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Abstract

We studied reach adaptation to a 30u visuomotor rotation to determine whether augmented error feedback can promote
faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets
surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display
immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified
with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the
average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset
groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error
augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators
or in movement rehabilitation of the neurologically impaired.
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Introduction

There are many situations in sports, performing arts, physical

rehabilitation following brain injury and remote operation of

devices (eg. robotically-assisted surgery) where it is desirable to

train or retrain individuals to move their limbs in a specific desired

manner. Motor learning is strongly driven to reduce kinematic

performance errors [1,2] and in particular, deviations from a

straight-line hand path in horizontal planar reaching [3,4]. Recent

experimental evidence has demonstrated that it is possible to train

subjects to produce desired movements of the arm [5,6] or legs [7]

by accentuating trajectory errors using robotic forces. Subjects in

those studies were exposed to custom-designed force fields that

promoted the learning of specific movements by exploiting short-

term adaptive processes [8]. While those perturbations were

strictly mechanical, it is well known that motor adaptations are

also elicited by visuomotor distortions such as those induced by

prisms (see [9] for a review) as well as by rotations, stretches and

other distortions of the conventional hand-to-screen mapping

[10,11] [3]. Here we sought to investigate whether two types of

visual feedback manipulations might enhance motor learning in

healthy adult subjects.

Artificial learning systems (e.g., neural networks) frequently

exploit error-driven learning techniques such that learning

progresses more quickly when error is larger [12]. We tested

whether human motor learning might be enhanced by manipu-

lating sensory feedback so that hand path errors in reaching

appear larger than they actually are. We consider two approaches:

error amplification via manipulation of the visuomotor gain and

error biasing via the addition of an error-offset equal to the average

initial error. Previously we have found that subjects adjust their

motor commands to compensate for approximately 32% of the

hand trajectory error on their prior movement attempt [8], hence

the theoretical limit of magnification is approximately 3.1. It is

indeed compelling to consider the potential benefits of using

accurate sensors from a machine to detect and then elevate

perceived error above physiological noise levels. While error

amplification may conceivably lead to larger signal-to-noise ratios

in sensory feedback, learning could become unstable if the

magnification error causes the subject to over-compensate.

Because motor variability, sensor inaccuracies and other uncer-

tainties also influence learning [13,14,15], error magnification

may be practicably limited to gains considerably less than the

theoretical limit. On the other hand, adding an offset bias to

augment error may be equally or more effective because only the

average tendencies of error would be amplified, rejecting spurious

mistakes. Furthermore, error-offset presents persistent errors

throughout training, even as the learner improves. This technique

may sustain motivation throughout practice, and hence increase

the total amount of learning. However, each approach has its own

potential pitfalls: gain augmentation is vulnerable by potentially

causing underdamped or even unstable learning, whereas the
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offset approach is vulnerable by potentially causing learning

beyond the goal.

Here in a preliminary investigation, we evaluated these

candidates for error augmentation by evaluating the rate and

magnitude of hand path error reduction as subjects made point-to-

point reaching movements of the unseen arm while holding a

horizontal planar robot. Deviations from the ideal, straight-line

trajectory were augmented with either a magnification of 2, a

magnification of 3.1, or by an offset angular deviation. We

hypothesized that motor learning can be enhanced by error

augmentation. Specifically, we hypothesized that error enhance-

ment would be most evident in the case of offset error

augmentation. We further hypothesized that the magnification

factor predicted by learning models [8] to be at the limits of stable

learning (3.1) would be less effective than the more modest gain of

2, due to over-compensation. Our results provide support for the

use of two of these error augmentation techniques to facilitate the

learning of motor tasks, and identify a practical limit on the

magnitude of viable gain augmentation. Portions of the work have

been presented in conference proceedings [16].

Methods

Sixteen neurologically normal adults (22–30 years old) gave

informed, written consent to participate in this study in

accordance with the Northwestern University Institutional Review

Board (IRB), which specifically approved this study and follows the

principles expressed in the Declaration of Helsinki. The experi-

ment was carried out on a planar manipulandum robot that has

been described in detail elsewhere [17]. A real-time control system

managed the experiment, controlled the robot, and stored hand

position data at 100 Hz. The robot motors removed the inertial

effects of the robot linkage, rendering a nearly impedance-free

movement of the handle, and no additional forces were

implemented.

