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Abstract 

 

We present a fractional-order extension of the Bloch equations to describe anomalous NMR 

relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and 

stretched exponential functions that generalize conventional exponential relaxation. Such 

functions have been shown by others to be useful for describing dielectric and viscoelastic 

relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 

relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, 

chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and 

homogeneous form of cartilage. The results show that the fractional-order analysis captures 

important features of NMR relaxation that are typically described by multi-exponential decay 

models. We find that the T2 relaxation of BNC can be described in a unique way by a single 

fractional-order parameter ( ), in contrast to the lack of uniqueness of multi-exponential fits in 

the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed 

in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the 

largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in 

reflecting a more restricted aqueous environment. The quality of the curve fits obtained using 

Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained 

using mono- and bi-exponential models. In both gels and BNC,  appears to account for 

microstructural complexity in the setting of an altered distribution of relaxation times. This 

work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in 

biological tissues. 

 

 

 

 

 

 

 

Key words: T1 relaxation, T2 relaxation, fractional calculus, cartilage, extracellular matrix, 

magnetic resonance imaging. 

 



 3 

Introduction 

Experimental NMR and clinical MRI rely on accurate mathematical models for longitudinal and 

transverse spin relaxation [1, 2].  These models are usually described by exponential functions 

[3, 4], although it has long been recognized [5, 6] that mono-exponential functions or sums of 

exponentials may not adequately describe NMR relaxation in complex, heterogeneous, and 

anisotropic materials, such as biological tissue.  In these cases, the often observed stretched-

exponential or power-law behavior has been described as ‘anomalous’ [7]. Analysis of 

anomalous, non-exponential, time-domain data obtained from MRS and MRI suggests the need 

for an alternative mathematical model to describe the relationship between relaxation processes 

and internal material structure. Such structures in biological tissues restrict the movement of 

water on multiple time and length scales, ranging from nanoseconds for the rotational 

correlation time to hundreds of milliseconds for T1 relaxation.   Spatial structures range from the 

size of a single cell to the entire length of the human spine. Fractional-order calculus [8-10] 

provides multi-scale mathematical models that have been used successfully to describe 

relaxation phenomena in polymers, dielectrics, and viscoelastic materials [11-13]. Thus, it is 

reasonable to consider such models in the analysis and interpretation of NMR relaxation in 

biological tissues. 

Here we describe the development and application of a fractional-order model for NMR 

relaxation that leads to Mittag-Leffler and stretched exponential functions for time-domain T1 

and T2 relaxation.  These functions describe tissue complexity through fractional order 

parameters that arise from operators within the underlying fractional-order differential 

equations. Such operators have been shown to reflect the distribution of relaxation times 

associated with tissue components (e.g., membranes and macromolecules) and compartments 

(e.g., vesicles, cells and extracelluar matrix) in optical luminescence [16] and viscoelasticity 

[17, 18] studies.  In the present work, these functions are used to fit relaxation data obtained 

from mixtures of the main components of cartilage matrix, collagen and chondroitin sulfate, and 

from bovine nasal cartilage (BNC) [14, 15].  The quality of the fit to the data is compared using 

the mean squared error as a metric. 

In the following, we first present our fractional-order model for NMR relaxation, and then apply 

the resulting Mittag-Leffler and stretched exponential functions to fit T1 and T2 relaxation data 

from cartilage matrix components and native cartilage.  A brief summary of the fractional 

calculus formalism used in this work is presented in the Appendix. 
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Theory 

Bloch Equations 

The Bloch equation for a uniform sample can be written [19] as: 

dM

dt
M B

M0 Mz

T1
k
Mxi My j

T2
            (1) 

Here, the time derivatives of the components of nuclear magnetization, M(t) = (Mx(t), My(t), 

Mz(t)), are linked to the applied magnetic field B consisting of static, B0, radiofrequency, B1, and 

gradient field components, (Gx, Gy, Gz) by the first term on the right side. The second term 

describes the spin-lattice relaxation of Mz(t) toward its equilibrium value of M0 via T1 

relaxation, while the third term describes spin-spin relaxation of the Mx(t) and My(t) components 

through T2 relaxation [20, 21].  

