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Abstract

Geometric and topological properties of protein structures, including surface pockets, interior cavities
and cross channels, are of fundamental importance for proteins to carry out their functions. Computed
Atlas of Surface Topography of proteins (CASTp) is a webserver that provides online services for lo-
cating, delineating, and measuring these geometric and topological properties of protein structures. It
has been widely used since its inception in 2003. In this article, we present the latest version of the
webserver, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and
quantifications of protein topography. In addition, it now provides: 1) imprints of the negative vol-
umes of pockets, cavities and channels, 2) topographic features of biological assemblies in the Protein
Data Bank, 3) improved visualization of protein structures and pockets, and 4) more intuitive struc-
tural and annotated information, including information of secondary structure, functional sites, vari-
ant sites, and other annotations of protein residues. The CASTp 3.0 webserver is freely accessible at
http://sts.bioe.uic.edu/castp/

1 Introduction

Protein structures are complex and are sculpted with numerous surface pockets, internal cavities, and cross
channels. These topographic features provide structural basis and microenvironments for proteins to carry
out their functions such as ligand binding, DNA interaction, and enzymatic activity. Identification and
quantification of these topographic features of proteins are therefore of fundamental importance for under-
standing the structure-function relationship of proteins [1], in engineering proteins for desired properties [2],
and in developing therapeutics against protein targets [3].

2 The CASTp server

The CASTp server aims to provide comprehensive and detailed quantitative characterization of topographic
features of proteins [4, 5]. Since its release 15 years ago, the CASTp server has ∼ 45,000 visits and fulfills

∗These authors contributed equally to this work.
†To whom correspondence should be addressed. Tel: +1 312 355 1789; Fax: +1 312 413 2 18; Email: jliang@uic.edu

1

http://sts.bioe.uic.edu/castp/


Figure 1: The surface of the ATP binding pocket of CDK2 (PDB ID 2xmy), computed by CASTp 3.0.

∼ 33,000 calculation requests annually. It has been proven to be a useful tool for a wide range of studies,
including investigations of signaling receptors [1], discoveries of cancer therapeutics [6], understanding of
mechanism of drug actions [7], studies of immune disorder diseases [8], analysis of protein-nanoparticle
interactions [9], inference of protein functions [10], and development of high-throughput computational tools
[11, 12].

To provide additional useful information and to deliver improved user experience, we introduce here an
updated server called CASTp 3.0. All important features of the previous versions of the server are retained,
including detecting and characterizing cavities, pockets, and channels of protein structures(Figure 1). In
addition, we have substantially extended its functions by providing precomputed topographic features of
biological assemblies in the PDB database, as well as imprints of negative volumes of these topographic
features. Furthermore, the user interface has been redesigned so it is more intuitive and informative.

2.1 New features of CASTp 3.0

Precomputed results for biological assemblies. The atomic coordinates of a PDB entry in the Protein
Data Bank describe an asymmetric unit, which is the minimum structure that can produce the unit cell of
the crystal through duplication and crystal symmetry operations. For many PDB entries, the asymmetric
unit differs from the biological assembly, which is the unit that has either been shown or is thought to be
the functional form of the protein. This difference can be significant, and can make the computation results
of a PDB entry biologically irrelevant. For example, PDB entry 2iwv of the outer membrane porin OmpG
contains four units as deposited. Its direct computation leads to the detection of a giant artificial pocket
(Figure 2A), which obscures the actual functional channel (Figure 2B). To uncover topographic features that
are biologically most relevant, the new CASTp server precomputes topographic features for the biological
assemblies of PDB entries. Users now are able to navigate effortlessly between results of the asymmetric
unit and results of biological assemblies of a PDB entry.

Imprints of negative volumes of topographic features. In the previous versions of CASTp servers,
topological features, such as cavities, pockets, and pockets, were shown only through the representation of
surface atoms participating in their formation. The new CASTp server has added solid imprints of the
negative volumes as a visualization option, which can give users direct and intuitive understanding of these
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Figure 2: When the asymmetric unit differs from the biological assembly. (A) Asymmetric unit in the PDB
entry of 2iwv and the artificial giant pocket. (B) Biological structure of 2iwv (biological assembly 1) and
its channel detected by the CASTp server.

important structural features of proteins [13, 14].