Seated subjects grasped the handle of the robot and were

instructed to make fast and accurate reaching movements from a

common, central starting position, stopping in one of six targets

distributed around a circle of radius r = 0.1 m. Motion was cued

by blanking the starting point and displaying one of the targets

onto an opaque screen placed immediately above the plane of

handle motion. This screen occluded direct view of the robot

linkage and the subject’s entire arm. Return movements to the

center point were not analyzed, although all feedback conditions

during the return were identical to the immediately preceding

outward movement. Three targets (90u, 210u and 230u clockwise

from anterior from anterior) were used as a training set while the

remaining three targets were unpracticed test targets (directly

anterior at 0u and at 6120u). On some trials, a cursor was

Figure 1. Illustration of the error augmentation strategies. The
ideal and actual trajectories are indicated as dotted and thin lines,
respectively. At each instant, the cursor (large red dot) is displayed by
calculating the current error and either by (A) multiplying that error by
a gain [in this case a gain of 2] or, (B) by adding the offset trajectory e0

to that error. Hence the subject sees the cursor move along the
trajectory represented by the thick lines.
doi:10.1371/journal.pone.0046466.g001

Figure 2. Representative trajectories and learning curves for
representative subjects in each group. Each row of plots displays
data from a typical subject from each group for the successive phases
of the experiment. The insets above each curve show typical movement
paths where red lines indicate the path the subjects should have
reached to successfully complete the task. Learning and washout
phases were each fit to exponential curves (bold blue and red lines).
While the training conditions differed for each group, the catch-trials
used to fit these curves were performed under identical conditions for
all groups (30u rotation with no error augmentation). These random and
intermittent catch trials occurred at the same movement number for all
groups. Initial error reduction after the first exposure to the distortion is
shown as a blue line segment connecting encircled trials.
doi:10.1371/journal.pone.0046466.g002

Error Augmentation Enhancing Motor Learning
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projected just above the hand throughout the trial. On others,

cursor motion was rotated 30u counter-clockwise about the

starting point relative to hand motion. The target sets were

selected such that movements to the training targets after full

compensation for the visuomotor rotation would be approximately

the same as movements to the test targets without compensation.

After each movement, we provided visual and auditory feedback

of peak hand speed to encourage subjects to move at consistent

and fast rate. Colored targets and tones indicated when peak

movement speed was too fast, too slow, or within the desired range

(0.45 m/s60.05 m/s).

Before experimentation, subjects were allowed to become

comfortable moving the handle between targets. The experiment

itself was conducted in 3 phases. First, a baseline phase of 165

movements established initial performance to each of the six

targets. The latter 120 trials of this phase also intermittently

evaluated the subject’s response to the 30u counter-clockwise

rotation (once every 8 movements, randomly presented, and never

two in succession). These initial exposure trials assessed the starting

error level for the visuomotor transformation condition that was

ultimately learned by subjects. Next, a training phase of 390

movements evaluated the time course and extent of adaptation to

a constant 30u counter-clockwise rotation. Here, the subjects were

divided evenly and randomly into four treatment groups. The first

(the control group) learned the visual rotation by itself while the

other three groups learned while experiencing one of three error

augmentation schemes. For two of these, deviations from the ideal,

straight-line trajectory were magnified by a factor of 2 (the *2

group) or the gain of 3.1 (the *3.1 group), which theoretically

should cause a complete error correction in a single trial. The

remaining group had their error augmented by a counter-

clockwise offset rotation (described below). All groups experienced

periodic catch-trials – pseudo-randomly presented once in every

eight movements – wherein error augmentation was removed (if

present) and progress in adapting to the original 30u rotation was

evaluated and compared across groups. Subjects trained only on

an evenly-spaced subset of three of the six target directions (90,

210 and 230 clockwise from anterior) but were evaluated pre and

post training on all target directions to evaluate their ability to

generalize what was learned. Finally, all visual rotations and error

augmentation were removed during a washout phase of 165

movements. This phase explored the time course of recovery of

each subject’s original, unperturbed performance during reaching

to the training targets.