 For a static magnetic field (B0 = B0k) with 00 B  and a uniform sample, and defining the 

transverse magnetization Mxy(t) = Mx(t)i + My(t)j, the Bloch equations become: 

dMxy (t)

dt
i 0Mxy (t)

Mxy (t)

T2
          (2a) 

dMz(t)

dt

M0 Mz (t)

T1
           (2b) 

These differential equations can be written in an equivalent integral form as: 

Mxy (t) i 0 Mxy ( )d0

t 1

T2
Mxy ( )d0

t

Mxy (0)        (3a) 

Mz(t)
M0 Mz( )

T1
d

0

t

Mz (0)          (3b) 

The right side of equation 3a can be viewed as an initial condition plus integral convolutions of 

the form, k(t)*Mxy(t), with the convolution kernel k(t) = u(t), and where u(t) is the unit step 

function. Eq. 3b has a similar structure, but with an additional constant inhomogeneous term 

reflecting the fact that the equilibrium solution is non-zero.  The kernel k(t) plays the role of a 

memory function that in the classical case weights all values of the magnetization equally [13]. 

In a complex, heterogeneous and multi-scale material where molecular interactions decay with 

time and distance, this simple model is more plausibly replaced by one in which the convolution 

kernel exhibits a ‘fading’ memory of earlier values of magnetization [11]. In our case, there are 
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up to three different kernels involved: k0(t), k1(t) and, k2(t), associated with, 0, T1, and T2, 

respectively. We set k0(t) = u(t) for the terms affected by 0, reflecting the fact that Larmor 

precession is dominated by a constant external field and largely independent of internal material 

structure.  Since the T1 and T2 relaxation terms reflect different physical processes, we allow for 

distinct k1(t) and k2(t). 

Equations 3a and 3b can be extended to incorporate these more general convolution kernels as:  

Mxy (t) i 0 Mxy ( )d0

t 1

T2
k2 t Mx ( )d0

t

Mxy (0)       (4a) 

Mz(t) k1 t
M0 Mz ( )

T1
d

0

t

Mz(0)           (4b) 

The exact form of the memory function kernels is unknown.  A conventional choice in 

fractional calculus is to introduce power law kernels with fading memory in the form k2(t) = 

(t) / ( ), 0 <  < 1, for T2 relaxation, and k1(t) = (t) / ( ), 0 <  < 1, for T1 relaxation. 

Substitution of these kernels into equations 4a and 4b gives fractional-order integral equations 

involving the Riemann-Liouville fractional integrals  

Mxy (t) i 0 Mxy ( )d0

t 1

T2
I0 Mxy (t) Mxy (0)         (5a) 

Mz(t) I0
M0 Mz (t)

T1
Mz(0)           (5b) 

The definition of the fractional integral is given in the Appendix.  In this formalism,  =  = 1 

corresponds to the classical result, leading to the conventional exponential relaxation.  The 

extent to which these fractional order parameters deviate from unity expresses the increasingly 

anomalous behavior of the T2 and T1 relaxation processes, respectively. 

 

Fractional-Order Bloch Equations 

To revert to the equivalent differential form, we apply the fractional derivatives of order  and  

to Eqs. 5a and 5b, respectively, obtaining the following form for the fractional-order 

components of the Bloch equation:  

D0 Mxy (t) i 0I0
1 Mxy (t)

1

T2
Mxy (t) D0 Mxy (0)    (6a)                                                                                                                                                                                                  
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D0 Mz(t)
M0 Mz (t)

T1
D0 Mz(0)       (6b) 

Here, the fractional derivatives are expressed as Riemann-Liouville fractional derivative 

operators (see Appendix). Since the initial conditions specified in a particular NMR experiment 

involve fractional derivatives of the magnetization evaluated at t = 0+, an equivalent form can be 

written in terms of the Caputo fractional derivative (see Appendix).  

CD0 Mxy (t) i 0I0
1 Mxy (t)

1

T2
Mxy (t)       (7a) 

CD0 Mz (t)
M0 Mz(t)

T1
        (7b) 

The solution to this set of equations provides a generalized, fractional-order response that 

extends the classical exponential relaxation processes [22, 23]. We will briefly describe the 

most relevant results of this new model for the dynamics of NMR phenomena. 