Improved user interface. The visualization techniques employed in previous versions of CASTp servers
over 12-year ago are out-of-date and are incompatible with the modern browsers. The new CASTp server
now uses 3Dmol.js [15] for structural visualization, which allows users to view, to interact with protein
structures, and to examine computation results in modern desktop or mobile web browsers such as Chrome
and Firefox. Users can choose the representation style of the atoms that form each topographic feature. The
imprint of these features can also be shown with user-selected colors (Figure 3A).

An intuitive sequence panel is also presented to users with secondary structures color-coded, where residues
in user-selected pockets are highlighted. Residues annotated from UniProt [16] are also labeled. Both
information on topographic feature-forming atoms and UniProt annotations are conveniently displayed when
the cursor hovers over the relevant residues. The annotations are also summarized in the annotation panel
(Figure 3B). In addition, both the sequence panel and the annotation panel are linked to the structure
viewer, so users can conveniently click on one residue on the sequence map to have the structure viewer
zoomed into that specific residue of interest.

Furthermore, a floating structure viewer has been added (Figure 3B). When a user inspects information
in the sequence panel or the annotation panel, the structure viewer will automatically follow the webpage
scrolling of the user, which saves the user from unnecessary and unproductive efforts in scrolling up and
down.

3 Input and output

3.1 Input

The CASTp server takes protein structures in the PDB format and a probe radius as input for topographic
computation. Through the intuitive interface, users can either search for precomputed results using a four-
letter PDB ID, or submit their own protein structures to request customized computation. For precomputed
results, a default probe radius of 1.4 Å is used, which is the standard value for computing solvent accessible
surface area. For customized computation request, users can specify any probe radius desired.
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Figure 3: The main user interface of the CASTp server. (A) the pocket panel. (B) the sequence and
annotaion panels.
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3.2 Output

The CASTp server identifies all surface pockets, interior cavities and cross channels in a protein structure,
and provides detailed delineation of all atoms participating in their formation. It also measures their exact
volumes and areas, as well as sizes of the mouth openings if exist. These metrics are calculated analytically,
using both the solvent accessible surface model (Richards’ surface) [17] and the molecular surface model
(Connolly’s surface) [18]. In addition, the CASTp server also provides imprints of topographic features.
These results can be directly downloaded from CASTp server, which can be visualized using either the
UCSF Chimera [19] or our PyMOL plugin, CASTpyMOL.

3.3 Case study

Figure 3 illustrates the ATP binding pocket on the cyclin-dependent kinase 2 (CDK2, PDB ID 2xmy) that
is automatically identified by the CASTp server. CDK2 is an important enzyme that regulates cell cycle
with other CDKs. Many functionally important residues are located in this pockets, including three residues
Lys33, Asp86, and Asp145 in the ATP binding site, one residue Asp127 in the catalytic site, two residues
Asn132 and Asp145 in Mg binding sites, and one residue Lys89 in the binding site that interacts with CDK7,
another important cell-cycle-controlling enzyme. Due to the importance of this pocket, it has been widely
studied as a target site for antitumor agents [6].

In the CASTp server, users can choose different representation of pockets. For example, the pocket can be
displayed as surface (Figure 1). In Figure 3, the imprint of the pocket is shown in red, and the atoms forming
the pocket are shown as sticks. Volume and area measures, and the list of all atoms participating in the
pocket formation are also given (Figure 3A). Users can view the pocket from the sequence panel. Important
annotations can also be found easily in either the sequence panel or the annotation panel (Figure 3B).

Additional examples illustrating how CASTp computations have been used can be found in the literature
[11, 10, 20, 21, 22, 23, 24, 25].

4 Discussion

This paper describes significant updates to the CASTp server. We believe these updates with additional
information and improved user experience will continue to facilitate studies of protein structures and func-
tions.

5 Materials and methods

The CASTp server uses the alpha shape method [26] developed in computational geometry to identify
topographic features, to measure area and volume, and to compute imprint [27, 28, 13, 14]. The secondary
structures are calculated using DSSP [29]. Residue annotations of proteins are obtained from UniProt
database [16] and mapped to PDB structures with residue-level information from the SIFTS database [30].
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