For the offset group, the error presented on any given trial was

the sum of the instantaneous error e(r) on that trial and the trial-

average error eo(r) generated during initial exposure trials to the

same target, where r is the hand’s radial distance from the starting

point (Fig. 1B). The eo(r) trajectories were averaged separately for

each of the three movement directions for each subject. In both

cases, e was computed as the perpendicular distance between the

ideal straight-line movement and the hand’s instantaneous position

as a function of r. These values were then averaged across trials,

within targets. The average errors eo(r) typically began near zero,

then grew larger, and then returned near zero at the target. Note

that while the *2 and offset conditions may yield similar error

feedback signals at the beginning of training, the feedback from

these conditions can differ as training progresses. For small errors

in hand path, subjects experiencing gain augmentation would see

the cursor’s movement closely match the desired trajectory,

whereas subjects experiencing offset augmentation would continue

to perceive substantial errors.

Data Analysis
Baseline conditions for horizontal planar reaching (with no

distortion or error augmentation) typically approximate a straight

line (Fig. 2, left column; see also [18,19]). We defined trajectory error

as the maximum perpendicular distance between the actual hand

path and the straight-line path between start and goal positions.

Exponential curves were fit to the trial-by-trial error time series

using nonlinear Nelder-Mead least-squares regression:

Ei~Ae {i=Bð ÞzC ð1Þ

where Ei was the trajectory error for the trial i within a training or

washout phase, A is the amount of learning (the change of the

trajectory errors due to training), B is the time constant indicating

the number of trials for the error to decrease 67% of the way to

asymptote, and C is the asymptotic (steady-state) error value.

We planned five statistical tests comparing the quality of

learning across the four subject groups. One-way ANOVA

compared the amount and rate of learning (i.e. model parameters

A and B respectively from the model fit to individual subject data

obtained in the training phase), the amount of steady-state error

(model parameter C during training) as well as the amount and

rate of washout (i.e. parameters A and B from a separate fit of the

model to data obtained after removal of the visuomotor rotation).

Post-hoc, Tukey t-tests were used to perform pairwise comparisons

between groups and were considered statistically significant at the

a = 0.05 level.

Results

As expected, all subjects in all four groups learned to

compensate for the imposed visuomotor rotation. Trajectories

were curved on initial exposure to the imposed rotation (Fig. 2

insets) but subjects regained straight-line movements by the end of

training. Upon removal of the rotation, trajectories displayed after-

effects of learning (i.e. errors in the absence of perturbation) in the

direction opposite to those made during the initial exposure phase,

Table 1. Summary statistics of error values and their changes.

Initial error Learning Amount Steady state Time constant

Group N (m) (m) (m) (movements)

control 4 0.029 6 0.002 0.016 6 0.002 0.007 6 0.001 50.9 6 10.60

*2 4 0.031 6 0.002 0.014 6 0.004 0.01 6 0.002 33.4 6 7.66

offset 4 0.032 6 0.002 0.022 6 0.003 0.011 6 0.002 38.1 6 4.74

*3.1 4 0.03 6 0.001 0.016 6 0.002 0.011 6 0.001 51.9 6 14.24

doi:10.1371/journal.pone.0046466.t001
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thus providing strong evidence that adaptation had indeed taken

place. These after-effects washed out over the final washout phase

(Fig. 2, right). Initial values of error were not significantly different

amongst groups (One-way ANOVA: F(3,12) = 2.55, p = 0.104; see

Table 1), and all groups reduced error an average of 68% of the

original amount.

Error augmentation influenced the amount of learning during

training (parameter A in Eq 1) (One-way ANOVA: F(3,12) = 4.13,

p = 0.032; see Table 1). The Offset group reduced error

(22.763.6 mm; mean 61 SD both here and elsewhere) more

than the control group (17.561.3 mm) whereas error reduction in

the other two augmentation conditions (*2: 18.763.3 mm; *3.1:

16.961.2 mm) did not differ significantly from the controls

(Fig. 3A). Error augmentation also influenced the time constant

of learning (parameter B in Eq. 1) (One-way ANOVA:

F(3,12) = 5.58, p = 0.012; see Table 1). As anticipated, the *2

group proved to learn faster (29.1610.3 trials) than both control

subjects (44.868.9 trials) and *3 group subjects (52.1610.3 trials).