Fractional-Order T1 Relaxation 

The solution to equations 5b or 7b can be obtained using fractional calculus or the Laplace 

transformation [24]: 

Mz(t) Mz(0) M0 Mz(0) 1 E ( (t /T1) )           (8) 

where Eβ is the stretched Mittag-Leffler function (see Appendix).  In the case of  = 1, the 

Mittag-Leffler function is equivalent to the simple exponential function and the classical 

expression for T1 relaxation emerges. For small values of the argument (t/T1), the stretched 

Mittag-Leffler function converges to the stretched exponential exp[-(t/T1) ], where β is the 

stretching parameter. For an inversion recovery pulse sequence, the inversion time TI becomes 

the time argument, Mz(0) = M0, and, accounting for potential imperfections in the inversion 

pulse by a proportionality constant A [25], Mz is given by: 

Mz(TI) M0 1 2AE ( (TI /T1) )             (9) 

Equation 9 is plotted in Figure 1 showing the return of Mz  to its equilibrium value of one as a 

function of (TI) for T1 = 1.5 s, A = 1 and for values of  from 0.6 to 1.0, in steps of 0.1. For 

 we recover the classical single exponential relaxation. For smaller values of  the 

relaxation appears to occur more slowly for larger values of TI. Thus, we observe that the 

fractional order dynamic model for Mz introduces a feature that is usually observed in multi-
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exponential models by an apparent lengthening of the relaxation time as relaxation progresses. It 

is important to note that this relaxation behavior is different from the conventional case even for 

beta as large as 0.9. 

Fractional-Order T2 Relaxation 

In a similar manner, using fractional calculus or the Laplace transform, we obtain the solution to 

equations 5a or 7a for a single ( /2) pulse in a reference frame rotating with an angular 

frequency 0 and in the presence of noise with a non-zero mean as: 

Mxy (TE) Mxy (0)E (TE /T2) Mxy ( )                 (10) 

Equation 10 is plotted in Figure 2 as a function of TE with Mxy(0) = 1 and Mxy( = 0.05 for 

values of  from 0.6 to 1.0, in steps of 0.1 and for a T1 value of 80 ms. In Figure 2, the vertical 

scale is logarithmic, so that the initial sections of the decay curves appear as straight lines. 

Decreasing the value of  extends the decay curve so that it exhibits a longer apparent T2. In the 

fractional order case of T2 relaxation, equation 10, the stretched Mittag-Leffler function or the 

stretched exponential replaces the single exponential function.  

Methods  

Type I Collagen Gels 

Collagen I solution (rat tail tendon, BD Biosciences, San Jose, CA) was prepared according to 

the manufacturer’s instructions to a concentration of 2.7 mg/ml.  3 ml volumes of this solution 

were transferred into NMR tubes, allowed to gel at 37 °C, and concentrated using centrifugation 

at 2,500 g for up to 2.5 hours.  Gels with a range of collagen concentrations were constructed in 

this fashion.  Final concentrations were determined by subtraction of the supernatant 

contribution from the original weight, and were 0, 0.65, and 2.42%. 

Chondroitin Sulfate Mixtures 

Dry chondroitin sulfate (shark cartilage, Sigma-Aldrich St. Louis, MO) was dissolved in 10x 

PBS to make 5%, 10%, and 15% solutions.  Although chondroitin sulfate is highly soluble, 

great care was taken not to form air bubbles while mixing. 

BNC Preparation 

Cartilage plugs (4 mm or 8 mm dia.) were excised from the nasal septa of mature cows (Green 

Village Packing, Green Village, NJ), moistened with Dulbecco’s phosphate buffered saline 

(DPBS) and stored at 4°C.   



 8 

NMR Methods 

All non-localized T1 relaxation data, T1 imaging data, and T2 imaging data were acquired at 

room temperature using an 11.7 T Bruker NMR spectrometer (Bruker BioSpin, Billerica, MA).  

BNC (4 mm dia. plug) was placed into a 5 mm NMR tube containing Fluorinert (FC-43, 3M, St. 

Paul, MN) to maintain sample hydration and preclude MR signal contamination from the bath 

solution.  Non-localized T1 relaxation data were obtained using an inversion recovery pulse 

sequence (180-TI-90) with 64 linearly spaced TIs from 0 to 15 s.  MR images of BNC were 

obtained using a single slice of 0.3 mm thickness, with field-of-view of 6.4 mm × 6.4 mm and 

in-plane resolution of 50 µm × 50 µm.  Quantitative T1 maps were obtained using a progressive 

saturation spin echo sequence with TE = 10 ms and 16 linearly spaced TRs from 100 ms to 10 s.  

Quantitative T2 maps were obtained using a CPMG sequence with 16 linearly spaced echoes, 

with TE = 7.2 ms and TR = 4 s. 

