

−
[∑

in
2m

− (

∑
tot

2m
)2 − (

ki
2m

)2
]

,
(3)

where
∑

in is the sum of the weights of the edges inside
a community Cu,

∑
tot is the sum of the weights of the

edges incident to nodes in Cu, and ki,in is the sum of the
weights of the edges from i to nodes in Cu. If the gain
is negative, i stays in its original community, otherwise,
i is placed in the community which provides maximum
gain. The second phase of the algorithm involves build-
ing a new network whose nodes make up the communities
found during the first phase. The weights of the edges
between the new nodes are the sum of the weight of the
edges between nodes in the corresponding two commu-
nities. Edges between nodes of the same community lead
to self-loops for this community in the new network. The
algorithm naturally incorporates a notion of hierarchy,
which results in communities of communities.

The BGLL algorithm is extremely fast and performs
in linear time on typical and sparse data, since the gain
of modularity is very easy to compute with Eq. 2 and
the number of communities decreases drastically after
just a few passes. Most of the run time lies within the
first iteration [26]. In this study, we took the results of
the first iteration only since we are interested in obtain-
ing coarse-grained candidate motifs and their group of
instances from dense subgraphs of the original network
and are not concerned about the hierarchical structure of
communities.
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TFBSGroup: a fast motif-finding algorithm
TFBSgroup operates in two phases. Firstly, we construct
an N-partite graph where the distances of pairs of ver-
tices are no more than x (d ≤ x ≤ 2d) for a set of input
sequences, which is assumed to contain an (l, d) motif
and at least q (q ≤ N) instances. We then detect all com-
munities with a size of at least t (the default is q/2) in
the N-partite graph using the BGLL algorithm to obtain
a candidate motif consensus by aligning all l-mers in each
community. Secondly, we greedily refine these candidate
motifs toward the true motif using the following three
steps: 1) For each candidate motif consensus, we look for
the vertices in the neighbor set of the current community
Cu for which the Hamming distance between the con-
sensus and the corresponding l-mers of these vertices are
no more than d in order to form a new community. A
vertex belonging to the new community is in the neigh-
bor set of the current community Cu if the position of
the corresponding l-mer of the vertex is in the interval
[ max{0, posvi − l}, min{posvi + l, L − l}]. posvi is the start
position of the corresponding l-mer of a vertex vi (vi ∈
Cu) in the sequence to which it belongs. 2) We align the
new community to obtain a new candidate motif consen-
sus. We then iteratively execute step 1 and step 2 until
each new candidate consensus cannot be changed. 3) We
shift the corresponding l-mers (an l-mer corresponds to
a vertex vi in the final community) of the final candidate
motif in the interval [ max{0, posvi − �l/3�}, min{posvi +
�l/3�, L − l}], since the true motif and its instances may
be near the final candidate motif consensus and their
instances.

Furthermore, since there may be many false positive
motifs, we sort all output motifs according to their statis-
tical significance using the method of Pavesi et al. [14,15]
and then delete the duplicates. Finally, the top k signifi-
cant motifs and their instances are returned. TFBSGroup
is so named because it completes its run after all potential

motifs and the groups of their instances (corresponding
to the groups of TFBSs in a set of DNA sequences) are
reported as output.

The details of the TFBSGroup algorithm are shown
below, where (i, j) indicates an instance starting at the j-
th position of the i-th sequence si. t (default = q/2) is
used to filter false positive groups forming small com-
munities during the initial stage. This will not affect
the result or the speed of the algorithm in our simula-
tions because the largest group usually has the highest
significance score. We can set t = 0 to ensure all can-
didate groups are examined. Furthermore, the window
size �l/3� is used to ensure that the predicted TFBSs are
within its inserted positions and not around them. Gen-
erally, we can identify true motifs when the window size
is less than l/3. The source code for TFBSGroup can
be obtained from http://bioinformatics.bioengr.uic.edu/
TFBSGroup/ or Additional file 1.

Time and space complexity of TFBSGroup
The time complexity of TFBSGroup depends mainly on
the first phase of the algorithm, which includes time for
constructing an N-partite graph with distance x (d ≤ x ≤
2d) and time for extracting communities from the con-
structed N-partite graph. During the second phase, the
algorithm searches through candidate motif consensuses
and their instances within each of the communities.