The asymptotic level of performance error (parameter C in

Equation 1) did not vary across training groups (One-way

ANOVA: F(3,12) = 2.12, p = 0.150; see Table 1). One-way

ANOVA also found no group-dependent differences in the

amount (F(3,12) = 1.90, p = 0.183) or rate (F(3,12) = 1.57, p = 0.247)

of washout, and thus the de-adaptation process was not influenced

by type of feedback experienced during training. Finally, we found

no group-dependent differences in the summed squares of the

residuals of the exponential fit (1-way ANOVA F(3,12) = 2.52;

p = 0.11), indicating no detectable group differences in both

quality of fit or trial-to-trial variability. Residuals averaged 0.94

millimeters. Although the effect size of training condition on the

rate and amount of learning was quite large (amount: Cohen’s d

= 1.9; rate: Cohen’s d = 1.6), our sample sizes were small and

hence it was not possible to verify normality of the sample

distributions. We therefore repeated our analysis using non-

parametric Kruskal-Wallis tests and found a pattern of significance

identical to that reported above using one-way ANOVA.

Interestingly, the *3.1 group did not show any clear benefit over

the control group, despite the observation of an increased learning

rate for a gain of 2. Two possibilities may explain this loss in

performance enhancement at higher error feedback gains. First,

*3.1 group subjects might have overcompensated for the highly

magnified errors, a pattern of underdamped and oscillating

compensation that might lead to less effective learning. A second

possibility is that the nervous system may have adapted learning in

order to be more ‘‘cautious’’ as it updated its movement plan. Our

data appear to support the second option because each subject

learned gradually without obvious oscillations or large ‘‘jumps’’ in

the time series of errors. Instead, subjects compensated more

gradually from trial to trial (such as in Fig. 2, bottom right). To

confirm this, we compared the change in signed error between the

first two augmentation trials. We found no difference amongst

groups (F(3,12) = 1.12; p = 0.38; shown as blue line segments in

Fig. 2). Hence learning rates decreased at the higher gain of 3.1,

and this reduction occurred within the first few training trials.

Discussion

This paper presents a preliminary investigation of whether

learning of novel visuomotor transformations may be promoted

using error augmentation strategies. The smaller time constants for

the *2 and Offset groups demonstrate that error augmentation can

increase the rate of learning. Manipulating the gain of visual errors

appears to be limited in that a gain of 2 shows markedly better

performance than a gain of 3.1. In contrast, the Offset group

Figure 3. Group results of the curve fitting for all subjects in
the four groups according to Eq. 1. The amount of learning
(parameter A, top), time constant of error decay during learning
(parameter B, middle) and steady state value (parameter C, bottom) are
shown. Error bars indicate 95% confidence intervals. Horizontal lines
indicate significant differences (post-hoc) between groups.
doi:10.1371/journal.pone.0046466.g003
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learned significantly more than the other groups, making this an

important new tool for enhancing motor performance during

learning. Capitalizing on the ability of computers and displays to

perform real-time operations on the feedback may be a valid

approach to using technology to enhance the motor learning

process.

Manipulating visual feedback in order to promote motor

adaptation is certainly not a new idea. Numerous studies have

shown how the nervous system can be ‘‘tricked’’ into altering its

performance by giving altered sensory feedback (e.g.,

[3,14,20,21,22,23,24]). Altering visual feedback has already been

demonstrated to cause subjects to perceive a higher stiffness than

actually felt [24], to increase the output force beyond their original

strength limits [20], alter vestibular-ocular reflex gains [21] or

notice and correct for sensory neglect secondary to stroke [25].

The present study is unique in that it augmented just the elements

of visual feedback pertaining to deviations from the straight line

while preserving unaltered visual information regarding motion

directed toward the target. Our results demonstrate that there is a

clear advantage to distorted reality feedback, where judicious

manipulations of visual information can lead to practical

improvements in the extent and rate of learning.