All non-localized T2 relaxation data were acquired at room temperature for matrix component 

mixtures and 4 °C for BNC samples (8 mm dia. plug) with a 9.4 T Bruker DMX NMR 

spectrometer (Bruker BioSpin, Billerica, MA). BNC (8 mm diameter plug) was placed into a 10 

mm NMR tube containing Fluorinert.  T2 relaxation data were obtained on BNC samples using a 

non-localized CPMG pulse sequence with the following acquisition parameters: TE/TR = 600 

µs/10 s, 2048 echoes, and NEX = 64, with sampling of the echo maxima. This resulted in a 

single decay curve representing the entire sample in bulk.  T2 relaxation data obtained on 

collagen and chondroitin sulfate mixtures were acquired using the same parameters but with 

8192 echoes.  Even echoes were used for T2 fitting resulting in an effective TE = 1.2 ms, with 

1024 echoes for BNC and 4096 echoes for matrix component mixtures. 

Data Analysis 

All data fits (exponential, Mittag-Leffler and stretched exponential functions) were preformed in 

Matlab (The MathWorks, Natick, MA) using the FIT routine. The Mittag-Leffler function, Eα, 

was fit using the Diethelm approximation [26].  The mean squared error (MSE) – the square 

root of the sum of the squared differences between actual data and fitted curve – is reported for 

each model.  Note that given the experimental protocols described, the independent time 

variables in the equations describing relaxation become TE and TI.   
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Results  

Table 1 provides a comparison between the fractional order models and the single exponential 

function for fits of T2 relaxation in solutions of type I collagen gels.  All three functions show 

decreasing values of T2 with increasing concentration of collagen.  The stretched exponential 

function and the stretched Mittag-Leffler function also show decreases in the parameter  as the 

collagen concentration increases. The stretched exponential spans the largest dynamic range of 

α (from 1.0 to 0.89), while the stretched Mittag-Leffler function extends only from 1.0 to 0.96. 

Over the range of concentrations studied, the MSE was the smallest for the stretched 

exponential function and largest for the single exponential.  

Table 2 shows a similar comparison between the fractional order models and the single 

exponential function for fits of T2 relaxation for chondroitin sulfate solutions.  All functions 

showed a decrease in T2 with increasing chondroitin sulfate concentration.  Consistent with the 

collagen results, the fractional order parameter for the stretched exponential fits showed a 

greater sensitivity to concentration than did the stretched Mittag-Leffler model, with α ranging 

from 1 to 0.94 for chondroitin sulfate concentrations of 0% to 15%, respectively. The stretched 

Mittag-Leffler fit did not show any change in α with concentration. The stretched exponential fit 

also showed the lowest MSE of all three models. 

The microstructure of the BNC is evident in the T1-weighted and T2-weighted MR images 

shown in Figures 3A and 3B, respectively.  The corresponding spatial maps for the mono-

exponential T1 and the T2 distributions in this 0.3 mm thick slice are shown in Figures 3C and 

3D, respectively. These images show a small blood vessel (diameter of approximately 500 

microns) in the nine o’clock position. Small and sparse capillaries can be found in young nasal 

cartilage.  Capillary density is reduced with development.  In general, nasal cartilage is easily 

separated from the surrounding bony tissue, but in this case we must have missed this small 

vessel. The overall contrast appears to be greater in the T2 images than in the T1 images, 

indicating a wider range of relaxation times in the underlying tissue environments (image 

resolution 50 microns). 

Tables 3 shows fractional-order and exponential T1 curve fit parameters and MSE for non-

localized T1 relaxation data in BNC.  In all cases the A value was essentially the same (0.91 or 

0.92). For this BNC sample the T1 data was well described by a single exponential function with 

a T1 of 1.68 s. The bi-exponential fit reduced the MSE and introduced an apparent shorter T1 

component (T1 = 1.12 s) that may not have been sufficiently different from the 1.68 s 

component to be reliably distinguished. The fractional order functions in this case were very 

similar to the single exponential results with values of  very close to one (0.98 and 0.99) and 

T1 values of 1.66 and 1.67 s, respectively. Both the exponential and the stretched exponential 
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models showed an excellent fit to the data. The quality of the T1 curve fits for BNC can be 

observed graphically in Figure 4, which shows results consistent with those in Table 3 with the 

single exponential and the stretched exponential models. 

Table 4 shows fractional order and exponential T2 curve fit parameters and MSE for non-

localized T2 relaxation data in BNC.  The stretched exponential model shows the lowest MSE of 

all the fits in spite of having fewer fitting parameters.  Figure 5 shows the improvement in fit of 

T2 relaxation data when using the stretched exponential. 