There are at most N ×(L− l+1) l-mers for a set of DNA
sequences with a length of at most L. Therefore, there are
at most N × (L − l + 1) × (N − 1) × (L − l + 1) × l/2 =
O(N2 ×L2 × l) comparisons for constructing an N-partite
graph. During one pass of BGLL, the algorithm computes
�Q at most t times for each vertex in a network, where
t is the maximum number of neighbors of a vertex in
the network. The time complexity of BGLL is bound by
O(N ×L×t×time�Q) for extracting communities from an
N-partite graph because there are at most N × (L − l + 1)

Algorithm 1: The TFBSGroup Algorithm

http://bioinformatics.bioengr.uic.edu/TFBSGroup/
http://bioinformatics.bioengr.uic.edu/TFBSGroup/
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Figure 5 The histogram of ny for (18, 6) and (19, 7). The height of a panel in the figure correspond to the number ny of instance pairs with
distance y (y = {0, 1, 2, · · · , 2d}).

vertices in a network, where time�Q is the time complexity
for computing �Q. As a result, the time complexity of
TFBSGroup for the worst case is

O(t × N × L × time�Q) = O(t × N × L × m)

∼= O(p(l, x)2 × N4 × L4),

where m is the number of edges in a network, m =
O(p(l, x) × N2 × L2) and t = O(p(l, x) × N × L), as
estimated using Eq. 1. However, it should be noted that
the above bound can be a substantial overestimate. The
time complexity of TFBSGroup is almost equal to the time
complexity of BGLL, which is near linear with respect to
m in real applications, especially for sparse networks [26].

The space complexity of TFBSGroup is mainly affected
by the storage of all l-mers and an N-partite graph, where
the distance of two vertices is at most x. Thus, the space
complexity of TFBSGroup is O(m) = O(p(l, x) × N2 ×
L2), while it is at least O(p(l, 2d) × N2 × L2) for previous
graph-based algorithms.

The time and space complexity of TFBSGroup and
several related algorithms (except for sMCL, since no
complexity analysis is available for this algorithm in the
literature [23]) are shown in Table 3, where the left
half lists pattern-driven algorithms (labeled ‘Pattern-D’)
and the right half lists sample-driven algorithms (labeled

‘Sample-D’). N(l, d) = ∑d
i=0

(
i
l

)
3i and w is the word

length, which corresponds to bit length of a processor. The
time complexity of RecMotif relies heavily on the value
of p(l, 2d) (see Table one in Sun et al. [22]). According
to Table 3, each algorithm has its own advantages. The
time complexity of pattern-driven algorithms is higher but
they have lower space complexity. The time complexity
of sample-driven algorithms is lower but they generally
have higher space complexity. RecMotif is too sensitive to
p(l, 2d) and L. When p(l, 2d) is small, RecMotif runs very
fast. However, when p(l, 2d) is larger than 0.28, RecMotif

can not produce the results within a reasonable amount
of time. TFBSGroup is a complement to sample-driven
algorithms since it makes a reasonable trade-off between
speed and accuracy.

The choice of x
The key problem with TFBSGroup is the selection of the
parameter x. If x is too large, the N-partite graph may
be too dense to define a community containing only the
instances of a motif. If x is too small, the graph is too
sparse to form the expected communities and the true
group of TFBSs will be missed. In this study, we use an
experimental statistical method to estimate x for a speci-
fied (l, d) motif search problem. Firstly, for a given l-mer
consensus, we created 500 instances of the consensus
with the Hamming distance between the consensus and
each instance equal to at most d. We then computed the
Hamming distance for each pair of instances and counted
the number ny of instance pairs with distance y (y =
{0, 1, 2, · · · , 2d}) to get the frequency ny distribution. The
center of this distribution should be an estimation of x, i.e.,
x ≥ max{ny, y ∈ {0, 1, 2, · · · , 2d}} or close to this. Taking
(18, 6) and (19, 7) as examples, the histograms of the fre-
quency ny distribution are shown in Figure 5. Using these
distributions as a guide, we set x = 7 and x = 8 for (18, 6)
and (19, 7), respectively.

Additional file

Additional file 1: The C++ Version of TFBSGroup (for WindowsXP).
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