The offset condition allows subjects to adapt to the visually

rotated environment more efficiently than the other methods of

augmentation tested. In the gain augmentation condition, errors

(and therefore augmentation) decrease to zero as training

performance asymptotes at the end of training. In contrast, the

error bias added to movements in the Offset Group does not

decrease to zero with improvement. The Offset group showed a

larger average amount of learning (Figure 3A) that was signifi-

cantly larger than the 3.1 and the Control groups. This finding

suggests that sustaining error artificially large can assist in

enhancing continued learning when conventional error-based

learning becomes smaller and smaller as each attempt diminishes

error. Like a back propagation learning algorithm with momen-

tum [12], where changes in performance can continue to occur

even when performance errors are zero, offset error augmentation

can potentially drive learning beyond 0 error, thus leading subjects

to ‘‘overlearn’’ beyond the desired goal. This outcome may be

beneficial in situations where subjects do not fully learn, as was the

case for the control group, and may also provide a means to

achieve more complete learning. However, we note that such

over-learning did not appear to occur in the current experiment.

While all groups’ final steady state errors were not significantly

different across groups, the treatment group averages trended

slightly larger than controls (Figure 3C) and so a failure to detect

significance could be due to a limited sample size. Nonzero steady

state errors are a strict measure of ‘‘incomplete learning’’

(Figure 3C, confidence intervals do not encompass zero). In any

case, we speculate that a ‘scheduled’ mixture of offset and gain, in

which the offset factor is extinguished when the subject learns

beyond the goal, may optimize both the rate and extent of motor

learning. This question of what ‘schedule’ of offset and gain to use

is related to the topics of gain scheduling and adaptive learning

rates that are used in neural network and machine learning [26].

Change in errors immediately following exposure to error

augmentation was the same for all groups, even though the *3.1

group should theoretically have learned much more than control

subjects. Subjects from *3.1 group tended to slow learning rather

than over-compensate. This suggests that the nervous system may

react to excessively large error signals by decreasing (within about

5 trials) the impact of visual performance errors on motor

command updating. Large errors thus may be regarded as outliers

by a nonlinear loss function that governs motor adaptation [14].

The finding that catch-trial performance after initial exposure to

error augmentation does not differ across groups indicates that the

brain does not disregard large errors as non-meaningful or non-

deterministic. This finding is in contrast to studies of visual error

reduction (a manipulation which appears to stifle learning; [23] and

studies of visual feedback suppression (which slows the (dis)adapta-

tion process; [27]). These and other studies that induce conflict

between sensory modalities suggest that rather than overcompen-

sating and oscillating its errors as it learns, the nervous system can

quickly ‘‘adapt its adaptation’’ by re-weighing the interpretation of

sensory information if it no longer is perceived reliable [13,28].

A limitation of the present study is that it did not parametrically

examine the effectiveness of gain augmentation over the full range

of multiplicative factors. The gain *3.1 in the experiment did no

better than the control (gain *1) and worse than gain *2, possibly

because the larger gain may have decreased the relative stability of

the adaptation process beyond a critical value so that the Gain

*3.1 had similar learning to the Control Group. Consequently, an

optimal gain must reside between *1 and *3.1. It is possible that

the optimal gain may be task-specific and/or dependent on the

sensory modality being manipulated to enhance learning. Another

limitation is that offset magnitude was not varied in this

experiment. Future studies should identify the range of sensory

feedback conditions that enhance learning as well as the

scheduling of gain and offset strategies that optimize motor

learning in specific tasks.

Offset augmentation belongs to the class of task- and subject-

specific training techniques suggested to be effective in encourag-

ing neuromotor rehabilitation in cases requiring the learning (or

re-learning) of the relationship between motor intent and action,

such as in neurorehabilitation after stroke ([29]. These results

support and expand on recent work demonstrating that error-

augmenting forces were more beneficial than error-reducing forces

in restoring reaching performance after stroke [6]. While not all

kinds of augmented feedback have proven to be therapeutically

beneficial post-stroke [30], it is important that future efforts should

explore other potential gain and offset settings for improving

motor training following neuromotor injury. The initial findings

presented here in healthy subjects suggest that such training

approaches might be effective in facilitating motor learning in

sports, performing arts, remote device operation, rehabilitation, or

in any training situation requiring repetitive practice.
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