Discussion and Conclusions 

Previous NMR studies have found that fractional-order models provide excellent results when 

used to describe dynamic processes in complex media, such as NMR diffusion in porous 

materials, [4] and human brain tissue, [22, 27]. In this paper we fit relaxation data obtained 

using cartilage matrix components and BNC to stretched exponential and stretched Mittag-

Leffler functions derived from a fractional-order generalization of the Bloch equation.   BNC is 

ideal for this analysis because it is heterogeneous over the micro-scale, as is all tissue, but 

relatively homogeneous over the scale of the imaging voxel.  Thus, the presence of multiple 

relaxation environments for water, including relatively free tissue water, water closely bound to 

proteoglycans, and water loosely bound to macromolecules, can be investigated without the 

complexity of accounting for overall variation in tissue properties [28-31].  We hypothesized 

that, due to these micro-structural features, relaxation processes in BNC would display a 

distribution of relaxation times [32, 33] that can be characterized by fractional-order models.  

In this paper we derived a generalized model for the dynamics of a single species in NMR by 

assuming a fractional-order fading memory kernel (e.g., {(t)( -1)/ ( )}). This extension of the 

Bloch equations adds memory, via convolution, to the classical model, but retains linearity, 

causality, and time-invariance  The underlying physical picture is therefore modified by the 

introduction of an arbitrarily long, non-exponential, correlation function. Thus, the fractional-

order generalization of NMR represents a natural extension of the conventional approach in 

which relaxation processes occur independently of previous states.   Indeed, as the fractional-

order parameters approach unity, relaxation dynamics converge to the classical results.  

There are a number of options available for defining the fractional-order time derivative (e.g., 

Riemann-Liouville, Caputo, Grunwald-Letnikov) [34].  The most common approach is to select 

the Caputo definition for systems like NMR where there are clearly defined initial conditions 

[23]. In general, different fractional power laws are expected for T1 and for T2 relaxation.  Our 

final mathematical result is a sinusoidal oscillating decay governed by a stretched Mittag-Leffler 

relaxation function. This new approach identifies separate fractional orders ( , ) for the decay 
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of the spin-spin and spin-lattice relaxation processes, respectively. One key aspect of this new 

model is that the signal attenuation is now assumed to proceed in the rotating frame as a pure 

fractional-order decay process, as also observed in other fractional-order generalizations of 

physical and chemical processes [6, 11, 13]. In this paper, we have focused on experimental 

fitting of the fractional-order model for relaxation via both the single parameter stretched 

Mittag-Leffler function, and the stretched exponential. 

In our analysis of gels (collagen type I and chondroitin sulfate) we established the expected 

correlation between polymer concentration and T2 relaxation time (the T2 decreased as the both 

gel concentrations increased). The new results was the sensitivity of the fractional order 

parameter  to gel concentration, as well (  decreases slightly with gel concentration for both 

gels). It was somewhat unexpected that the fractional order parameter for the stretched 

exponential decay curve fits were more sensitive to increasing gel concentration than those 

obtained using the Mittag-Leffler function. However, it is well known that the Mittag-Leffler 

function interpolates between the stretched exponential (at small values of its argument) and the 

power law (at large values), while both functions decay quite differently from the single 

exponential [10,13]. Thus, the fact that the data collected for gels (and for BNC) is better fit by 

the stretched exponential model than the Mittag-Leffler function (lower MSE) and is more 

sensitive to the fractional order parameter (larger change in ) possibly reflects the greater 

sensitivity of the stretched exponential function to the earlier part of the T2 decay curve than the 

later part. 

In our analysis of BNC we compared the conventional multi-compartment, exponential models 

for T1 and T2 relaxation with the single compartment fractional-order generalization. In the case 

of T1 relaxation, we found no advantage in fitting the data using the fractional-order function.  

In fact, one feature of this approach is that in such cases the value of the parameter  closely 

approaches the classical value of one. In this example, using BNC, the fitting data for the 

stretched exponential and the stretched Mittag-Leffler function gave values for  of 0.98 and 

0.99, respectively. The MSE for fits to the BNC T1 were approximately the same, as were also 

the T1 fits (1.67 s). The mono-exponential behavior of T1 relaxation is consistent with exchange 

between tissue compartments occurring within the slow time-scale of T1 processes. In the case 

of T2 relaxation, we found an advantage to fitting the data with multiexponential and fractional-

order models. With an designating the relative size and  T2,n designating the transverse relaxation 

time of the n-th compartment in a multi-compartment system, the values of these parameters 

and of  resulting from best fits to the observed data could prove to be of use in quantitative 

tissue analysis. Also, parameter values obtained proved to be independent of the initial values 

used for repeated fitting trials (data not shown). 
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Multiexponential models exhibit a straightforward interpretation in terms of compartmental 

analysis: each individual relaxation function corresponds to the water molecules in a distinct 

tissue environment, an, that exhibits a single relaxation process described by the time constant 

T2n.  Multiexponential results obtained using the TEs indicated can therefore be interpreted in 

terms of a model of BNC as consisting of two dominant populations of water undergoing either 

fast, or slow relaxation. For our current BNC studies as presented here, this interpretation 

corresponds to a 23 % rapidly relaxing component (T2 = 34 msec, for water associated with 

macromolecules), and a 77 % slowly relaxing component (T2 = 101 msec, for highly mobile 

water not closely bound to ECM components. This interpretation is consistent with previous 

multiexponential relaxation studies of cartilage [14]. The stretched exponential function 

captures this structural information in an intermediate T2 value of 80 msec and a fractional order 

parameter, , of 0.88. In the case of the matrix component solutions, increasing concentration 

resulted in a reduction in bulk T2. Thus, it appears that at least part of the observed fractional-

order behavior in BNC is associated with water characteristics at the molecular level, with the 

remainder associated with the multi-scale structure of the overall tissue. We note that our 

highest collagen concentration was still only about 10 % of that found in the native cartilage, so 

we might anticipate even larger changes in the fractional parameters in more rigid gels. 

The fractional calculus approach to modeling NMR relaxation is to incorporate tissue 

complexity not in a set of multiple compartments, but in the order of the assumed fractional 

operator. This permits the data to be fit accurately with a smaller number of functions, removing 

at least in part the degeneracy of multiexponential discrete compartmental models.  This 

approach also has a structural basis when the tissue exhibits a self-similarity that can be 

described by a fractal dimension [35, 36]. Since the order of the fractional operator can be 

connected with the fractal features of the tissue, the fractional model also provides a 

representation of a complex tissue not as a series of compartments and relaxation times, but as a 

single generalized exponential function in terms of  and T2 or  and T1. Such models have 

been recently applied to the attenuation of acoustic waves in random multi-scale media [37, 38] 

viscoelasticity [39, 40] and to NMR analysis of diffusion in porous media [41-46]. 

For complex systems such as biological tissue, we propose consideration of the fractional-order 

approach as an alternative to discrete-compartment exponential models.  The approach 

developed in this paper captures structural features via pairs of tissue-dependent parameters: 

(T2, ) or (T1, ).  Fractional order generalization of the Bloch equation provides a sound 

foundation for this technique. The method is, for the tissue considered in this work, at least as 

effective at fitting the data using a bi-exponential analysis, as assessed by the MSE of the 

relaxation curve fits.  As a further extension, the inverse Laplace transformation can yield a 
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distribution of relaxation times corresponding to the fractional parameter in the stretched 

exponential and the stretched Mittag-Leffler functions, as has been done by Berberan-Santos 

[16] and others in the analysis of the time decay of optical luminescence data. When the -value 

deviates from unity, for example, the distribution of relaxation rates (or times) broadens. While 

using a single function to encode tissue complexity may be an oversimplification, for BNC we 

observed a good correspondence between our model and the T2 relaxation results.  

Further work will define the utility and specificity of the approach presented here for detecting 

changes in the composition of tissue as a consequence of degradation processes, such as are 

seen in degenerative joint disease.  A particular goal will be to correlate changes in the tissue 

parameters and  with histological and biochemical analysis of tissue samples. The present 

work shows the plausibility of this approach 
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Appendix  

Fractional Integral and Differential Operators 

Fractional calculus extends the classical definitions of the derivative and the integral, 

introducing intermediate, non-integer orders. The physical basis for its application in physics is 

described in two review papers written by R. Metzler and J. Klafter [48, 49]. There are several 

definitions of fractional derivatives and integrals; here we introduce the operators used in this 

work and some of their properties (see also, [10, 24, 34]). 

1) Riemann-Liouville fractional operators: Let a > 0 with n-1< a <n for integer values of n, let 

f(t) be a suitable real function of t on the interval [a, b] such that the fractional integral exists 

[24, 34]. 

Ia f t
1

t
1
f ( )d

a

t

 t a  (A.1a) 

Da f t Dn Ia
n f (t)  t a  (A.1b) 

where G(a) is the gamma function, and D is the usual differential operator. The fractional order 

integrals can also be defined in terms of the convolution of t( 1) / ( )  with f(t) [13]. 

2) Caputo fractional derivative: Let a > 0 with n-1< a <n for integer values of n, let f(t) be a 

suitable real function of t on the interval [a, b] such that the fractional integral exists [24,34]. 

The Caputo fractional derivative is: 

CDa f t Ia
n Dn f (t)  t a  (A.2) 

The change in the order of operations does not affect the order a, but it does restrict the space of 

integrable functions. Another consequence for fractional-order differential equations is that the 

initial conditions can now be specified in terms of the initial values of f(t), whereas the 

Riemann-Liouville definition calls for initial values of the fractional integral of f(t). The 

following identity is well known for a suitable function f(t) (for example, f(t) is n-times 

differentiable): 

Da f t
CDa f (t)

f ( j )(a)

(1 j )
t a

j

j 0

n 1

         (A.3) 

3) Mittag-Leffler function (single parameter): 
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E (z)
zk

k 1
k 0

 0  (A.4)   

This function is a generalization of the classical exponential function (when a is one). The 

Mittag-Leffler function has the following property: 

CD0 E t E t             (A.5) 

which mimics the behavior of the ordinary derivative operating on the exponential function. 

Finally, the single parameter Mittag-Leffler function has the following asymptotic behavior for 

small and for large values of its argument [10]. 

E t 1 t / (1 ) t 0          (A.6) 

E t t / (1 ) t          (A.7) 

Thus, initially the Mittag-Leffler function decays like the power series expansion of the 

stretched exponential function, exp(-t ), while for long times it fall off as a simple 

power law. This behavior is clearly illustrated in Figure 22 on page 62 of reference [47] and by 

Figure 7 on page R177 of reference [48].
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Figure Captions 

Figure 1: Fractional-order T1 relaxation curves. Plots of Mz(TI) versus TI (equation 9) for 

different values of  in the range from   (bottom curve) to  in steps of 0.1 (M0 = 1, 

T1 = 1.5 s, A = 1). 

Figure 2: Fractional-order T2 relaxation curves. Plots of Mxy(TE) versus TE (equation 10) for 

different values of α in the range from α   (top curve at TE = 1,200 ms) to α  in steps of 

0.1 (Mxy(0) = 1, T2 = 80 ms). 

Figure 3: MR images of bovine nasal cartilage (BNC).  A) T1 – weighted image with TR/TE = 

500/9.8 ms, FOV = 6.4 mm × 6.4 mm, slice thickness of 0.3 mm and in-plane resolution of 50 

µm × 50 µm; B) T2 – weighted image with TR/TE = 4,000/28.8 ms, FOV = 6.4 mm × 6.4 mm, 

slice thickness of 0.3 mm and in-plane resolution of  50 µm × 50 µm; C) T1 map for the slice 

shown in A) showing mono-exponential T1 relaxation (gray scale: T1, 0 – 2,500 ms); D) T2 map 

for the slice shown in B) showing mono-exponential T2 relaxation (gray scale: T2, 0 - 40 ms). 

Figure 4:  T1 relaxation data fits for BNC. The experimental data (*) with the corresponding fits 

by a single exponential function (long-dashed line), a bi-exponential function (short-dashed 

line), and a stretched exponential function (solid line). The displayed data points (*) represent a 

subset of the total 64 relaxation decay points. 

Figure 5: T2 relaxation data fits for BNC. The experimental data (*) with the corresponding fits 

by a single exponential function (long-dashed line), a bi-exponential function (short-dashed 

line), and a stretched exponential function (solid line). The displayed data points (*) represent a 

subset of the total 4,096 relaxation decay points. 
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Figure 1: Fractional-order T1 relaxation curves. Plots of Mz(TI) versus TI (equation 9) for 

different values of  in the range from   (bottom curve) to  in steps of 0.1 (M0 = 1, 

T1 = 1.5 s, A = 1). 

 

 

 



 22 

 

  

Figure 2: Fractional-order T2 relaxation curves. Plots of Mxy(TE) versus TE (equation 10) for 

different values of α in the range from α   (top curve at TE = 1,200 ms) to α  in steps of 

0.1 (Mxy(0) = 1, T2 = 80 ms). 



 23 

 

 

Figure 3: MR images of bovine nasal cartilage (BNC).  A) T1 – weighted image with TR/TE = 

500/9.8 ms, FOV = 6.4 mm × 6.4 mm, slice thickness of 0.3 mm and in-plane resolution of 50 

µm × 50 µm; B) T2 – weighted image with TR/TE = 4,000/28.8 ms, FOV = 6.4 mm × 6.4 mm, 

slice thickness of 0.3 mm and in-plane resolution of 50 µm × 50 µm; C) T1 map for the slice 

shown in A) showing mono-exponential T1 relaxation (gray scale: T1, 0 – 2,500 ms); D) T2 map 

for the slice shown in B) showing mono-exponential T2 relaxation (gray scale: T2, 0 - 40 ms). 
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Figure 4: T1 relaxation data fits for BNC. The experimental data (*) with the corresponding fits 

by a single exponential function (long-dashed line), a bi-exponential function (short-dashed 

line), and a stretched exponential function (solid line). The displayed data points (*) represent a 

subset of the total 64 relaxation decay points.
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. 

 

Figure 5: T2 relaxation data fits for BNC. The experimental data  (*) with the corresponding fits 

by a single exponential function (long-dashed line), a bi-exponential function (short-dashed 

line), and a stretched exponential function (solid line). The displayed data points (*) represent a 

subset of the total 4096 relaxation decay points. 
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Table 1.  Fractional-order model fitting results of T2 relaxation data from collagen I gels  

 Exponential Stretched MLF Stretched Exponential 

Conc. 

(%) 

T2     

(ms) 

MSE 

(×10
-3

) 

T2 

(ms) 

α MSE 

(×10
-3

) 

T2 

(ms) 

α MSE 

(×10
-3

) 

0 2867 3.47 2867 1 3.47 2867 1 3.47 

0.65 1307 3.53 1326 0.97 1.04 1305 0.94 0.83 

2.42 493 6.80 487 0.96 3.27 475 0.89 1.45 

All three models show a decrease in T2 and both fractional models show decreasing α with 

increasing collagen concentration. 

 

Table 2.  Fractional-order model fitting results of T2 relaxation data from chondroitin 

sulfate mixtures 

 Exponential Stretched MLF Stretched Exponential 

Conc. 

(%) 

T2    

(ms) 

MSE 

(×10
-3

) 

T2 

(ms) 

α MSE   

(×10
-3

) 

T2 

(ms) 

α MSE 

(×10
-3

) 

0 2867 3.47 2867 1 3.47 2867 1 3.47 

5 390 1.93 391 0.99 1.43 390 0.97 0.94 

10 220 2.92 218 0.99 2.27 216 0.96 1.25 

15 167 4.19 165 0.99 3.28 161 0.94 3.05 

All three models show a decrease in T2 with increasing concentration of chondroitin sulfate 

mixtures.  The stretched exponential model shows a decrease in the fractional order parameter 

α. 
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Table 3. Multiple exponential and fractional-order model fitting results for T1 relaxation 

data from BNC. 

 

The fitting parameter A represents a correction for an imperfect inversion pulse, while an and 

T1,n represent the relative compartment size and longitudinal relaxation time of the n-th 

longitudinal relaxation component. 

 

Table 4. Multiple exponential and fractional-order model fitting results for T2 relaxation 

data from BNC. 

 

The fitting parameters an, and T2n represent the relative compartment size and transverse 

relaxation time of the n-th transverse relaxation component, while a0 corresponds to a constant 

offset term, represented by xyM in Eq. 10. 

Model A a1 a2 
T11 

(s) 

T12 

(s) 
 

MSE 

(×10
-3

) 

1-exp 0.91 1.00  1.68   6.2 

2-exp 0.92 0.84 0.16 1.80 1.12  1.8 

str exp 0.92 1.00  1.66  0.98 4.8 

str MLF 0.91 1.00  1.67  0.99 5.5 

Model 
a0   

(×10
-3

) 
a1 a2 

T21  

(ms) 

T22  

(ms) 
α 

MSE  

(×10
-3

) 

1-exp 6.30 1.00  87.3   5.5 

2-exp 4.20 0.77 0.23 100.8 34.1  0.84 

str exp 3.80 1.00  79.7  0.88 0.13 

str MLF 0.00 1.00  83.0  0.96 2.4 


